JPH07106274A - Specimen heating method and specimen heat-treating equipment - Google Patents

Specimen heating method and specimen heat-treating equipment

Info

Publication number
JPH07106274A
JPH07106274A JP24770693A JP24770693A JPH07106274A JP H07106274 A JPH07106274 A JP H07106274A JP 24770693 A JP24770693 A JP 24770693A JP 24770693 A JP24770693 A JP 24770693A JP H07106274 A JPH07106274 A JP H07106274A
Authority
JP
Japan
Prior art keywords
sample
heat
heat treatment
container
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24770693A
Other languages
Japanese (ja)
Inventor
Shizunori Oyu
静憲 大湯
Yoshifumi Kawamoto
佳史 川本
Osamu Okura
理 大倉
Takashi Nishida
高 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24770693A priority Critical patent/JPH07106274A/en
Publication of JPH07106274A publication Critical patent/JPH07106274A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable high precision heat treatment when the front or the rear of a specimen is covered with any kind of film or any kind of film constitution is applied, by supplying optical energy to a vessel storing he specimen from a light source, heating vessel, and heating the specimen by the heat energy from the vessel. CONSTITUTION:When optical energy is supplied to a vessel 7 storing a specimen 6 from a light source 8, the vessel 7 is formed of material which absorbs energy in a specified wavelength region of a light source 8. The main constituent material which constitutes the vessel 7 is so-called silicon or carbon subjected to coating the surface contamination prevention which effectively adsorb optical energy. By heating the vessel 7, heat energy is supplied to the specimen 6, which is heated. Thereby the heating condition of the specimen 6 is not affected by the front condition or the rear condition, when the front or the rear of the specimen 6 is covered with any kind of film, or any kind of film constitution is applied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光エネルギを用いて被
熱処理試料を加熱する際に試料の表面や裏面が如何なる
膜に覆われていても高精度の熱処理が実施できる試料加
熱法および試料熱処理装置に関する。
FIELD OF THE INVENTION The present invention relates to a sample heating method and a sample heating method capable of performing a high-precision heat treatment when heating a sample to be heat-treated using light energy, regardless of the film on the front or back surface of the sample. The present invention relates to a heat treatment device.

【0002】[0002]

【従来の技術】従来の光エネルギを用いて試料を加熱す
る熱処理装置では、特開昭60−727号,特開昭60−231332
号,特開昭62−24630 号,特開昭62−224021号公報に記
載のように、加熱源としてハロゲンランプやアークラン
プを用いて被熱処理試料に直接ランプ光を照射して試料
を加熱していた。このランプ加熱によって急熱・急冷が
実現できるため、秒オーダの短時間熱処理が可能であ
り、また、試料の枚葉処理も可能である。このような熱
処理では試料温度の均一性を維持するために、試料の中
心より周辺でランプ光エネルギが大きくなるようにして
試料の加熱を実施していた。また、このような熱処理装
置での代表的な試料の温度モニタは、従来、被熱処理基
板の表面または裏面から放射される赤外光を赤外放射温
度計でモニタする非接触法や、被熱処理基板の表面また
は裏面に接触するような熱電対を用いた接触法により行
っていた。また、このような従来の熱処理装置では、熱
処理容器一個に光エネルギ源が一個または二個用いられ
ていた。
2. Description of the Related Art A conventional heat treatment apparatus for heating a sample using light energy is disclosed in JP-A-60-727 and JP-A-60-231332.
As described in JP-A No. 62-24630 and JP-A No. 62-224021, a halogen lamp or an arc lamp is used as a heating source to directly irradiate lamp light to a sample to be heat-treated to heat the sample. Was there. Since rapid heating / cooling can be realized by this lamp heating, short-time heat treatment of the order of seconds is possible, and single-wafer processing of samples is also possible. In such a heat treatment, in order to maintain the uniformity of the sample temperature, the sample light is heated such that the lamp light energy is larger in the periphery than in the center of the sample. In addition, a typical sample temperature monitor in such a heat treatment apparatus has conventionally been a non-contact method in which infrared light emitted from the front or back surface of a substrate to be heat-treated is monitored by an infrared radiation thermometer, or a heat treatment target. It is performed by a contact method using a thermocouple so as to contact the front surface or the back surface of the substrate. Further, in such a conventional heat treatment apparatus, one or two light energy sources are used for one heat treatment container.

【0003】[0003]

【発明が解決しようとする課題】上記従来の光エネルギ
を用いて加熱する熱処理装置では、以下のような問題が
ある。まず、試料の表面や裏面の膜構成および試料面内
での膜構成の分布によって生じる試料温度の均一性の劣
化について考慮がなされていなかった。
The above-described conventional heat treatment apparatus for heating using light energy has the following problems. First, no consideration was given to the deterioration of the uniformity of the sample temperature caused by the distribution of the film configuration on the front surface and the back surface of the sample and the film configuration within the sample surface.

