JPH07102018A - Chrolinated rubber and production thereof - Google Patents

Chrolinated rubber and production thereof

Info

Publication number
JPH07102018A
JPH07102018A JP26796193A JP26796193A JPH07102018A JP H07102018 A JPH07102018 A JP H07102018A JP 26796193 A JP26796193 A JP 26796193A JP 26796193 A JP26796193 A JP 26796193A JP H07102018 A JPH07102018 A JP H07102018A
Authority
JP
Japan
Prior art keywords
rubber
temperature
reaction
chlorinated
chlorination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26796193A
Other languages
Japanese (ja)
Other versions
JP2715245B2 (en
Inventor
Itsuo Kimura
逸男 木村
Kentaro Nobori
賢太郎 登
Makoto Hirota
真 広田
Hisamasa Fujitaka
央全 藤高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd, Jujo Paper Co Ltd filed Critical Nippon Paper Industries Co Ltd
Priority to JP5267961A priority Critical patent/JP2715245B2/en
Publication of JPH07102018A publication Critical patent/JPH07102018A/en
Application granted granted Critical
Publication of JP2715245B2 publication Critical patent/JP2715245B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain a chlorinated rubber which is improved in processability and reactivity, soluble in an organic solvent, and easy to handle by adding a surfactant and an acid to a rubber latex and chlorinating the rubber in an aqueous medium under specific conditions. CONSTITUTION:The chlorinated rubber production process comprises adding a surfactant and an acid to a rubber latex and chlorinating the rubber with chlorine gas in an aqueous medium until the chloride content of the rubber reaches 60-75%, during which the system is heated at least once to a temp. higher than the softening temp. of the rubber to coagulate rubber particles after the chlorine content has exceeded 50%. The chlorination in the initial stage is desirably conducted at 50 deg.C or lower, because too high a temp. in the initial stage tends to result in coarser particles. The temp. for initial chlorination is preferably 30 deg.C or lower, because the rate of reaction is high in the initial stage and the reaction is exothermic. The reaction in this stage proceeds rapidly without a catalyst, e.g., light so that light irradiation is unnecessary.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は屋外建造物等の重防食塗
料やインキ・接着剤等に広く使われている塩化ゴムおよ
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chlorinated rubber that is widely used in heavy-duty anticorrosive paints, inks, adhesives, etc. for outdoor structures and the like and a method for producing the same.

【0002】[0002]

【従来の技術】塩化ゴムは天然ゴムや合成ゴム(ポリイ
ソプレン)を塩素含有率が60%以上になるまで塩素化し
て得られる樹脂で、化学的に安定で酸・アルカリに強く
また耐候性に優れ、トルエン等の芳香族系溶剤やエステ
ル・ケトン類の有機溶剤に容易に溶解する。このため塗
料・インキ・接着剤に使われ、特に重防食塗料等に多量
に使われ、古くから工業的に製造されている。
2. Description of the Related Art Chlorinated rubber is a resin obtained by chlorinating natural rubber or synthetic rubber (polyisoprene) until the chlorine content exceeds 60%. It is chemically stable, resistant to acids and alkalis, and weather resistant. Excellent, it dissolves easily in aromatic solvents such as toluene and organic solvents such as esters and ketones. For this reason, it is used in paints, inks, and adhesives, especially in large amounts in heavy-duty anticorrosion paints, and has been industrially manufactured since ancient times.

【0003】現在、工業的に塩化ゴムを製造するには、
天然ゴムや合成ゴム等の原料を塩素に不活性な塩素系溶
剤である四塩化炭素に溶解させ、この溶液に塩素ガスを
通じて塩素化を行う“溶液法”という方法で行ってい
る。溶液法では四塩化炭素を多量に使用するが、四塩化
炭素の低コストでの完全な回収は困難で一部が製造設備
から洩れて大気中に揮散したりまた製品に少量混入した
りしていた。しかし、四塩化炭素は人体に有害であるほ
か、オゾン層を破壊するため世界的に使用が規制される
ことが決っており数年後には使用できなくなる。また、
クロロホルム等の塩素系有機溶剤には毒性や塩素との反
応性の点で問題があり、四塩化炭素に代る溶剤とはなり
得ない。
Currently, in order to industrially produce chlorinated rubber,
Raw materials such as natural rubber and synthetic rubber are dissolved in carbon tetrachloride, which is a chlorine-based solvent that is inert to chlorine, and chlorine gas is passed through this solution to perform chlorination, which is called the "solution method". In the solution method, a large amount of carbon tetrachloride is used, but it is difficult to completely recover carbon tetrachloride at low cost, and some of it leaks from the manufacturing equipment and is volatilized into the atmosphere or mixed in a small amount in the product. It was However, carbon tetrachloride is harmful to the human body and its use is regulated worldwide because it destroys the ozone layer, so it will not be usable in a few years. Also,
Chlorine-based organic solvents such as chloroform have problems in toxicity and reactivity with chlorine, and cannot substitute for carbon tetrachloride.

