JPH07103018A - Intake controller for internal combustion engine - Google Patents

Intake controller for internal combustion engine

Info

Publication number
JPH07103018A
JPH07103018A JP25302493A JP25302493A JPH07103018A JP H07103018 A JPH07103018 A JP H07103018A JP 25302493 A JP25302493 A JP 25302493A JP 25302493 A JP25302493 A JP 25302493A JP H07103018 A JPH07103018 A JP H07103018A
Authority
JP
Japan
Prior art keywords
intake
intake control
control valve
valve
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25302493A
Other languages
Japanese (ja)
Inventor
Nobuhiko Sugie
信彦 杉江
Yurio Nomura
由利夫 野村
Tokio Kohama
時男 小浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP25302493A priority Critical patent/JPH07103018A/en
Publication of JPH07103018A publication Critical patent/JPH07103018A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To provide the intake controller for internal combustion engine that can keep stable driving even when power consumption is low and an electric system is in abnormal state. CONSTITUTION:An intake control valve 50 fully opened at the time of no electrification is provided on an intake channel 13a communicated to first and fourth cylinders 5, 8, and an intake control valve 20 fully closed at the time of no electrification is provided on an intake channel 13a communicated to second and third cylinders 6, 7. When the intake control valve 20 is controlled to a fully closed state and when the intake control valve 50 is controlled to a fully opened state, electrification to the intake control valves 20, 50 is to be stopped. When cylinder cut-off control is carried out for the second and the third cylinders 6, 7, electrification to the intake control valve 20 is continued to be stopped. When an electric system is in abnormal state, electrification to the intake control valves 20, 50 is to be stopped. Medium engine output which is almost the same as at the time of cylinder cut-off is provided, and stable driving is thus achieved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各気筒に連通する複数
の吸気通路毎に、該吸気通路を開閉する複数の吸気制御
弁を配設した吸気制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake control device in which a plurality of intake control valves for opening and closing the intake passages are provided for each of a plurality of intake passages communicating with each cylinder.

【0002】[0002]

【従来の技術】従来より、吸気通路毎にこうした吸気制
御弁を設けることで、吸気の逆流を防止するといったこ
とが行われている。例えば、内燃機関の吸気行程開始時
には吸気弁と排気弁とが同時に開状態となる(いわゆる
バルブオーバーラップ)。すると排気通路の燃焼ガスが
吸気通路へ逆流して吸気の充填効率が低下したり、燃費
が悪化したりしてしまう。そこで、このようの吸気制御
弁を設けて吸気の逆流を防止し、内燃機関の運転性能を
高めることが行われているのである。
2. Description of the Related Art Conventionally, by providing such an intake control valve for each intake passage, backflow of intake air is prevented. For example, at the start of the intake stroke of the internal combustion engine, the intake valve and the exhaust valve are opened simultaneously (so-called valve overlap). Then, the combustion gas in the exhaust passage flows back to the intake passage, which reduces the intake charging efficiency and deteriorates fuel efficiency. Therefore, such an intake control valve is provided to prevent backflow of intake air and improve the operating performance of the internal combustion engine.

【0003】また、この種の吸気制御弁としては、例え
ば特開平4−86326号公報に記載のように、電磁コ
イルへの通電方向を切り換えることにより全開または全
閉状態に保持することができ、無通電時には半開状態に
保持することができる電磁駆動式の吸気制御弁を使用す
ることが提案されている。
Further, as an intake control valve of this type, as described in, for example, Japanese Patent Application Laid-Open No. 4-86326, it can be held in a fully open or fully closed state by switching the energizing direction to the electromagnetic coil. It has been proposed to use an electromagnetically driven intake control valve that can be held in a half-open state when de-energized.

【0004】[0004]

【発明が解決しようとする課題】ところが、この種の吸
気制御装置を備えた内燃機関では、一部の気筒のみに動
力を発生させるいわゆる減筒制御を実行する場合、その
対象となる気筒の吸気制御弁を全閉状態に保持してい
る。上記吸気制御弁を全閉状態に保持するためには所定
の電力が必要となる。このため、この種の内燃機関では
消費電力を充分に抑制することができず、延いては、燃
費を充分に向上させることができなかった。
However, in an internal combustion engine equipped with this type of intake control device, when so-called cut-off cylinder control is performed in which power is generated only in some cylinders, the intake air of the target cylinder is taken into consideration. Holds the control valve fully closed. Predetermined electric power is required to keep the intake control valve fully closed. For this reason, in this type of internal combustion engine, the power consumption cannot be sufficiently suppressed, and as a result, the fuel consumption cannot be sufficiently improved.

【0005】また、この種の吸気制御装置を備えた内燃
機関では、電気系統などに異常が発生した場合、吸気制
御弁の動作が不安定となる。すると、出力が急上昇した
りエンジンストールが発生したりする可能性があった。
そこで、本発明は、消費電力が低く電気系統などの異常
時にも安定した運転を続行することのできる内燃機関の
吸気制御装置を提供することを目的としてなされた。
Further, in the internal combustion engine equipped with this type of intake control device, the operation of the intake control valve becomes unstable when an abnormality occurs in the electric system or the like. Then, there is a possibility that the output may sharply increase or an engine stall may occur.
Therefore, the present invention has been made for the purpose of providing an intake control device for an internal combustion engine, which has low power consumption and can continue stable operation even when an abnormality occurs in an electric system or the like.