【0004】図1は、所定のランプ光強度で加熱した際
の種々の膜構成での到達温度を示したもので、同図aは
試料の断面図、同図bは同試料の断面位置に対応する表
面温度の分布を示したものである。
FIG. 1 shows the temperatures reached by various film configurations when heated with a predetermined lamp light intensity. FIG. 1a is a sectional view of the sample, and FIG. 1b is a sectional position of the sample. The corresponding surface temperature distribution is shown.

【0005】この結果は、ランプ光は主に表面から照射
して得られたものである。ここで用いた試料は、厚さが
0.5mmの珪素基板1であり、その表面に膜厚0.1μm
の酸化珪素膜2,膜厚0.4μmの多結晶珪素膜3,膜
厚0.5μmのリンガラス膜4、および、膜厚0.2μm
の多結晶珪素膜と膜厚0.1μmのタングステンシリサ
イド膜の積層膜5を形成し、通常のホトエッチング法を
用いて図1の(a)に示すような構造にしたものであ
る。
This result is obtained by irradiating the lamp light mainly from the surface. The sample used here is a silicon substrate 1 having a thickness of 0.5 mm and a film thickness of 0.1 μm on the surface thereof.
Silicon oxide film 2, polycrystalline silicon film 0.4 μm thick, phosphorus glass film 4 0.5 μm thick, and 0.2 μm thick
1A is formed by forming a laminated film 5 of a polycrystalline silicon film and a tungsten silicide film having a film thickness of 0.1 μm, and using a normal photoetching method.

【0006】図1の(b)から判るように、試料温度は
膜構成により非常に大きな分布を持っている。実際の試
料表面や裏面では、これらの膜の構成が複雑に配置され
ているため、膜構成の異なる境界部分で温度差が生じて
しまう。これによって、試料温度の均一性が劣化するだ
けでなく、その境界部分で温度差による熱ストレスが生
じて試料に悪影響を与えてしまう。
As can be seen from FIG. 1B, the sample temperature has a very large distribution due to the film structure. Since the structures of these films are arranged in a complicated manner on the actual front surface and the back surface of the sample, a temperature difference occurs at the boundary portion where the film structures are different. This not only deteriorates the uniformity of the sample temperature, but also causes thermal stress due to the temperature difference at the boundary portion thereof, which adversely affects the sample.

【0007】さらに、この膜構成による温度差により、
試料温度のモニタ精度が劣化してしまう。従来の熱処理
装置では、温度モニタ位置として試料の中心または試料
の周辺で行っていた。例えば、通常の半導体素子製造中
の試料では、試料中心と試料周辺とで膜構成が異なるた
め、試料の中心と周辺とで温度差が生じているにもかか
わらず、同じ温度として取り扱われていた。
Further, due to the temperature difference due to this film structure,
The accuracy of monitoring the sample temperature deteriorates. In the conventional heat treatment apparatus, the temperature is monitored at the center of the sample or the periphery of the sample. For example, in a normal semiconductor device manufacturing sample, since the film configuration is different between the sample center and the sample periphery, the samples were treated as the same temperature even though there was a temperature difference between the sample center and the sample periphery. .

【0008】また、従来の熱処理装置では、赤外放射温
度計を用いて温度モニタを行っていたが、モニタする試
料表面または裏面の膜構成によって、放射率が変動して
しまうため、放射率の補正が必要であった。この補正精
度は、完全なものではなく処理温度の1%程度が限界で
ある。このため、1000℃の熱処理を行おうとする
と、10℃もの誤差が生じてしまう。この誤差は、試料
が半導体素子製造用のものであれば無視出来ないほどの
大きなものである。このように、従来の熱処理装置では
十分な温度モニタ精度が得られなかった。
Further, in the conventional heat treatment apparatus, the temperature was monitored using an infrared radiation thermometer. However, the emissivity fluctuates depending on the film structure of the front or back surface of the sample to be monitored. Correction was necessary. This correction accuracy is not perfect and the limit is about 1% of the processing temperature. Therefore, if an attempt is made to perform heat treatment at 1000 ° C., an error of 10 ° C. will occur. This error is so large that it cannot be ignored if the sample is for semiconductor device manufacturing. As described above, the conventional heat treatment apparatus cannot obtain sufficient temperature monitoring accuracy.