【0004】[0004]

【発明が解決しようとする課題】また、溶液法とはまっ
たく異なった塩素化方法として天然ゴムのラテックスを
塩素化しようという試みがなされてきた。この方法は、
天然ゴムラテックスに界面活性剤と酸を加えてラテック
スの凝固を防ぎ、塩素ガスを吹込んで塩素化するという
ものである(British Pat. 634241 (1947)、Industrial
and EngineeringChemistry, Vol.43, p.2535 (195
1))。しかし、これらの方法では塩素化反応の後半に反
応の進行が極度に遅くなり高塩素含有率のものが得られ
ないという欠点があった。そこで、この問題を解決する
ため本出願人は特定の温度条件と紫外線照射条件からな
り2段階で塩素化反応を行う方法を開発した(特開平4-
59801 号公報)。
Further, attempts have been made to chlorinate natural rubber latex as a chlorination method which is completely different from the solution method. This method
A natural rubber latex is added with a surfactant and an acid to prevent the latex from coagulating, and chlorine gas is blown into the latex to chlorinate it (British Pat. 634241 (1947), Industrial).
and Engineering Chemistry, Vol.43, p.2535 (195
1)). However, these methods have a drawback in that the reaction progresses extremely late in the latter half of the chlorination reaction and a high chlorine content cannot be obtained. Therefore, in order to solve this problem, the present applicant has developed a method in which the chlorination reaction is carried out in two steps, which is composed of a specific temperature condition and an ultraviolet irradiation condition (Japanese Patent Laid-Open No. Hei 4-
59801).

【0005】この方法では塩素化反応は進行するもの
の、塩素含有率が約63%以上で反応速度がやや遅くな
る、反応の後半で系の粘度が極度に上昇する、得られた
塩化ゴムが5μm以下の微粒子であるため塩素化後の後
工程で脱水性が劣る、塩化ゴムの乾燥粉末が微粒子なた
めハンドリングが劣るという欠点があった。
Although the chlorination reaction proceeds by this method, the reaction rate is slightly slowed when the chlorine content is about 63% or more, the viscosity of the system is extremely increased in the latter half of the reaction, and the obtained chlorinated rubber is 5 μm. The following fine particles have a drawback that the dehydration property is poor in the post-process after chlorination, and the dry powder of the chlorinated rubber is fine particles, which causes poor handling.

【0006】[0006]

【課題を解決するための手段】本発明者等は上記問題点
を解決するため鋭意検討を行った結果、従来樹脂の軟化
温度以上に温度を上げると樹脂の団塊化が起こり反応継
続が困難になると思われていたのに対し、驚くべきこと
に特定の条件で温度を上げることにより樹脂が数10μm
の大きさに均一に凝集し操作性や反応性が改善できるこ
とを見出し本発明をなすに至った。すなわち、ゴムラテ
ックスに界面活性剤および酸を加え塩素ガスで塩素含有
率60%〜75%まで水媒体中のまま塩素化することにより
得られる塩化ゴムにおいて、塩素含有率が50%を越えて
から、少なくとも1回、反応系の温度を樹脂の軟化開始
温度より高い温度に上げて塩素化することにより上記問
題点を解決できることを見出した。
Means for Solving the Problems As a result of intensive studies for solving the above problems, the present inventors have found that when the temperature is raised above the softening temperature of the conventional resin, the resin agglomerates to make it difficult to continue the reaction. Although it was supposed to be, it is surprising that the resin rises to several tens of μm by raising the temperature under certain conditions.
The inventors have found that they can be uniformly aggregated in a size of 10 to improve the operability and the reactivity, and have completed the present invention. That is, in a chlorinated rubber obtained by adding a surfactant and an acid to rubber latex and chlorinating with chlorine gas to a chlorine content of 60% to 75% in an aqueous medium, after the chlorine content exceeds 50%. It has been found that the above problems can be solved by raising the temperature of the reaction system to a temperature higher than the softening start temperature of the resin at least once to perform chlorination.

【0007】本発明におけるゴムラテックスとは天然ゴ
ムラテックス、合成ポリイソプレンゴムラテックス、ポ
リブタジエンラテックス、SBRラテックス、ポリクロ
ロプレンラテックス等をいい、天然ゴムラテックスのほ
か合成のジエン系ゴムラテックスもいう。これらの中で
も天然ゴムラテックスと合成ポリイソプレンゴムラテッ
クスが工業的価値が大きく好ましい。
The rubber latex in the present invention means natural rubber latex, synthetic polyisoprene rubber latex, polybutadiene latex, SBR latex, polychloroprene latex and the like, and also natural diene rubber latex in addition to natural rubber latex. Among these, natural rubber latex and synthetic polyisoprene rubber latex are preferable because of their industrial value.

【0008】天然ゴムラテックスは遠心分離法により濃
縮したハイアンモニアタイプやローアンモニアタイプを
用いるのが一般的だが、精製を強化した高純度タイプ、
薬品処理した特殊タイプ、クリーミング法や蒸発法によ
るラテックスを用いてもよい。天然ゴムラテックスはそ
のまま使用してもよいが、解重合して分子量を調節して
もよい。解重合は酸素や過酸化水素を使用する酸化的な
方法か過酸化物等のラジカル発生剤による方法が用いら
れる(接着、31巻、p.308 (1987))。
As the natural rubber latex, a high ammonia type or a low ammonia type concentrated by a centrifugal method is generally used, but a high purity type with enhanced purification,
A special type treated with chemicals, or a latex produced by a creaming method or an evaporation method may be used. The natural rubber latex may be used as it is, but may be depolymerized to control the molecular weight. Depolymerization can be carried out by an oxidative method using oxygen or hydrogen peroxide or a method using a radical generator such as peroxide (Adhesion, Vol. 31, p. 308 (1987)).