【0006】[0006]

【課題を解決するための手段】上記目的を達するために
なされた本発明は、図14に例示するように、内燃機関
の各気筒に連通する複数の吸気通路毎に配設され、該各
吸気通路を開閉する複数の吸気制御弁と、所定の気筒グ
ループに属する気筒の上記吸気制御弁に設けられ、通電
時には上記吸気制御弁を開駆動し、無通電時には上記吸
気制御弁を閉駆動する第一開閉駆動手段と、上記気筒グ
ループ以外の気筒グループに属する気筒の上記吸気制御
弁に設けられ、通電時には上記吸気制御弁を閉駆動し、
無通電時には上記吸気制御弁を開駆動する第二開閉駆動
手段と、上記内燃機関の運転状態に応じて上記各開閉駆
動手段の通電・無通電を切り換える制御手段と、を備え
たことを特徴とする内燃機関の吸気制御装置を要旨とし
ている。
The present invention, which has been made to achieve the above object, is provided for each of a plurality of intake passages communicating with each cylinder of an internal combustion engine, as shown in FIG. A plurality of intake control valves that open and close the passages and the intake control valves of the cylinders belonging to a predetermined cylinder group are provided to open the intake control valve when energized and close the intake control valve when de-energized. One opening / closing drive means, provided in the intake control valve of a cylinder belonging to a cylinder group other than the above-mentioned cylinder group, and drives the intake control valve to close when energized,
A second opening / closing drive means for driving the intake control valve to open when not energized, and a control means for switching energization / non-energization of each of the opening / closing drive means in accordance with an operating state of the internal combustion engine. The gist is an intake air control device for an internal combustion engine.

【0007】[0007]

【作用】このように構成された本発明では、所定の気筒
グループに属する気筒の吸気制御弁は無通電時に閉駆動
され、他の気筒グループに属する気筒の吸気制御弁は無
通電時に開駆動される。このため、上記所定の気筒グル
ープに属する気筒の吸気行程以外では第一開閉駆動手段
に通電を行わなくてもよく、その他の気筒の吸気行程で
は第二開閉駆動手段に通電を行わなくてもよい。
In the present invention thus constituted, the intake control valves of the cylinders belonging to the predetermined cylinder group are driven to be closed when the power is not supplied, and the intake control valves of the cylinders belonging to the other cylinder groups are driven to be opened when the power is not supplied. It Therefore, the first opening / closing drive means does not have to be energized except in the intake stroke of the cylinders belonging to the above-mentioned predetermined cylinder group, and the second opening / closing drive means does not have to be energized in the intake stroke of the other cylinders. .

【0008】また、例えば上記所定の気筒グループに属
する気筒を減筒制御の対象にすれば、減筒制御時には第
一開閉駆動手段への通電を停止し続けることができる。
このため、吸気制御装置全体の消費電力が少なくて済
む。更に、電気系統などの異常時に全ての開閉駆動手段
に対する通電を停止すれば、上記所定の気筒グループに
属する気筒の吸気制御弁は閉駆動され、他の気筒グルー
プに属する気筒の吸気制御弁は開駆動される。このた
め、内燃機関の出力は減筒制御を行った場合と略同様
の、中間的な出力に安定して維持される。従って、出力
が急上昇したりエンジンストールが発生したりすること
もない。
If, for example, the cylinders belonging to the above-mentioned predetermined cylinder group are targeted for the cut-off cylinder control, the power supply to the first opening / closing drive means can be continuously stopped during the cut-off cylinder control.
Therefore, the power consumption of the intake control device as a whole can be reduced. Further, if the energization of all the opening / closing driving means is stopped when the electric system or the like is abnormal, the intake control valves of the cylinders belonging to the predetermined cylinder group are closed and the intake control valves of the cylinders belonging to the other cylinder group are opened. Driven. Therefore, the output of the internal combustion engine is stably maintained at an intermediate output, which is substantially the same as in the case where the cut-off cylinder control is performed. Therefore, the output does not suddenly increase and the engine stall does not occur.

【0009】[0009]

【実施例】次に、本発明の実施例を図面と共に説明す
る。図1は、本発明の実施例の概略構成を表すブロック
図である。図1において、4気筒のエンジン1には各気
筒5,6,7,8毎に吸気弁11と排気弁12が設けら
れている。また、各吸気弁11上流の吸気マニホールド
13は、各気筒5〜8に各々連通する四本の吸気通路1
3aに分岐している。第二気筒6,第三気筒7の吸気通
路13a内には、後述するように無通電時に全閉となる
吸気制御弁20が設けられ、第一気筒5,第四気筒8の
吸気通路13a内には、無通電時に全開となる吸気制御
弁50が設けられている。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a block diagram showing a schematic configuration of an embodiment of the present invention. In FIG. 1, the four-cylinder engine 1 is provided with an intake valve 11 and an exhaust valve 12 for each of the cylinders 5, 6, 7, and 8. The intake manifold 13 upstream of each intake valve 11 includes four intake passages 1 that communicate with the cylinders 5 to 8, respectively.
It branches to 3a. In the intake passages 13a of the second cylinder 6 and the third cylinder 7, an intake control valve 20 which is fully closed when not energized is provided in the intake passages 13a of the first cylinder 5 and the fourth cylinder 8 as described later. Is provided with an intake control valve 50 that is fully opened when de-energized.