【0009】さらに、従来の熱処理装置では、容器の一
部あるいは全部を石英で構成しているため、熱処理を続
けてゆくと石英部分も徐々に温度が上昇する。温度モニ
タを赤外放射温度計を用いて試料からの赤外線強度を観
測する場合、温度が徐々に高くなってゆく石英部分から
の赤外線強度の影響を受けることになる。また、温度モ
ニタを熱電対を用いて行う場合も、その熱電対の起電力
が石英部分の温度の影響を受けてしまう。従って、熱処
理を続けてゆくと、石英部分の温度変動分が実際の試料
の温度モニタ精度を低下させてゆき、試料温度の再現性
が確保できなくなってしまう。
Further, in the conventional heat treatment apparatus, since the container is partially or entirely made of quartz, the temperature of the quartz portion gradually rises as the heat treatment is continued. When observing the infrared intensity from a sample using an infrared radiation thermometer as a temperature monitor, it is affected by the infrared intensity from the quartz portion where the temperature gradually rises. Also, when the temperature is monitored using a thermocouple, the electromotive force of the thermocouple is affected by the temperature of the quartz portion. Therefore, if the heat treatment is continued, the temperature variation of the quartz portion deteriorates the temperature monitoring accuracy of the actual sample, and the reproducibility of the sample temperature cannot be secured.

【0010】また、このような従来の熱処理装置では、
熱処理容器一個に光エネルギ源が一個または二個用いら
れていたが、次のような問題があった。すなわち、これ
らの装置では、光エネルギの殆んどが被熱処理試料に供
給されるように光の反射板を用いているが、光の反射板
での光エネルギ吸収があるため試料に対して有効にエネ
ルギが供給されていなかった。つまり、反射板が加熱す
る分を冷却していたので、その分のエネルギが無駄にな
っていた。
Further, in such a conventional heat treatment apparatus,
One or two light energy sources were used in one heat treatment container, but there were the following problems. That is, in these devices, a light reflector is used so that most of the light energy is supplied to the sample to be heat-treated, but since the light reflector absorbs light energy, it is effective for the sample. Was not being supplied with energy. In other words, since the heating amount of the reflection plate is cooled, the energy amount is wasted.

【0011】本発明の目的は、光エネルギを用いて被熱
処理試料を加熱する際に、試料の表面や裏面が如何なる
膜に覆われていても、また、どんな膜構成となっていて
も高精度の熱処理が実施でき、さらに、再現性の良い試
料加熱法および試料熱処理装置を提供することにある。
An object of the present invention is to achieve high precision in heating a sample to be heat-treated by using light energy, regardless of what film the front surface or the back surface of the sample is covered with, and any film structure. Another object of the present invention is to provide a sample heating method and a sample heat treatment apparatus which can perform the above heat treatment and have good reproducibility.

【0012】[0012]

【課題を解決するための手段】本発明は上記目的を達成
するため、被熱処理試料の加熱に際して、図2に示すよ
うに、試料6を収納する容器7に光源8から光エネルギ
を供給してその容器7を加熱し、容器7からの熱エネル
ギによって試料6を加熱する方法を用いる。ここで、被
熱処理試料6の主構成材質が珪素,ガリウム−砒素等の
半導体であり、それを収納する容器7の主構成材質が炭
素,珪素等の光エネルギに対してほぼ黒体に近いもので
ある。このような加熱法を用いた試料熱処理装置での熱
処理温度の監視は、容器7の温度をモニタする赤外放射
温度計11やそれに埋め込んだ熱電対13を用いて行
う。また、図3に示すように、光エネルギ源8の数をn
(n≦3)としたとき試料6を収納する容器7の数を
(n−1)として構成して、複数の熱処理が可能なよう
に熱処理装置を構成する。
In order to achieve the above object, the present invention supplies light energy from a light source 8 to a container 7 containing a sample 6 when heating the sample to be heat-treated, as shown in FIG. The method of heating the container 7 and heating the sample 6 by the heat energy from the container 7 is used. Here, the main constituent material of the sample 6 to be heat-treated is a semiconductor such as silicon, gallium-arsenic, etc., and the main constituent material of the container 7 for housing the same is substantially a black body with respect to light energy such as carbon, silicon. Is. Monitoring of the heat treatment temperature in the sample heat treatment apparatus using such a heating method is performed using the infrared radiation thermometer 11 for monitoring the temperature of the container 7 and the thermocouple 13 embedded therein. In addition, as shown in FIG. 3, the number of light energy sources 8 is n.
When (n ≦ 3) is set, the number of containers 7 storing the sample 6 is set to (n−1), and the heat treatment apparatus is configured to allow a plurality of heat treatments.