【0009】合成ポリイソプレンゴムラテックスは公知
の方法(「合成ゴム概説」p.130 、朝倉書店(1971))に
より乳化重合して製造することができる。また、溶液重
合したポリイソプレンを後乳化し溶剤を除去したもの
(住友精化製、商品名マックスプレンIR−900)、
液状ポリイソプレンを乳化したものでもよい。また、天
然ゴムラテックスをグラフト変性して極性基を導入した
ラテックス、極性モノマーを共重合した合成ポリイソプ
レンゴムラテックスを使用することもできる。
The synthetic polyisoprene rubber latex can be produced by emulsion polymerization according to a known method ("Outline of synthetic rubber" p.130, Asakura Shoten (1971)). In addition, the solution-polymerized polyisoprene is post-emulsified and the solvent is removed (Sumitomo Seika, trade name Maxprene IR-900),
It may be an emulsion of liquid polyisoprene. It is also possible to use a latex obtained by graft-modifying a natural rubber latex to introduce a polar group, or a synthetic polyisoprene rubber latex obtained by copolymerizing a polar monomer.

【0010】ゴムラテックスを塩素化する方法は次に述
べるような公知の方法(例えば、特開平4-59801 号公
報)で行うことができる。ゴムラテックスに直接塩素ガ
スを吹込むとラテックスが凝固し塩素化を行うことがで
きない。これはラテックスがアニオン性であり、塩素ガ
スを吹込むと次亜塩素酸や塩酸が生成しラテックスが破
壊されるためである。このため、塩素化の前にゴムラテ
ックスにノニオン系界面活性剤またはカチオン系界面活
性剤を加える。この処理を行うとゴムラテックスに塩素
ガスを吹き込んでもラテックスは凝固せず塩素化を行う
ことができる。
The method for chlorinating the rubber latex can be carried out by a known method as described below (for example, JP-A-4-59801). If chlorine gas is blown directly into the rubber latex, the latex will solidify and cannot be chlorinated. This is because the latex is anionic, and when chlorine gas is blown into it, hypochlorous acid and hydrochloric acid are produced and the latex is destroyed. For this reason, a nonionic surfactant or a cationic surfactant is added to the rubber latex before chlorination. When this treatment is carried out, even if chlorine gas is blown into the rubber latex, the latex is not coagulated and can be chlorinated.

【0011】ノニオン系またはカチオン系界面活性剤の
量はラテックスの固形分に対し 0.5%ないし10%が好ま
しく、 0.5%以下ではラテックスの凝固を防ぐことがで
きず、10%を越えてもその効果は向上しない。さらに好
ましくは2%ないし5%である。
The amount of the nonionic or cationic surfactant is preferably 0.5% to 10% with respect to the solid content of the latex. If the amount is 0.5% or less, coagulation of the latex cannot be prevented. Does not improve. It is more preferably 2% to 5%.

【0012】ノニオン系界面活性剤としてはポリオキシ
エチレンアルキルエーテル、ポリオキシエチレンアルキ
ルフェニルエーテル、ポリオキシエチレンアルキルエス
テル、ソルビタンアルキルエステル、ポリオキシエチレ
ンソルビタンアルキルエステル等が、カチオン系界面活
性剤としては脂肪族アミン塩またはその4級アンモニウ
ム塩、芳香族4級アンモニウム塩、複素環4級アンモニ
ウム塩等が挙げられる。
Nonionic surfactants include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl ester, sorbitan alkyl ester, polyoxyethylene sorbitan alkyl ester, and cationic surfactants include fatty acids. Group amine salts or quaternary ammonium salts thereof, aromatic quaternary ammonium salts, heterocyclic quaternary ammonium salts and the like.

【0013】塩素化の前にはラテックスに酸を加える。
これはイソプレン構造中の二重結合へのヒドロキシル化
を防ぐためであり、水溶液への塩素の溶解度の向上や天
然ゴムの場合はラテックスの安定化向上という利点もあ
る。酸の濃度は、 0.1N以上、好ましくは3N以上、さ
らに好ましくは6N以上である。酸濃度が高過ぎると副
反応を起こすおそれがあるので、上限は8N程度が望ま
しい。使用する酸としては、塩酸、硫酸等が挙げられる
が塩酸が好ましい。
Acid is added to the latex prior to chlorination.
This is to prevent hydroxylation of the double bond in the isoprene structure, and has the advantage of improving the solubility of chlorine in the aqueous solution and improving the stability of the latex in the case of natural rubber. The acid concentration is 0.1 N or higher, preferably 3 N or higher, more preferably 6 N or higher. If the acid concentration is too high, side reactions may occur, so the upper limit is preferably about 8N. Examples of the acid used include hydrochloric acid and sulfuric acid, with hydrochloric acid being preferred.