【0010】吸気制御弁20は、図2に示すように、吸
気通路13a内に配設されたバタフライ型の円形弁板2
1を有する。この弁板21は支軸22に固定されて回動
開閉される。円形弁板21は、図3(a)に示すよう
に、吸気通路13aの壁に対して非常に狭いクリアラン
スを持って非接触で揺動する構造となっている。図2に
戻って、支軸22の一端はベアリング23により吸気通
路13aの壁に支持され、他端は下方の駆動部25内へ
延びている。
As shown in FIG. 2, the intake control valve 20 includes a butterfly type circular valve plate 2 disposed in an intake passage 13a.
Has 1. The valve plate 21 is fixed to the support shaft 22 and is rotated and opened / closed. As shown in FIG. 3A, the circular valve plate 21 has a structure which swings in a non-contact manner with a very narrow clearance with respect to the wall of the intake passage 13a. Returning to FIG. 2, one end of the support shaft 22 is supported by the wall of the intake passage 13a by the bearing 23, and the other end extends into the lower drive portion 25.

【0011】駆動部25のケーシング27は吸気通路1
3a側が開口した箱型形状を有し、その開口部には吸気
通路13aに当接する蓋体27aが配設されている。ケ
ーシング27内に延びた支軸22の円形外周には、磁石
部材29aが嵌着され、ロータ29を形成している。こ
の磁石部材29aにはS,N極が支軸22を挟んで18
0°対向するように磁極が形成されている。また、支軸
22はこの磁石部材29aの上下で、ベアリング31,
33により蓋体27a,ケーシング27に回動自在に支
持されている。
The casing 27 of the drive unit 25 has the intake passage 1
It has a box shape with an opening on the 3a side, and a lid 27a that abuts the intake passage 13a is disposed in the opening. A magnet member 29 a is fitted on the circular outer circumference of the support shaft 22 extending into the casing 27 to form the rotor 29. The magnet member 29a has 18% S and N poles sandwiching the support shaft 22.
The magnetic poles are formed so as to face each other at 0 °. In addition, the support shaft 22 is provided above and below the magnet member 29a by the bearings 31,
It is rotatably supported by the lid 27 a and the casing 27 by 33.

【0012】次に、図3(b)に示すようにケーシング
27の内壁には、平面E字状の第一コア41と、平面コ
の字状の第二コア43とが配置されている。第一コア4
1の中央の突出部41aと第二コア43の一端部43a
とはロータ29を挟んで対向し、両部41a,43aの
周囲には、一対のコイル45が同一方向に巻回されてい
る。第二コア43のもう一方の端部43bと第一コア4
1の一端部41bとはケーシング27内壁に沿って互い
に当接し、その当接部分の内側には、ロータ29に向か
ってS極に着磁された永久磁石47が配設されている。
更に、第一コア41のもう一方の端部41cは、ロータ
29を挟んで永久磁石47と対向する位置に配設されて
いる。
Next, as shown in FIG. 3B, on the inner wall of the casing 27, a first E-shaped first core 41 and a second U-shaped second core 43 are arranged. First core 4
1 and the one end 43a of the second core 43
Are opposed to each other with the rotor 29 in between, and a pair of coils 45 are wound in the same direction around both parts 41a and 43a. The other end 43b of the second core 43 and the first core 4
The one end 41b of the No. 1 abuts each other along the inner wall of the casing 27, and the permanent magnet 47 magnetized to the S pole toward the rotor 29 is disposed inside the abutting portion.
Further, the other end portion 41c of the first core 41 is arranged at a position facing the permanent magnet 47 with the rotor 29 in between.

【0013】このように構成された吸気制御弁20で
は、コイル45に通電されていないときは、図4(b)
に示すように、永久磁石47から出た磁力線が第一コア
41,第二コア43を通って端部41c,43aに達
し、そこからロータ29を介して永久磁石47に入る。
このため、ロータ29には、永久磁石47を配設した方
向から所定角αだけ第一コア41方向に傾いた磁界が作
用し、磁石部材29aのN極がその磁界に沿った方向を
向くようにロータ29が回動する。
In the intake control valve 20 thus constructed, when the coil 45 is not energized, as shown in FIG.
As shown in FIG. 5, the magnetic force lines emitted from the permanent magnet 47 reach the end portions 41 c and 43 a through the first core 41 and the second core 43, and then enter the permanent magnet 47 via the rotor 29.
Therefore, a magnetic field inclined in the direction of the first core 41 by a predetermined angle α from the direction in which the permanent magnet 47 is arranged acts on the rotor 29, so that the N pole of the magnet member 29a faces the direction along the magnetic field. The rotor 29 rotates.