【0013】[0013]

【作用】図2に示すように、試料6を収納する容器7に
光源8から光エネルギを供給する際に、光源に特有な波
長領域のエネルギを吸収する材質で容器7を作ることに
よって、光エネルギによって効率良く加熱される。例え
ば、光の波長が1μm以下の場合は、その光吸収が大き
い珪素を主構成材質に用いた容器7にし、また、光の波
長が1μm以上の場合は、炭素を主構成材質に用いた容
器7にする。また、これらの容器7の内壁や外壁には、
重金属などの汚染物が浸透しにくい薄膜9を堆積してお
く。これによって、重金属などの汚染物が加熱中の試料
6に到達することはない。従って、清浄な雰囲気での熱
処理が可能となる。このように、容器7を構成する材質
は、光エネルギを効率良く吸収する珪素や炭素等の表面
を汚染防止のためにコーティングした、いわゆる珪素や
炭素を主構成材質とする。また、容器7の主構成材質で
ある珪素や炭素の部分の厚さやコーティング膜の厚さに
もよるが、光エネルギの供給によって容器を急熱・急冷
できる。
As shown in FIG. 2, when light energy is supplied from the light source 8 to the container 7 for storing the sample 6, the container 7 is made of a material that absorbs energy in the wavelength range peculiar to the light source, It is efficiently heated by energy. For example, when the wavelength of light is 1 μm or less, the container 7 is made of silicon, which has a large light absorption, as the main constituent material, and when the wavelength of light is 1 μm or more, the container is made of carbon. Set to 7. Also, on the inner wall and outer wall of these containers 7,
A thin film 9 is deposited in which contaminants such as heavy metals are difficult to penetrate. As a result, contaminants such as heavy metals do not reach the sample 6 being heated. Therefore, the heat treatment in a clean atmosphere becomes possible. As described above, the main constituent material of the container 7 is so-called silicon or carbon, which is obtained by coating the surface of silicon, carbon, or the like that efficiently absorbs light energy to prevent contamination. Further, depending on the thickness of the silicon or carbon portion, which is the main constituent material of the container 7, and the thickness of the coating film, the container can be rapidly heated / cooled by supplying light energy.

【0014】この容器7の加熱により熱エネルギが試料
6に供給され試料が加熱される。このため、試料の表面
や裏面がどんな膜に覆われていても、また、どんな膜構
成となっていても、試料の加熱状態が表面状態や裏面状
態に左右されることはない。
By heating the container 7, heat energy is supplied to the sample 6 to heat the sample. For this reason, the heating state of the sample is not affected by the front surface state or the back surface state, regardless of what film the front surface or the back surface of the sample is covered with, or what the film configuration is.

【0015】ここで、試料の温度均一性は、光エネルギ
の強度分布の制御に加えて、容器の熱容量を珪素や炭素
の厚さにより制御する。つまり、熱放散の多い試料周辺
で、光エネルギ強度を大きくし、また、容器の熱容量も
大きくする。この容器の熱容量を大きくすることによっ
て、試料の温度均一性は容易に制御でき、特に、冷却時
の均一性を良好にすることができる。従って、急冷時に
問題となるスリップラインの発生がなくなる。ここで、
光源8および容器7等を収納する外枠10は、光源8か
らの光を反射するように内側は鏡面にし、また加熱防止
のために水冷できるようにしておく必要がある。また、
温度モニタできるように、外枠には赤外放射温度計11
のためのすき間12を設けたり、容器7に埋め込んだ熱
電対13からの信号を得られるような引出線14用の穴
も設ける。さらに、試料6の出し入れ用の扉15および
雰囲気導入管16も設ける。
Here, for the temperature uniformity of the sample, in addition to controlling the intensity distribution of light energy, the heat capacity of the container is controlled by the thickness of silicon or carbon. That is, the light energy intensity is increased and the heat capacity of the container is increased in the vicinity of the sample with a large amount of heat dissipation. By increasing the heat capacity of this container, the temperature uniformity of the sample can be easily controlled, and in particular, the uniformity during cooling can be improved. Therefore, the occurrence of slip lines, which is a problem during rapid cooling, is eliminated. here,
The outer frame 10 for accommodating the light source 8 and the container 7 and the like needs to be mirror-finished on the inside so as to reflect the light from the light source 8 and to be water-cooled to prevent heating. Also,
An infrared radiation thermometer 11 is provided on the outer frame so that the temperature can be monitored.
A hole 12 for the lead wire 14 is provided so that a signal from the thermocouple 13 embedded in the container 7 can be obtained. Further, a door 15 for loading / unloading the sample 6 and an atmosphere introducing pipe 16 are also provided.

【0016】ここで、被熱処理試料6の主構成材質が珪
素,ガリウム−砒素等の半導体であれば、この加熱方法
は半導体素子製造用の熱処理工程に用いられる。
If the main constituent material of the sample 6 to be heat-treated is a semiconductor such as silicon or gallium-arsenic, this heating method is used in the heat treatment step for manufacturing a semiconductor element.