【0014】塩素化反応の初期は50℃以下の温度で塩素
化するのが好ましい。初期の段階で温度を上げ過ぎると
大きな凝固物が生成しやすくなり好ましくない。また、
初期は反応速度が高く、また発熱するので、さらに好ま
しくは30℃以下の温度である。この段階では光などの触
媒なしでも反応が速く進むので、光照射をしなくてもよ
い。
It is preferable to chlorinate at a temperature of 50 ° C. or lower in the initial stage of the chlorination reaction. If the temperature is raised too high in the initial stage, a large solidified product is likely to be formed, which is not preferable. Also,
Since the reaction rate is high at the initial stage and heat is generated, the temperature is more preferably 30 ° C. or lower. At this stage, the reaction proceeds quickly even without a catalyst such as light, so light irradiation may not be performed.

【0015】塩素含有率が30%以上になれば徐々に温度
を上げて塩素化を進めるのが好ましい。また、この段階
から紫外線を照射しながら塩素化するのが好ましいが、
紫外線照射なしでも塩素化を進めることが可能である。
When the chlorine content is 30% or more, it is preferable to gradually raise the temperature to promote chlorination. Also, it is preferable to chlorinate from this stage while irradiating with ultraviolet rays,
It is possible to proceed chlorination without UV irradiation.

【0016】塩素含有率が高くなるとゴム粒子が弾性を
失って樹脂となり固くなる。特に、塩素含有率が50%を
越えると樹脂の軟化温度がかなり高くなる。
When the chlorine content increases, the rubber particles lose elasticity and become a resin and become hard. In particular, when the chlorine content exceeds 50%, the softening temperature of the resin becomes considerably high.

【0017】樹脂の軟化温度には不均一性に由来する幅
があるが、本発明では軟化温度の指標として軟化開始温
度(軟化温度の最低点)で表わす。軟化開始温度はDS
C(示差走査熱量測定)で測定することができる。DS
Cで樹脂の軟化温度を測定するときは、軟化開始温度は
吸熱ピークの立ち上がりの温度をいう。軟化開始温度は
分子量によって異なるが塩素含有率50%で50〜80℃、塩
素含有率60%で80〜110 ℃である。
The softening temperature of the resin has a range derived from non-uniformity, but in the present invention, it is represented by the softening start temperature (the lowest point of the softening temperature) as an index of the softening temperature. Softening start temperature is DS
It can be measured by C (differential scanning calorimetry). DS
When the softening temperature of the resin is measured by C, the softening starting temperature means the temperature at which the endothermic peak rises. Although the softening initiation temperature varies depending on the molecular weight, it is 50 to 80 ° C at a chlorine content of 50% and 80 to 110 ° C at a chlorine content of 60%.

【0018】塩素含有率が低いところで温度を上げると
大きな凝固物が生成し反応を続けることができなくなる
が、驚くべきことに塩素含有率が高いところでは均一に
凝集が起こり粒子同士が熱融着して粒子径の揃った大粒
子を生成させることが可能である。このため塩素含有率
が50%を越えてからは樹脂の軟化開始温度より高い温度
に上げ粒子を大きくしながら反応を継続することができ
る。このときの反応温度は軟化開始温度より1〜20℃高
い温度が好ましく、さらに好ましくは3〜10℃高い温度
である。温度を上げ過ぎると樹脂が着色するので好まし
くない。
If the temperature is raised at a low chlorine content, a large solidified product is formed and the reaction cannot be continued. Surprisingly, at a high chlorine content, uniform agglomeration occurs and the particles are thermally fused. It is possible to generate large particles having a uniform particle size. Therefore, after the chlorine content exceeds 50%, the reaction can be continued while increasing the temperature to a temperature higher than the softening start temperature of the resin and enlarging the particles. The reaction temperature at this time is preferably 1 to 20 ° C. higher than the softening start temperature, and more preferably 3 to 10 ° C. higher. If the temperature is raised too high, the resin will be colored, which is not preferable.

【0019】反応温度を軟化開始温度より高い温度にす
る方法においては、一度軟化開始温度より高い温度に上
げてその後温度を下げてもよいし、常に軟化開始温度よ
り高い温度に保っていてもよい。好ましくは塩素含有率
が58%を越えてから90℃以上に上げて塩素化することで
ある。さらに、好ましくは塩素含有率が61%を越えてか
ら加圧下で 100℃以上に上げることである。また、温度
の上限として樹脂の分解を防ぐために塩素含有率が高い
ところでも 180℃以下にすることが好ましく、より好ま
しくは 150℃以下である。さらに、 100℃以上の高温に
おいて塩素化すると光等の触媒なしでも塩素化が速やか
に進行するという利点もある。
In the method of raising the reaction temperature to a temperature higher than the softening start temperature, the temperature may be once raised to a temperature higher than the softening start temperature and then lowered, or the temperature may be always kept higher than the softening start temperature. . It is preferable to raise the temperature to 90 ° C. or higher for chlorination after the chlorine content exceeds 58%. Furthermore, it is preferable to raise the temperature to 100 ° C. or more under pressure after the chlorine content exceeds 61%. Further, as the upper limit of the temperature, in order to prevent the decomposition of the resin, the temperature is preferably 180 ° C. or lower, and more preferably 150 ° C. or lower, even when the chlorine content is high. Further, chlorination at a high temperature of 100 ° C or higher has an advantage that chlorination proceeds rapidly even without a catalyst such as light.