【0014】次に、突出部41aがN極,端部43aが
S極となる方向に、コイル45に通電すると、突出部4
1aから出た磁力線がロータ29を介して端部43aま
たは永久磁石47に入るようになる。また、このとき一
部の磁力線は第一コア41,第二コア43を通って端部
41cに達し、そこからロータ29を介して端部43a
または永久磁石47に入る。このため、ロータ29に
は、永久磁石47を配設した方向から所定角βだけ第二
コア43方向に傾いた磁界が作用し、磁石部材29aの
N極がその磁界に沿った方向を向くようにロータ29が
回動する。そして、コイル45の巻数を適切に定めるこ
とにより、α+βを70°〜110°の範囲に設定する
ことができる。
Next, when the coil 45 is energized in the direction in which the protrusion 41a is the N pole and the end 43a is the S pole, the protrusion 4 is formed.
The magnetic force lines emitted from 1a enter the end portion 43a or the permanent magnet 47 via the rotor 29. Further, at this time, a part of the magnetic force lines reach the end portion 41c through the first core 41 and the second core 43, and from there, the end portion 43a passes through the rotor 29.
Or enter the permanent magnet 47. Therefore, a magnetic field inclined in the direction of the second core 43 by a predetermined angle β from the direction in which the permanent magnet 47 is arranged acts on the rotor 29, so that the N pole of the magnet member 29a faces the direction along the magnetic field. The rotor 29 rotates. Then, by properly determining the number of turns of the coil 45, α + β can be set in the range of 70 ° to 110 °.

【0015】図3(a)に示すように、吸気制御弁20
の円形弁板21は、無通電時に全閉となるように支軸2
2に固定されている。従って、コイル45に上記方向の
電流を通電すれば、吸気制御弁20は略全開に、通電を
停止すれば全閉に、制御することができる。
As shown in FIG. 3A, the intake control valve 20
The circular valve plate 21 of the support shaft 2 is so closed as to be fully closed when no power is supplied.
It is fixed at 2. Therefore, the intake control valve 20 can be controlled to be substantially fully opened by supplying a current in the above direction to the coil 45, and can be controlled to be fully closed by stopping the supply of current.

【0016】次に、図5(b)に示すように、吸気制御
弁50の駆動部55も吸気制御弁20の駆動部25と同
様に構成されている(図中同一構成部には同一符号を付
した)。ところが、図5(a)に示すように、吸気制御
弁50の円形弁板51は、無通電時に全開となるように
支軸52に固定されている。従って、吸気制御弁50
は、通電すれば全閉に、通電を停止すれば全開に制御す
ることができる。
Next, as shown in FIG. 5 (b), the drive section 55 of the intake control valve 50 is also constructed in the same manner as the drive section 25 of the intake control valve 20 (the same components in the figure are designated by the same reference numerals). Attached). However, as shown in FIG. 5A, the circular valve plate 51 of the intake control valve 50 is fixed to the support shaft 52 so as to be fully opened when the power is not supplied. Therefore, the intake control valve 50
Can be controlled to be fully closed when energized, and to be fully opened when energized is stopped.

【0017】このため、本実施例の吸気制御弁20,5
0は、図6に示すように、簡単な駆動回路59によって
開閉制御することができる。駆動回路59は、コイル4
5の一端をバッテリBの+極に接続すると共に、他端を
FETなどからなるスイッチング素子Sと保護用ダイオ
ードDとの並列回路に接続した回路である。例えば、吸
気制御弁20の場合、スイッチング素子Sをターンオン
してコイル45に通電すれば吸気制御弁20を略全開に
することができ、ターンオフして通電を停止すれば全閉
にすることができる。吸気制御弁50の場合は開閉動作
が逆になる。
Therefore, the intake control valves 20 and 5 of this embodiment are
As shown in FIG. 6, 0 can be controlled to be opened / closed by a simple drive circuit 59. The drive circuit 59 is the coil 4
5 is a circuit in which one end of 5 is connected to the + pole of the battery B, and the other end is connected to a parallel circuit of a switching element S such as an FET and a protection diode D. For example, in the case of the intake control valve 20, if the switching element S is turned on and the coil 45 is energized, the intake control valve 20 can be substantially fully opened, and if it is turned off and the energization is stopped, it can be fully closed. . In the case of the intake control valve 50, the opening / closing operation is reversed.

【0018】図1に戻って、吸気制御弁20は、CPU
61を内蔵した制御手段としての制御回路60の入出力
部62からの通電信号により開閉制御される。なお、制
御回路60には、制御プログラム記憶用のROM63お
よび制御データ記憶用のRAM64が設けられる。ま
た、入出力部62は前述の駆動回路59を備えている。
Returning to FIG. 1, the intake control valve 20 is a CPU
Opening / closing control is performed by an energization signal from the input / output unit 62 of the control circuit 60 as a control means having the built-in 61. The control circuit 60 is provided with a ROM 63 for storing a control program and a RAM 64 for storing control data. The input / output unit 62 also includes the drive circuit 59 described above.