【0017】このような加熱法を用いた試料熱処理装置
での熱処理温度の監視を、容器7を赤外放射温度計11
やそれらに埋め込んだ熱電対13を用いて行うと、容器
7の表面状態が一定であるため、温度モニタ精度の劣化
はない。また、熱処理前の試料温度は、常に室温であ
り、また、熱処理温度に比べて十分低いため、容器7の
温度モニタにはほとんど影響を与えない。従って、容器
7の温度をモニタしていれば熱処理の再現性劣化はなく
なる。また、図3に示すように、光エネルギ源8の数を
n(n≦3)としたとき試料6を収納する容器7の数を
(n−1)として構成して、複数の熱処理が可能なよう
に熱処理装置を構成すると、光エネルギを有効に試料加
熱に利用できる。
In order to monitor the heat treatment temperature in the sample heat treatment apparatus using such a heating method, the container 7 is provided with an infrared radiation thermometer 11
If the thermocouple 13 embedded in them is used, the surface condition of the container 7 is constant, and therefore the temperature monitoring accuracy does not deteriorate. Further, the sample temperature before the heat treatment is always room temperature and is sufficiently lower than the heat treatment temperature, so that the temperature monitor of the container 7 is hardly affected. Therefore, if the temperature of the container 7 is monitored, the reproducibility of heat treatment does not deteriorate. Further, as shown in FIG. 3, when the number of light energy sources 8 is n (n ≦ 3), the number of containers 7 for storing the sample 6 is (n−1), and a plurality of heat treatments are possible. By configuring the heat treatment apparatus as described above, the light energy can be effectively used for heating the sample.

【0018】[0018]

【実施例】以下、本発明の実施例を図2ないし図5を用
いて説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0019】本発明を実施した試料熱処理装置は、図2
に示すように、光源としてタングステンハロゲンランプ
8を用い、熱処理容器7は表面が酸化珪素膜9で覆われ
た珪素によって構成されている。この容器7の熱容量
は、試料に対して十分大きくし、また、試料6の周辺か
らの熱放散の影響と冷却時に発生しやすいスリップライ
ンの発生を抑えるために周辺で熱容量が大きくなるよう
にした。また、この熱容量分布に対応するように、容器
7の周辺でのタングステンハロゲンランプ光強度も大き
くした。容器7には、温度を直接モニタする熱電対を埋
め込み、また、容器7の温度を赤外放射温度計11によ
りモニタできるようにした。なお、赤外放射温度計11
による温度モニタは、試料6からの赤外線も含めてモニ
タするような場所と、試料6からの赤外線の影響の無い
場所で行うようにした。また、試料6の出し入れ用の扉
15および石英製の雰囲気導入管16も設けた。ここ
で、外枠10は、タングステンハロゲンランプ光を反射
するように鏡面仕上げを行った水冷可能なステンレス製
であり、また、扉15は、試料6と同じ雰囲気に晒され
る部分を石英製とし、また、機械的強度を持たせる部分
を水冷可能なステンレス製とした。
The sample heat treatment apparatus embodying the present invention is shown in FIG.
As shown in FIG. 5, a tungsten halogen lamp 8 is used as a light source, and the heat treatment container 7 is made of silicon whose surface is covered with a silicon oxide film 9. The heat capacity of the container 7 is made sufficiently large with respect to the sample, and in order to suppress the influence of heat dissipation from the periphery of the sample 6 and the occurrence of slip lines that are likely to occur during cooling, the heat capacity is increased in the periphery. . Further, the light intensity of the tungsten halogen lamp around the container 7 was also increased so as to correspond to this heat capacity distribution. A thermocouple for directly monitoring the temperature is embedded in the container 7, and the temperature of the container 7 can be monitored by the infrared radiation thermometer 11. The infrared radiation thermometer 11
The temperature monitoring by means of is carried out at a place where the infrared rays from the sample 6 are also monitored and at a place where the infrared rays from the sample 6 do not affect. Further, a door 15 for taking in and out the sample 6 and an atmosphere introducing pipe 16 made of quartz were also provided. Here, the outer frame 10 is made of water-coolable stainless steel that is mirror-finished to reflect the light of the tungsten halogen lamp, and the door 15 is made of quartz in a portion exposed to the same atmosphere as the sample 6. Further, the portion having mechanical strength is made of stainless steel that can be water-cooled.