【0020】このようにして温度を樹脂の軟化開始温度
より高い温度に上げると、粒子が凝集して大きくなる
が、粒子径は軟化開始温度より上げる温度の幅や温度を
上げている時間によって変わるので、反応濃度・攪拌の
回転数が一定の場合温度や時間をコントロールすること
によって粒子径を制御できる。このとき適度な攪拌をす
ることが必要であり、少なくとも10rpm 以上で攪拌する
ことが望ましく、さらに好ましくは30rpm 以上である。
通常5μm以下の粒子を10μm以上の大きさにすること
が好ましい。さらに好ましくは20μm以上の大きさであ
る。また、粒子径は大きくし過ぎると塩素化の反応性が
落ちるので、 200μm以下にするのが望ましい。粒子径
の測定はレーザー回折現象を利用した光学的方法で測定
でき、平均粒子径で表わす。この場合、測定試料を超音
波処理して緩やかな凝集をほぐしてから測定する。 150
W以上の出力で1分間以上超音波を照射してから測定す
る。
When the temperature is raised to a temperature higher than the softening start temperature of the resin in this way, the particles agglomerate and become larger, but the particle size changes depending on the range of the temperature raised from the softening start temperature and the time during which the temperature is raised. Therefore, the particle size can be controlled by controlling the temperature and the time when the reaction concentration and the rotation speed of stirring are constant. At this time, it is necessary to appropriately stir, and it is desirable to stir at least 10 rpm or more, and more preferably 30 rpm or more.
Usually, it is preferable to make particles of 5 μm or less in size of 10 μm or more. More preferably, the size is 20 μm or more. Further, if the particle size is too large, the reactivity of chlorination decreases, so it is desirable to set it to 200 μm or less. The particle diameter can be measured by an optical method utilizing a laser diffraction phenomenon, and is represented by an average particle diameter. In this case, the measurement sample is subjected to ultrasonic treatment to loosen loose agglomeration and then measured. 150
The measurement is performed after irradiating ultrasonic waves with an output of W or more for 1 minute or more.

【0021】塩素化反応におけるラテックスの濃度は1
%ないし10%が好ましく、10%以上では塩素化反応の後
半に粘度が高くなりすぎて反応効率が落ち、1%以下で
は生産性が悪い。
The concentration of latex in the chlorination reaction is 1
% To 10% is preferable, and if it is 10% or more, the viscosity becomes too high in the latter half of the chlorination reaction to lower the reaction efficiency, and if it is 1% or less, the productivity is poor.

【0022】塩素化の反応装置は内部をガラスライニン
グした、攪拌機・ジャケット付きの加圧可能な反応タン
クで行うことができる。塩素ガスは反応釜の底部または
釜上部の空間部から吹込む。反応は常圧でもよいが、温
度を 100℃以上に上げるときには加圧下で行う必要があ
る。
The reaction apparatus for chlorination can be carried out in a glass-lined reaction tank equipped with a stirrer / jacket and capable of pressurization. Chlorine gas is blown from the bottom of the reaction kettle or the space above the kettle. The reaction may be carried out at normal pressure, but it is necessary to carry out it under pressure when raising the temperature to 100 ° C or higher.

【0023】また、本発明においては反応釜内の攪拌が
不十分だと均一な凝集が起きないおそれがあるので、適
度に攪拌できる装置にすることが望ましい。紫外線を照
射する場合は光源として水銀ランプ、炭素アーク灯、希
ガスの放電管等が挙げられるが、高圧水銀ランプが好ま
しく、反応装置に組込んで使用する。
Further, in the present invention, if the stirring in the reaction kettle is insufficient, uniform agglomeration may not occur, so it is desirable to use an apparatus capable of stirring appropriately. When irradiating with ultraviolet rays, examples of the light source include a mercury lamp, a carbon arc lamp, a rare gas discharge tube, and the like. A high pressure mercury lamp is preferable, and it is used by incorporating it into a reaction apparatus.

【0024】また、塩素化反応中あるいは塩素化反応終
了後に解重合処理を行ってもよい。解重合処理は酸素の
吹込みや過酸化物等のラジカル発生剤の添加で行うこと
ができる。塩素含有率の測定は反応中に適宜反応液を抜
き取って、JIS−K7229の方法で測定することができ
る。
Depolymerization treatment may be carried out during the chlorination reaction or after the chlorination reaction is completed. The depolymerization treatment can be performed by blowing oxygen or adding a radical generator such as a peroxide. The chlorine content can be measured by the method of JIS-K7229 by appropriately extracting the reaction solution during the reaction.