【0019】吸気制御弁20,50の開閉は、エンジン
回転数等の各種信号に基づく制御回路60内の演算によ
り、適当時期に上記通電信号が発せられて実行される。
エンジン1には、各気筒5〜8のピストンが上死点(T
DC)に位置するときにパルス信号を出力するクランク
角センサ65、所定のクランク角度毎にパルス信号を出
力する回転速度センサ66、気筒毎のトルクを検出する
トルクセンサ67、気筒毎の吸気管圧力を検出する吸気
管圧力センサ68、アクセルの踏込み量即ちエンジン1
の負荷状態を検出するスロットルセンサ69、冷却水の
水温を検出する水温検出センサ70、エミッションの状
態を検出するエミッション検出センサ71等が配設され
る。またスロットルバルブ73近傍には、スロットルバ
ルブ73の開度を検出するスロットルポジションセンサ
75が配設される。更に、本実施例は、吸気制御弁2
0,50のコイル45の抵抗値などによって吸気制御弁
20,50の電気系統の故障を検出する故障検出回路7
7を備え、故障検出回路77は検出結果を上記各センサ
の信号と同様に入出力部62へ入力している。
Opening and closing of the intake control valves 20 and 50 are executed by the above-mentioned energization signal being issued at an appropriate time by calculation in the control circuit 60 based on various signals such as engine speed.
In the engine 1, the pistons of the cylinders 5 to 8 are at the top dead center (T
DC), a crank angle sensor 65 that outputs a pulse signal, a rotation speed sensor 66 that outputs a pulse signal at each predetermined crank angle, a torque sensor 67 that detects torque for each cylinder, and an intake pipe pressure for each cylinder. Of the intake pipe pressure sensor 68 for detecting the
A throttle sensor 69 for detecting the load state of the engine, a water temperature detection sensor 70 for detecting the water temperature of the cooling water, an emission detection sensor 71 for detecting the emission state, and the like are provided. A throttle position sensor 75 for detecting the opening of the throttle valve 73 is arranged near the throttle valve 73. Furthermore, the present embodiment uses the intake control valve 2
Failure detection circuit 7 for detecting a failure of the electrical system of the intake control valves 20, 50 by the resistance value of the coil 45 of 0, 50, etc.
7, the failure detection circuit 77 inputs the detection result to the input / output unit 62 in the same manner as the signal of each sensor.

【0020】本実施例では、上記各センサからの信号に
基づいて各吸気制御弁20,50を開閉制御し、各気筒
5〜8に吸入される混合気量を調整すると共に、所定の
運転状態のときおよび電気系統が異常のときには第一,
第四気筒5,8にのみ動力を発生させる吸気制御処理を
行っている。次にこのように構成された本実施例の動作
について説明する。
In this embodiment, the intake control valves 20 and 50 are controlled to open and close based on the signals from the above-mentioned sensors to adjust the amount of air-fuel mixture sucked into the cylinders 5 to 8 and to operate in a predetermined operating condition. And when the electrical system is abnormal,
Intake control processing is performed to generate power only in the fourth cylinders 5 and 8. Next, the operation of this embodiment configured as described above will be described.

【0021】図7〜図9は、実施例における吸気制御弁
20,50の制御パターンを表すタイムチャートであ
る。図7は吸気制御弁20,50の開弁時期を固定し、
閉弁時期のみを制御するパターンを表している。図7の
ように開弁時期を吸気弁開弁前に固定する場合、シリン
ダ内の気圧低下を防止して負荷を軽減することができ
る。図8は吸気制御弁20,50の閉弁時期を固定し、
開弁時期のみを制御するパターンを表している。図8に
示すように、閉弁時期を下死点BDC付近或いは吸気弁
閉弁後に固定する場合、シリンダ内における攪拌効果
(スワール効果)が減衰するのを防止して良好な燃焼性
を得ることができる。図9は吸気制御弁20,50の開
弁時期および閉弁時期を共に制御するパターンを表して
いる。このように制御を行うと、開弁時期制御の特性と
閉弁時期制御の特性とを併せ持った制御を行なうことが
できる。そしてこれらの各種制御パターンは、エンジン
1の特性に併せて適宜選択される。以下、吸気制御弁2
0,50の閉弁時期のみを制御する図7のパターンにつ
いて詳細な制御方法を説明する。なお、図8,9のパタ
ーンについても同様の制御方法が考えられる。
7 to 9 are time charts showing control patterns of the intake control valves 20 and 50 in the embodiment. FIG. 7 shows that the opening timing of the intake control valves 20 and 50 is fixed,
This shows a pattern for controlling only the valve closing timing. When the valve opening timing is fixed before the intake valve is opened as shown in FIG. 7, it is possible to prevent the pressure in the cylinder from decreasing and reduce the load. FIG. 8 shows that the closing timing of the intake control valves 20 and 50 is fixed,
This shows a pattern that controls only the valve opening timing. As shown in FIG. 8, when the valve closing timing is fixed near the bottom dead center BDC or after the intake valve is closed, it is possible to prevent the stirring effect (swirl effect) in the cylinder from being attenuated and obtain good combustibility. You can FIG. 9 shows a pattern for controlling both the opening timing and the closing timing of the intake control valves 20 and 50. By performing the control in this way, it is possible to perform control having both the characteristics of the valve opening timing control and the characteristics of the valve closing timing control. Then, these various control patterns are appropriately selected according to the characteristics of the engine 1. Hereinafter, the intake control valve 2
A detailed control method for the pattern of FIG. 7 for controlling only the valve closing timing of 0, 50 will be described. A similar control method can be considered for the patterns of FIGS.