【0020】この装置を用いて図1(a)に示した構造の
試料を加熱した結果、図4に示すように試料の温度分布
は殆ど見られなくなった。具体的な温度ばらつきは、9
00℃熱処理において、試料に対して±2℃を実現でき
た。また、均一性は、タングステンハロゲンランプ光強
度分布の制御により、容易に実現できた。さらに、再現
性については、熱処理前の容器7の温度によらず、90
0℃熱処理において試料温度は−2℃以内に保つことが
できた。このように、本実施例によれば、従来にない均
一性,再現性および温度制御性が実現できる。なお、試
料温度の加熱速度と冷却速度は、最大30℃/秒と従来
装置に比較すると遅くなるが、実際の熱処理には十分に
速い速度であり実用上問題はない。この加熱速度を大き
くするには、容器7を構成する珪素のランプ光吸収係数
を大きくするために高濃度(1020/cm2 )の砒素を混入
すればよい。だだし、容器7からの砒素汚染を防止する
ためには珪素表面の保護膜9を厚くすればよいが、保護
膜の熱伝達が遅い場合にはその分熱処理試料への熱エネ
ルギの供給が少なくなるので注意を要する。
As a result of heating the sample having the structure shown in FIG. 1 (a) using this apparatus, almost no temperature distribution of the sample was observed as shown in FIG. The specific temperature variation is 9
In the heat treatment at 00 ° C, ± 2 ° C could be realized for the sample. Further, the uniformity can be easily realized by controlling the light intensity distribution of the tungsten halogen lamp. Furthermore, the reproducibility is 90% regardless of the temperature of the container 7 before the heat treatment.
The sample temperature could be kept within -2 ° C in the 0 ° C heat treatment. As described above, according to the present embodiment, it is possible to realize uniformity, reproducibility, and temperature controllability that have not been found in the past. The heating rate and the cooling rate of the sample temperature are 30 ° C./sec at the maximum, which are slower than those of the conventional apparatus, but they are sufficiently fast for actual heat treatment and are practically no problem. In order to increase the heating rate, arsenic of high concentration (10 20 / cm 2 ) may be mixed in order to increase the lamp light absorption coefficient of silicon forming the container 7. However, in order to prevent arsenic contamination from the container 7, the protective film 9 on the silicon surface may be thickened, but when the heat transfer of the protective film is slow, the heat energy supplied to the heat-treated sample is correspondingly small. So be careful.

【0021】また、半導体試料の主構成材質がガリウム
−砒素である場合、珪素に対してドーパントである砒素
が熱処理中に雰囲気に混入してくるため、容器7が珪素
で作られていると砒素が容器中に拡散する可能性があ
る。珪素中に砒素が拡散すると、珪素中の自由電子が増
加し、それによって容器7のランプ光吸収係数が高くな
る。したがって、この半導体試料の熱処理を続けてゆく
と、容器7の加熱速度が変動してしまう。このような変
動が起こると、容器の中心部と周辺部で砒素拡散量が異
なってくるため熱処理の均一性が劣化してしまう。この
ような半導体試料を熱処理する場合には、前述の珪素の
部分を珪素と炭素の混合物に置き換えることにより均一
性劣化を防いでいる。
When the main constituent material of the semiconductor sample is gallium-arsenic, arsenic, which is a dopant for silicon, is mixed into the atmosphere during the heat treatment. May diffuse into the container. When arsenic diffuses into silicon, the number of free electrons in silicon increases, which increases the lamp light absorption coefficient of the container 7. Therefore, if the heat treatment of the semiconductor sample is continued, the heating rate of the container 7 changes. When such a variation occurs, the arsenic diffusion amount differs between the central portion and the peripheral portion of the container, and the uniformity of heat treatment deteriorates. When such a semiconductor sample is heat-treated, the uniformity of silicon is prevented by replacing the silicon portion with a mixture of silicon and carbon.

【0022】また、容器の熱容量分布を変えるために図
2に示すような断面構造にしているが、図5に示したよ
うな断面構造にしても同様の効果が得られる。
Further, the sectional structure as shown in FIG. 2 is used to change the heat capacity distribution of the container, but the same effect can be obtained by the sectional structure as shown in FIG.