【0025】塩素化反応終了後は反応液を脱水・中和・
洗浄し、乾燥して粉末とする。塩化ゴム粉末はトルエ
ン、キシレン、酢酸エチル、MEK等の有機溶剤に容易
に溶解し塗料・インキ・接着剤の用途に使用できる。塩
化ゴムの重合度により有機溶剤溶液の粘度や塗膜の性質
が異なり、用途に応じた重合度のものを使用する。
After completion of the chlorination reaction, the reaction solution is dehydrated / neutralized /
Wash and dry to powder. Chlorinated rubber powder is easily dissolved in an organic solvent such as toluene, xylene, ethyl acetate, MEK, etc., and can be used for paints, inks and adhesives. The viscosity of the organic solvent solution and the properties of the coating film differ depending on the degree of polymerization of the chlorinated rubber, and the one having a degree of polymerization suitable for the application is used.

【0026】[0026]

【作用】従来、ゴムラテックスに金属塩等を添加して数
mmの不定形粒子を製造することは知られていたが、塩化
ゴムにおいて塩素化反応中に添加剤なしで粒子径の揃っ
た数10μmの粒子が得られることは予想もされなかった
ことである。そのメカニズムははっきりとはわからない
が、次のように推定される。
[Function] Conventionally, the number of metal latex added to rubber latex
It was known to produce irregularly shaped particles of mm, but it was not expected that chlorinated rubber could obtain particles of several 10 μm with uniform particle size without additives during chlorination reaction. . The mechanism is not clear, but it is presumed as follows.

【0027】塩素含有率が低いところで温度を数10℃に
上げると、ラテックス中の粒子自体はかなり軟らかく流
動性のあるものとなる。このため、粒子を取り巻く界面
活性剤による安定化作用にラテックス中の粒子同士の相
互作用が勝ると大きな凝固物が生成しやすくなる。しか
し、本発明の場合、塩素含有率が50%を越えてからは樹
脂が固くなり特に粒子の外殻が硬くなって、軟化開始温
度より高い温度においても樹脂粒子表面が部分的にしか
軟化せず、軟化した部分も流動性が低いので大きな凝固
物は生成しないものと思われる。さらに、温度、時間、
適度な攪拌下で、粒子が一定量集って凝集・熱融着し均
一な大粒子を形成するものと推定される。
When the temperature is raised to several tens of degrees Celsius where the chlorine content is low, the particles themselves in the latex become quite soft and fluid. Therefore, when the interaction between the particles in the latex exceeds the stabilizing effect of the surfactant surrounding the particles, a large coagulated product is easily generated. However, in the case of the present invention, after the chlorine content exceeds 50%, the resin becomes hard and especially the outer shell of the particle becomes hard, and the resin particle surface is only partially softened even at a temperature higher than the softening start temperature. However, since the softened part also has low fluidity, it is considered that a large solidified product is not formed. In addition, temperature, time,
It is presumed that a certain amount of particles gather under appropriate agitation to aggregate and heat-fuse to form uniform large particles.

【0028】[0028]

【実施例】以下、実施例に基づいて本発明を具体的に説
明するが、本発明はこれによって制限されるものではな
い。
EXAMPLES The present invention will be specifically described below based on examples, but the present invention is not limited thereto.

【0029】(実施例1)天然ゴムラテックス(Soctex
−CC、ハイアンモニアタイプ、固形分60%)3kgにノ
ニオン系界面活性剤(エマノーン3199、花王製)54
gを水1リットルに溶解させた水溶液と水10リットルを
加えてよく攪拌し、濃塩酸(36%)25リットルを加え
た。これを内容積が50リットルで攪拌機、高圧水銀ラン
プ、温度計、廃ガス排出口を備えた内面をガラスライニ
ングした耐圧反応容器に仕込んだ。
(Example 1) Natural rubber latex (Soctex
-CC, high ammonia type, solid content 60%) 3kg nonionic surfactant (Emanon 3199, manufactured by Kao) 54
An aqueous solution prepared by dissolving g in 1 liter of water and 10 liters of water were added and well stirred, and 25 liters of concentrated hydrochloric acid (36%) was added. This was placed in a pressure-resistant reaction vessel having an inner volume of 50 liters, which was equipped with a stirrer, a high-pressure mercury lamp, a thermometer, and a waste gas outlet and whose inner surface was glass-lined.

【0030】窒素ガスで系内をパージした後室温におい
て、反応容器の底部にもうけた口から塩素ガスを吹き込
んだ。10℃/時間の速さで徐々に昇温しながら塩素化を
続け、塩素を4kg吹込んだところでサンプリングし塩素
含有率を測定すると55%、DSCによる軟化開始温度は
80℃であった。反応温度を85℃に上げ、高圧水銀ランプ
を点灯し紫外線の照射を開始し徐々に昇温しながら塩素
化を続けた。反応温度が 110℃になったところで温度を
保持して塩素化を続け、塩素を7kg吹込んだところで反
応を終了した。
After purging the system with nitrogen gas, at room temperature, chlorine gas was blown into the bottom of the reaction vessel through a port. Chlorination was continued while gradually raising the temperature at a rate of 10 ° C / hour, and chlorine content of 55% was measured by sampling when 4 kg of chlorine had been blown, and the softening start temperature by DSC was
It was 80 ° C. The reaction temperature was raised to 85 ° C, the high pressure mercury lamp was turned on, the irradiation of ultraviolet rays was started, and the chlorination was continued while gradually raising the temperature. When the reaction temperature reached 110 ° C, the temperature was maintained to continue chlorination, and the reaction was terminated when 7 kg of chlorine was blown.