【0022】図10は、実施例の吸気制御処理を表すフ
ローチャートである。なお、この処理はエンジン1の運
転中所定時間毎に繰り返し実行される処理である。処理
を開始すると、先ずステップ101にて、スロットルセ
ンサ69および回転速度センサ66の検出信号に基づ
き、スロットル開度Ap(エンジン1の負荷に対応)お
よびエンジン回転数NEを算出する。続くステップ10
3では、図11のマップに基づき、算出したスロットル
開度Apおよびエンジン回転数NEによって決まるエン
ジン1の運転状態が減筒制御領域であるか否かを判断す
る。減筒制御領域でない場合は(ステップ103:N
O)、ステップ105へ移行し、図12のマップに基づ
き閉弁時期TC1を算出する。続くステップ107で
は、算出した閉弁時期TC1に基づき吸気制御弁20,
50に駆動信号を出力する。
FIG. 10 is a flow chart showing the intake control process of the embodiment. It should be noted that this process is a process that is repeatedly executed at predetermined time intervals during operation of the engine 1. When the process is started, first, at step 101, the throttle opening Ap (corresponding to the load of the engine 1) and the engine speed NE are calculated based on the detection signals of the throttle sensor 69 and the rotation speed sensor 66. Continued Step 10
In step 3, it is determined based on the map of FIG. 11 whether the operating state of the engine 1 determined by the calculated throttle opening Ap and engine speed NE is in the reduced cylinder control region. If it is not in the reduced cylinder control area (step 103: N
O), the routine proceeds to step 105, where the valve closing timing TC1 is calculated based on the map of FIG. In the following step 107, the intake control valve 20, based on the calculated valve closing timing TC1.
The drive signal is output to 50.

【0023】また、エンジン1の運転状態が減筒制御領
域である場合は(ステップ103:YES)、ステップ
109へ移行し、図13のマップに基づき閉弁時期補正
値△TCを算出する。続くステップ111では、以前の
処理にて算出されている閉弁時期TC1に算出した閉弁
時期補正値△TCを加算し、これを閉弁時期TC2とす
る。更に、続くステップ113にて吸気制御弁20への
通電を停止してステップ107へ移行する。この場合、
ステップ107では、算出した閉弁時期TC2に基づ
き、各吸気制御弁50に駆動信号を出力する。この処理
によって、第一気筒5および第四気筒8のみを用いてエ
ンジン1を駆動する減筒制御がなされる。
When the operating state of the engine 1 is in the reduced cylinder control region (step 103: YES), the routine proceeds to step 109, where the valve closing timing correction value ΔTC is calculated based on the map of FIG. In the following step 111, the calculated valve closing timing correction value ΔTC is added to the valve closing timing TC1 calculated in the previous process, and this is set as the valve closing timing TC2. Further, in the following step 113, the energization of the intake control valve 20 is stopped and the process proceeds to step 107. in this case,
In step 107, a drive signal is output to each intake control valve 50 based on the calculated valve closing timing TC2. By this processing, the cut-off cylinder control for driving the engine 1 using only the first cylinder 5 and the fourth cylinder 8 is performed.

【0024】ステップ107に続くステップ115で
は、故障検出回路77の検出信号に基づき、吸気制御弁
20,50が全て正常であるか否かを判断する。正常で
ある場合は(ステップ115:YES)そのまま処理を
終了する。また、吸気制御弁20,50のいずれかに故
障があった場合は(ステップ115:NO)、ステップ
117にて全ての吸気制御弁20,50への通電を停止
した後処理を終了する。この処理によって、第二,第三
気筒6,7の吸気制御弁20は全閉に保持され、第一,
第四気筒5,8の吸気制御弁50は全開に保持される。
In step 115 following step 107, it is determined whether or not all the intake control valves 20 and 50 are normal based on the detection signal of the failure detection circuit 77. If it is normal (step 115: YES), the process ends. If any of the intake control valves 20 and 50 has a failure (step 115: NO), the energization of all the intake control valves 20 and 50 is stopped in step 117, and the post-processing is ended. By this processing, the intake control valves 20 of the second and third cylinders 6 and 7 are held fully closed,
The intake control valves 50 of the fourth cylinders 5 and 8 are held fully open.

【0025】このように、本実施例の吸気制御装置で
は、吸気制御弁20の閉弁中および吸気制御弁50の開
弁中には、当該吸気制御弁20,50への通電を停止す
ることができる。また減筒制御時には一対の吸気制御弁
20への通電を停止し続けることができる。このため、
吸気制御装置全体の消費電力が少なくて済み、燃費を向
上させることができる。
As described above, in the intake control device of this embodiment, the energization of the intake control valves 20 and 50 is stopped while the intake control valve 20 is closed and the intake control valve 50 is open. You can Further, during the cut-off cylinder control, it is possible to continue stopping the energization to the pair of intake control valves 20. For this reason,
The power consumption of the intake control device as a whole is low, and fuel consumption can be improved.