【0023】さらに、光エネルギを有効に試料加熱に利
用するため、図3に示すような熱処理装置を構成した。
ここでも、主要な加熱方法や温度のモニタ方法は上記の
方法を用いている。これにより、ランプに供給する電力
10kW当り1枚の処理からおおよそ1.5 枚処理でき
るようになった。この実施例では、5個の容器を用いて
いるが、容器の数を増やすことによって、1枚の処理に
要する電力を低減できる。ただし、この場合、ランプが
両方の容器からの熱輻射によって加熱されるため、ラン
プの強制冷却が必要となる。この強制冷却に必要な雰囲
気の供給に要する電力およびそれに必要な設備に要する
費用は、上記試料加熱に必要な電力に要する費用は無視
できるほど小さい。従って、本実施例を用いれば試料を
安価で加熱するのに非常に効果がある。
Further, in order to utilize the light energy effectively for heating the sample, a heat treatment apparatus as shown in FIG. 3 was constructed.
Here again, the above-mentioned method is used as the main heating method and temperature monitoring method. As a result, it became possible to process about 1 to about 1.5 sheets per 10 kW of power supplied to the lamp. Although five containers are used in this embodiment, the power required for one processing can be reduced by increasing the number of containers. However, in this case, since the lamp is heated by the heat radiation from both the containers, forced cooling of the lamp is necessary. The power required to supply the atmosphere necessary for the forced cooling and the cost required for the equipment required for the forced cooling are so small that the power required to heat the sample is negligible. Therefore, the use of this example is very effective in heating the sample at a low cost.

【0024】本発明の実施例によれば、実際の被熱処理
基板の構造や膜構成の状態に左右されずに正確な温度モ
ニタが可能になった。また、熱処理温度分布の均一性向
上が容易になり、均一かつ高精度の温度制御ができる試
料熱処理装置を得ることができた。さらに、この装置を
用いて半導体装置を製造することにより、特性のばらつ
きの少ない半導体装置を得ることができ、従来に比べて
一段と歩留りが向上でき、そしてそれが安価に実現でき
る。
According to the embodiment of the present invention, accurate temperature monitoring can be performed without being affected by the actual structure of the substrate to be heat-treated and the state of the film structure. Further, the uniformity of the heat treatment temperature distribution was easily improved, and a sample heat treatment apparatus capable of uniform and highly accurate temperature control could be obtained. Furthermore, by manufacturing a semiconductor device using this device, a semiconductor device with less variation in characteristics can be obtained, the yield can be further improved as compared with the conventional one, and it can be realized at low cost.

【0025】[0025]

【発明の効果】本発明によれば、実際の被熱処理基板の
構造や膜構成の状態に左右されずに正確な温度モニタが
可能になり、均一な熱処理が可能になるので、従来に比
べて熱処理の高精度化に効果がある。これは、将来の半
導体装置製造プロセスの枚葉処理化に大きく貢献でき
る。
According to the present invention, accurate temperature monitoring can be performed without being affected by the actual structure of the substrate to be heat-treated and the state of the film structure, and uniform heat treatment can be performed. Effective in improving the accuracy of heat treatment. This can greatly contribute to the single-wafer processing of future semiconductor device manufacturing processes.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の熱処理での問題点の説明図。FIG. 1 is an explanatory view of problems in a conventional heat treatment.

【図2】本発明の実施例である熱処理装置の説明図。FIG. 2 is an explanatory diagram of a heat treatment apparatus that is an embodiment of the present invention.

【図3】本発明の実施例である複数の処理が可能な熱処
理装置の説明図。
FIG. 3 is an explanatory diagram of a heat treatment apparatus capable of performing a plurality of processes according to an embodiment of the present invention.

【図4】本発明により従来熱処理での問題点が解決でき
ることの説明図。
FIG. 4 is an explanatory view that the problems of conventional heat treatment can be solved by the present invention.

【図5】本発明の実施例である各種形状の熱処理容器の
断面図。
FIG. 5 is a cross-sectional view of heat treatment containers of various shapes according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