【0031】反応液を中和、ロ過、水洗し、遠心脱水を
20分間行うと含水率35%の樹脂が得られた。送風乾燥機
で乾燥し塩化ゴム粉末を得た。塩素含有率は68.0%(重
量%、以下同様)、レーザー回折式粒度分布測定装置で
超音波による前処理(150W、1分)をして粒子径を測定
すると平均粒子径は24μmであった。トルエンに固形分
濃度20%で溶解させると容易に溶解し粘度は41cpであっ
た。
The reaction solution is neutralized, filtered, washed with water, and subjected to centrifugal dehydration.
After 20 minutes, a resin having a water content of 35% was obtained. It was dried by a blow dryer to obtain a chlorinated rubber powder. The chlorine content was 68.0% (weight%, the same shall apply hereinafter), and the particle size was measured by pretreatment (150 W, 1 minute) with ultrasonic waves using a laser diffraction particle size distribution analyzer, and the average particle size was 24 μm. When it was dissolved in toluene at a solid concentration of 20%, it was easily dissolved and the viscosity was 41 cp.

【0032】(実施例2)天然ゴムラテックス(Soctex
−CC、ハイアンモニアタイプ、固形分60%)3kgにノ
ニオン系界面活性剤(ノニオンK−230、日本油脂
製)45gを水1リットルに溶解させた水溶液と水10リッ
トルを加えてよく攪拌し、濃塩酸(36%)25リットルを
加えた。これを実施例1と同じ反応容器に仕込んだ。
(Example 2) Natural rubber latex (Soctex
-CC, high ammonia type, solid content 60%) 3 kg, nonionic surfactant (Nonion K-230, manufactured by NOF CORPORATION) 45 g dissolved in 1 liter of water and 10 liters of water were added and well stirred, 25 liters of concentrated hydrochloric acid (36%) was added. This was charged into the same reaction vessel as in Example 1.

【0033】窒素ガスで系内をパージした後室温におい
て、反応容器の底部にもうけた口から塩素ガスを吹き込
んだ。徐々に昇温しながら塩素化を続け、塩素を5kg吹
込んだところでサンプリングし塩素含有率を測定すると
60%、DSCによる軟化開始温度は95℃であった。反応
温度を 100℃に上げ、徐々に昇温しながら塩素化を続け
た。反応温度が 120℃になったところで温度を保持して
塩素化を続け、塩素を6.5kg 吹込んだところで反応を終
了した。
After purging the inside of the system with nitrogen gas, at room temperature, chlorine gas was blown into the bottom of the reaction vessel through a port. Chlorination is continued while gradually raising the temperature, and when 5 kg of chlorine is injected, sampling is performed to measure the chlorine content.
60%, the softening start temperature by DSC was 95 ° C. The reaction temperature was raised to 100 ° C and the chlorination was continued while gradually raising the temperature. When the reaction temperature reached 120 ° C, the temperature was maintained to continue chlorination, and the reaction was terminated when 6.5 kg of chlorine was blown.

【0034】実施例1と同様にして後処理と分析を行っ
た。遠心脱水した樹脂の含水率は38%、乾燥した塩化ゴ
ム粉末の塩素含有率は67.3%、平均粒子径は30μmであ
った。トルエンに固形分濃度20%で溶解させると粘度は
145cp であった。
Post-treatment and analysis were carried out in the same manner as in Example 1. The water content of the centrifugally dehydrated resin was 38%, the chlorine content of the dried chlorinated rubber powder was 67.3%, and the average particle diameter was 30 μm. When dissolved at a solid concentration of 20% in toluene, the viscosity
It was 145 cp.

【0035】(実施例3)天然ゴムラテックス(Soctex
−CC、ハイアンモニアタイプ、固形分60%)3kgにク
メンハイドロパーオキサイド10g(50%トルエン溶液)
とテトラエチレンペンタミン2g(50%水溶液)を添加
し攪拌しながら50℃に加熱した。この状態で3時間反応
させて解重合天然ゴムラテックスを得た。
(Example 3) Natural rubber latex (Soctex
-CC, high ammonia type, solid content 60%) 3 kg cumene hydroperoxide 10 g (50% toluene solution)
And 2 g of tetraethylenepentamine (50% aqueous solution) were added and heated to 50 ° C. with stirring. In this state, the reaction was carried out for 3 hours to obtain a depolymerized natural rubber latex.