【0026】また、故障検出回路77が吸気制御弁20
または50の電気系統の故障を検出したときには、全て
の気筒5〜8の吸気制御弁20,50に対する通電を停
止することによって対処することができる。この場合、
前述したように、第二,第三気筒6,7の吸気制御弁2
0は全閉に保持され、第一,第四気筒5,8の吸気制御
弁50は全開に保持される。このため、エンジン1の出
力を上記減筒制御を行った場合と略同様の中間的な出力
に安定して維持することができる。従って、出力が急上
昇したりエンジンストールが発生したりするのを防止し
て、安定した運転を続行することができる。
Further, the failure detection circuit 77 uses the intake control valve 20.
Alternatively, when a failure of the electric system of 50 is detected, it can be dealt with by stopping energization of the intake control valves 20 and 50 of all the cylinders 5 to 8. in this case,
As described above, the intake control valves 2 of the second and third cylinders 6 and 7
0 is held fully closed, and the intake control valves 50 of the first and fourth cylinders 5 and 8 are held fully open. For this reason, the output of the engine 1 can be stably maintained at an intermediate output that is substantially the same as when the above-described cut-off cylinder control is performed. Therefore, it is possible to prevent the output from sharply increasing and the engine to stall, and to continue stable operation.

【0027】なお、上記実施例において駆動部25,5
5は、それぞれ第一開閉駆動手段,第二開閉駆動手段に
相当する。また、本発明は上記実施例に限定されるもの
ではなく、本発明の要旨を逸脱しない範囲で種々の態様
が考えられる。
In the above embodiment, the drive units 25, 5
Reference numerals 5 correspond to first opening / closing driving means and second opening / closing driving means, respectively. Further, the present invention is not limited to the above embodiments, and various modes can be considered without departing from the gist of the present invention.

【0028】[0028]

【発明の効果】以上詳述したように、本発明の内燃機関
の吸気制御装置では、所定の気筒グループの吸気行程以
外では第一開閉駆動手段に通電を行わなくてもよく、そ
の他の気筒の吸気行程では第二開閉駆動手段に通電を行
わなくてもよい。また、上記所定の気筒グループに属す
る気筒を減筒制御の対象にすれば、減筒制御時には第一
開閉駆動手段への通電を停止し続けることができる。こ
のため、吸気制御装置全体の消費電力が少なくて済み、
燃費を向上させることができる。
As described above in detail, in the intake control device for an internal combustion engine of the present invention, it is not necessary to energize the first opening / closing drive means except for the intake stroke of a predetermined cylinder group, and the other cylinders are not energized. In the intake stroke, the second opening / closing drive means need not be energized. Further, if the cylinders belonging to the above-mentioned predetermined cylinder group are targeted for the cut-off cylinder control, it is possible to continue stopping the power supply to the first opening / closing drive means during the cut-off cylinder control. Therefore, the power consumption of the intake control device as a whole is low,
Fuel efficiency can be improved.

【0029】また、電気系統などの異常時には、全ての
開閉駆動手段に対する通電を停止すればよい。すると、
上記所定の気筒グループに属する気筒の吸気制御弁は閉
駆動され、他の気筒グループに属する気筒の吸気制御弁
は開駆動される。このため、内燃機関の出力を減筒制御
を行った場合と略同様の、中間的な出力に安定して維持
することができる。従って、出力が急上昇したりエンジ
ンストールが発生したりするのを防止して、安定した運
転を続行することができる。
When the electric system or the like is abnormal, the energization of all the opening / closing driving means may be stopped. Then,
The intake control valves of the cylinders belonging to the predetermined cylinder group are driven to be closed, and the intake control valves of the cylinders belonging to the other cylinder group are driven to be opened. Therefore, the output of the internal combustion engine can be stably maintained at an intermediate output, which is substantially the same as when the cylinder cut-off control is performed. Therefore, it is possible to prevent the output from sharply increasing and the engine to stall, and to continue stable operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の概略構成を表すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of an embodiment.

【図2】実施例の通電時開駆動する吸気制御弁の構成を
表す縦断面図である。
FIG. 2 is a vertical cross-sectional view showing the configuration of an intake control valve that is driven to open when energized according to the embodiment.

【図3】実施例の通電時開駆動する吸気制御弁の構成を
表す説明図である。
FIG. 3 is an explanatory diagram showing a configuration of an intake control valve that is driven to open when energized according to the embodiment.

【図4】実施例の吸気制御弁の動作原理を表す説明図で
ある。
FIG. 4 is an explanatory diagram showing the operating principle of the intake control valve of the embodiment.

【図5】実施例の通電時閉駆動する吸気制御弁の構成を
表す説明図である。
FIG. 5 is an explanatory diagram illustrating a configuration of an intake control valve that is driven to close when energized according to the embodiment.

【図6】実施例の吸気制御弁の駆動回路の構成を表す説
明図である。
FIG. 6 is an explanatory diagram illustrating a configuration of a drive circuit for an intake control valve according to an embodiment.

【図7】実施例の閉弁時期のみを制御するパターンを表
すタイムチャートである。
FIG. 7 is a time chart showing a pattern for controlling only the valve closing timing of the embodiment.

【図8】実施例の開弁時期のみを制御するパターンを表
すタイムチャートである。
FIG. 8 is a time chart showing a pattern for controlling only the valve opening timing of the embodiment.

【図9】実施例の開弁時期および閉弁時期を制御するパ
ターンを表すタイムチャートである。
FIG. 9 is a time chart showing a pattern for controlling the valve opening timing and the valve closing timing of the embodiment.

【図10】実施例の吸気制御処理を表すフローチャート
である。
FIG. 10 is a flowchart showing an intake control process of the embodiment.