6…被熱処理試料、7…容器、8…ランプ、10…外
枠、11…赤外放射温度計、12…赤外放射温度計用
窓、13…埋込熱電対、14…熱電対信号取り出し、1
5…扉。
6 ... Heat-treated sample, 7 ... Container, 8 ... Lamp, 10 ... Outer frame, 11 ... Infrared radiation thermometer, 12 ... Infrared radiation thermometer window, 13 ... Embedded thermocouple, 14 ... Thermocouple signal extraction 1
5 ... Door.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西田 高 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Nishida 1-280 Higashi-Kengikubo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】被熱処理試料を加熱する際に、試料を収納
する容器に光エネルギを供給して前記容器を加熱し、前
記容器からの熱エネルギの供給によって前記試料を加熱
することを特徴とする試料加熱法。
1. When heating a sample to be heat-treated, light energy is supplied to a container for containing the sample to heat the container, and the sample is heated by supplying heat energy from the container. Sample heating method.
【請求項2】請求項1において、前記被熱処理試料の主
構成材質が珪素,ガリウム−砒素等の半導体であり、そ
れを収納する容器の主構成材質が炭素,珪素等の光エネ
ルギに対してほぼ黒体に近いものである試料加熱法。
2. The main constituent material of the sample to be heat-treated is a semiconductor such as silicon or gallium-arsenic according to claim 1, and the main constituent material of a container accommodating it is light energy such as carbon or silicon. A sample heating method that is almost a black body.
【請求項3】被熱処理試料を光エネルギ用いて加熱する
熱処理装置において、前記試料を収納する容器に光エネ
ルギを供給して前記容器を加熱し、前記容器からの熱エ
ネルギの供給によって前記試料を加熱する際、前記容器
の熱処理温度を監視しながら所定の熱処理を行うことを
特徴とする試料熱処理装置。
3. A heat treatment apparatus for heating a sample to be heat-treated using light energy to heat the container by supplying light energy to a container for storing the sample, and supplying the heat energy from the container to heat the sample. A sample heat treatment apparatus, which performs predetermined heat treatment while monitoring the heat treatment temperature of the container during heating.
【請求項4】請求項3において、前記被熱処理試料を光
エネルギを用いて加熱する熱処理装置において、被熱処
理試料の主構成材質が珪素,ガリウム−砒素等の半導体
であり、容器の主構成材質が炭素,珪素等の光エネルギ
に対してほぼ黒体に近いものである試料熱処理装置。
4. The heat treatment apparatus according to claim 3, wherein the heat treatment sample is heated by using light energy, the main constituent material of the heat treatment sample is a semiconductor such as silicon or gallium-arsenic, and the main constituent material of the container. Is a sample heat treatment device that is almost a black body with respect to the light energy of carbon, silicon, etc.
【請求項5】請求項3または4において、前記被熱処理
試料を光エネルギを用いて加熱する熱処理装置の、三個
以上の光エネルギ源の数をnとしたとき試料を収納する
容器の数を(n−1)として構成する試料熱処理装置。
5. A heat treatment apparatus for heating a sample to be heat-treated by using light energy according to claim 3 or 4, wherein the number of containers for storing the sample is n when the number of three or more light energy sources is n. A sample heat treatment apparatus configured as (n-1).
JP24770693A 1993-10-04 1993-10-04 Specimen heating method and specimen heat-treating equipment Pending JPH07106274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24770693A JPH07106274A (en) 1993-10-04 1993-10-04 Specimen heating method and specimen heat-treating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24770693A JPH07106274A (en) 1993-10-04 1993-10-04 Specimen heating method and specimen heat-treating equipment

Publications (1)

Publication Number Publication Date
JPH07106274A true JPH07106274A (en) 1995-04-21

Family

ID=17167456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24770693A Pending JPH07106274A (en) 1993-10-04 1993-10-04 Specimen heating method and specimen heat-treating equipment

Country Status (1)

Country Link
JP (1) JPH07106274A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299971A (en) * 2006-05-01 2007-11-15 Mitsubishi Electric Corp Heating device of semiconductor wafer
JP2008251733A (en) * 2007-03-29 2008-10-16 Nec Corp Optical heating device and optical heating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299971A (en) * 2006-05-01 2007-11-15 Mitsubishi Electric Corp Heating device of semiconductor wafer
JP2008251733A (en) * 2007-03-29 2008-10-16 Nec Corp Optical heating device and optical heating method

Similar Documents

Publication Publication Date Title
JP3380988B2 (en) Heat treatment equipment
US5336641A (en) Rapid thermal annealing using thermally conductive overcoat
US6359263B2 (en) System for controlling the temperature of a reflective substrate during rapid heating
US20040035847A1 (en) Fast heating and cooling apparatus for semiconductor wafers
US20060291832A1 (en) Heat treatment apparatus of light emission type
JP2007258286A (en) Heat treatment apparatus and method, and storage medium
US20080037964A1 (en) Susceptor for heat treatment and heat treatment apparatus
US20040023504A1 (en) Hot plate annealing
US8420555B2 (en) Manufacturing method for semiconductor device and manufacturing apparatus for semiconductor device
JPH07106274A (en) Specimen heating method and specimen heat-treating equipment
JPH11340157A (en) Apparatus and method for optical irradiation heat treatment
JPS6294925A (en) Heat treatment device
JPH0778830A (en) Semiconductor manufacturing equipment
JPS60137027A (en) Optical irradiation heating method
JPH08148502A (en) Temperature and semiconductor production system
JPH05299428A (en) Method and apparatus for heat-treatment of semiconductor wafer
JP4905907B2 (en) Lamp and heat treatment apparatus
JPH0653223A (en) Heat treatment furnace
JPH11163070A (en) Temperature control method for heat treatment process in production of semiconductor device
JPH0817755A (en) Heat treatment equipment of semiconductor wafer
JPS60732A (en) Annealing method
JPH0521367A (en) Thermal processing apparatus
JPH0240480Y2 (en)
JPH07326593A (en) Method and device for heat treatment
JPH05259172A (en) Heat treating apparatus for semiconductor wafer