【図11】実施例の吸気制御処理で減筒領域の判断に使
用するマップである。
FIG. 11 is a map used for determining the reduced cylinder region in the intake control process of the embodiment.

【図12】実施例の吸気制御処理で吸気制御弁閉弁時期
の算出に使用するマップである。
FIG. 12 is a map used for calculating an intake control valve closing timing in the intake control processing of the embodiment.

【図13】実施例の吸気制御処理で閉弁時期補正量の算
出に使用するマップである。
FIG. 13 is a map used to calculate a valve closing timing correction amount in the intake control process of the embodiment.

【図14】本発明の構成例示図である。FIG. 14 is a diagram illustrating the configuration of the present invention.

【符号の説明】[Explanation of symbols]

1…エンジン 20,50…吸気制御弁
5,6,7,8…気筒 11…吸気弁 13…吸気マニホールド
13a…吸気通路 20,50…吸気制御弁 21,51…円形弁板
25,55…駆動部 60…制御回路 66…回転速度センサ
69…スロットルセンサ 77…故障検出回路
1 ... Engine 20, 50 ... Intake control valve
5, 6, 7, 8 ... Cylinder 11 ... Intake valve 13 ... Intake manifold
13a ... Intake passage 20, 50 ... Intake control valve 21, 51 ... Circular valve plate
25, 55 ... Driving unit 60 ... Control circuit 66 ... Rotation speed sensor
69 ... Throttle sensor 77 ... Failure detection circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の各気筒に連通する複数の吸気
通路毎に配設され、該各吸気通路を開閉する複数の吸気
制御弁と、 所定の気筒グループに属する気筒の上記吸気制御弁に設
けられ、通電時には上記吸気制御弁を開駆動し、無通電
時には上記吸気制御弁を閉駆動する第一開閉駆動手段
と、 上記気筒グループ以外の気筒グループに属する気筒の上
記吸気制御弁に設けられ、通電時には上記吸気制御弁を
閉駆動し、無通電時には上記吸気制御弁を開駆動する第
二開閉駆動手段と、 上記内燃機関の運転状態に応じて上記各開閉駆動手段の
通電・無通電を切り換える制御手段と、 を備えたことを特徴とする内燃機関の吸気制御装置。
1. A plurality of intake control valves which are provided for each of a plurality of intake passages communicating with each cylinder of an internal combustion engine and which open and close the intake passages, and the intake control valves of cylinders belonging to a predetermined cylinder group. A first opening / closing drive means for driving the intake control valve to open when energized and to close the intake control valve when deenergized, and to the intake control valves of cylinders belonging to cylinder groups other than the cylinder group. , A second opening / closing drive means for driving the intake control valve to close when energized and to open the intake control valve when de-energized, and energizing / de-energizing each of the opening / closing driving means according to the operating state of the internal combustion engine. An intake control device for an internal combustion engine, comprising: a switching control unit.
JP25302493A 1993-10-08 1993-10-08 Intake controller for internal combustion engine Pending JPH07103018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25302493A JPH07103018A (en) 1993-10-08 1993-10-08 Intake controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25302493A JPH07103018A (en) 1993-10-08 1993-10-08 Intake controller for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH07103018A true JPH07103018A (en) 1995-04-18

Family

ID=17245426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25302493A Pending JPH07103018A (en) 1993-10-08 1993-10-08 Intake controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH07103018A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100378314C (en) * 2004-03-02 2008-04-02 丰田自动车株式会社 Internal combustion engine controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100378314C (en) * 2004-03-02 2008-04-02 丰田自动车株式会社 Internal combustion engine controller

Similar Documents

Publication Publication Date Title
US7167792B1 (en) Method for stopping and starting an internal combustion engine having a variable event valvetrain
JP4380765B2 (en) Control device for internal combustion engine
US7353106B2 (en) Method for reducing power consumption and emissions for an internal combustion engine having a variable event valvetrain
JP4228941B2 (en) Electronically controlled throttle control device
US7458346B2 (en) Method for controlling valves of an engine having a variable event valvetrain during an engine stop
US20100078001A1 (en) Method for controlling cylinder air charge for a turbo charged engine having variable event valve actuators
US20090164097A1 (en) Intake controller for internal combustion engine
JPH11141364A (en) Drive device for vehicle
US6622695B2 (en) Intake control system of internal combustion engine
JP6115510B2 (en) Fully closed position learning device
WO2010113300A1 (en) Control device for vehicle
JPH07103018A (en) Intake controller for internal combustion engine
JPH07133726A (en) Intake air controller of internal combustion engine
JP2752224B2 (en) Intake control device for internal combustion engine
JPH07115762A (en) Two-position oscillating type motor
JP6179240B2 (en) Engine supercharging control device
JP3435952B2 (en) Intake control device for internal combustion engine
EP2322786B1 (en) Control system for internal combustion engine
JP2003193889A (en) Intake control device for multi-cylinder internal combustion engine
JPH08200135A (en) Controller for internal combustion engine
JP2001193535A (en) Fuel injection valve for internal combustion engine
JPH01134050A (en) Idling speed controller for internal combustion engine
JP2000080936A (en) Cylinder suction air quantity detector for variable valve system engine
JP4045787B2 (en) Intake control device for internal combustion engine
JP2010169023A (en) Control device for internal combustion engine