【0036】この解重合天然ゴムラッテクスにカチオン
系界面活性剤(ナイミーンT2−210、日本油脂製)
45gと水15リットルを加えてよく攪拌し、濃塩酸(36
%)20リットルを加えた。これを実施例1と同じ反応容
器に仕込み、室温において、反応容器の底部にもうけた
口から塩素ガスを吹き込んだ。徐々に昇温しながら塩素
化を続け、塩素を 5.5kg吹込んだところでサンプリング
し塩素含有率を測定すると63%、DSCによる軟化開始
温度は 105℃であった。反応温度を 110℃に上げ、徐々
に昇温しながら塩素化を続けた。反応温度が 120℃にな
ったところで温度を保持して塩素化を続け、塩素を 6.2
kg吹込んだところで反応を終了した。
A cationic surfactant (Nymeen T2-210, manufactured by NOF Corporation) is added to the depolymerized natural rubber latex.
Add 45 g and 15 liters of water, stir well, and add concentrated hydrochloric acid (36
%) 20 liters were added. This was charged into the same reaction vessel as in Example 1, and at room temperature, chlorine gas was blown into the bottom of the reaction vessel through a port provided. Chlorination was continued while gradually raising the temperature, and when chlorine was blown in 5.5 kg, the chlorine content was measured by sampling and chlorine was measured to be 63%, and the softening start temperature by DSC was 105 ° C. The reaction temperature was raised to 110 ° C, and the chlorination was continued while gradually raising the temperature. When the reaction temperature reached 120 ° C, the temperature was maintained and chlorination was continued to remove chlorine.
The reaction was terminated when kg was blown.

【0037】実施例1と同様にして後処理と分析を行っ
た。遠心脱水した樹脂の含水率は30%、乾燥した塩化ゴ
ム粉末の塩素含有率は65.2%、平均粒子径は20μmであ
った。トルエンに固形分濃度20%で溶解させると粘度は
13cpであった。
Post-treatment and analysis were carried out in the same manner as in Example 1. The water content of the centrifugally dehydrated resin was 30%, the chlorine content of the dried chlorinated rubber powder was 65.2%, and the average particle size was 20 μm. When dissolved at a solid concentration of 20% in toluene, the viscosity
It was 13 cp.

【0038】(実施例4)天然ゴムラテックス(Soctex
−CC、ハイアンモニアタイプ、固形分60%)3kgにノ
ニオン系界面活性剤(ニューポールPE−108、三洋
化成製)72gを水1リットルに溶解させた水溶液と水15
リットルを加えてよく攪拌し、濃塩酸(36%)20リット
ルを加えた。これを実施例1と同じ反応容器に仕込ん
だ。
(Example 4) Natural rubber latex (Soctex
-CC, high ammonia type, solid content 60%) 3g of nonionic surfactant (Newpol PE-108, Sanyo Kasei Co., Ltd.) 72g dissolved in water 1L and water 15
L was added and well stirred, and 20 L of concentrated hydrochloric acid (36%) was added. This was charged into the same reaction vessel as in Example 1.

【0039】窒素ガスで系内をパージした後室温におい
て、反応容器の底部にもうけた口から塩素ガスを吹き込
んだ。徐々に昇温しながら塩素化を続け、塩素を5kg吹
込んだところでサンプリングし塩素含有率を測定すると
60%、DSCによる軟化開始温度は95℃であった。反応
温度を 100℃に上げ、徐々に昇温しながら塩素化を続け
た。反応温度が 120℃になったところで温度を保持し、
塩素ガスと少量の酸素ガスを同時に吹込みながら塩素化
を続け、塩素を6kg吹込んだところで反応を終了した。
After purging the inside of the system with nitrogen gas, at room temperature, chlorine gas was blown into the bottom of the reaction vessel through a port. Chlorination is continued while gradually raising the temperature, and when 5 kg of chlorine is injected, sampling is performed to measure the chlorine content.
60%, the softening start temperature by DSC was 95 ° C. The reaction temperature was raised to 100 ° C and the chlorination was continued while gradually raising the temperature. Hold the temperature when the reaction temperature reaches 120 ℃,
Chlorination was continued while simultaneously blowing chlorine gas and a small amount of oxygen gas, and the reaction was terminated when 6 kg of chlorine was blown.

【0040】実施例1と同様にして後処理と分析を行っ
た。遠心脱水した樹脂の含水率は30%、乾燥した塩化ゴ
ム粉末の塩素含有率は64.8%、平均粒子径は25μmであ
った。トルエンに固形分濃度20%で溶解させると粘度は
6cpであった。
Post-treatment and analysis were carried out in the same manner as in Example 1. The water content of the centrifugally dehydrated resin was 30%, the chlorine content of the dried chlorinated rubber powder was 64.8%, and the average particle diameter was 25 μm. When dissolved in toluene at a solid concentration of 20%, the viscosity was 6 cp.

【0041】(実施例5)攪拌機、圧力計、温度計及び
内部注入用バルブを備えた耐圧反応容器に、水100 部、
アクリル酸 3.6部、ポリオキシエチレンアルキルフェニ
ルエーテル硫酸エステル 2.4部、t−ドデシルメルカプ
タン 0.2部、過硫酸カリウム 0.8部、および塩化カリウ
ム 0.8部を加えて密閉しよく攪拌した。次に、反応容器
内に注入バルブを通じてイソプレン80部を添加し、60℃
で12時間、乳化重合反応を行わせた。
Example 5 100 parts of water was placed in a pressure resistant reaction vessel equipped with a stirrer, a pressure gauge, a thermometer and an internal injection valve.
3.6 parts of acrylic acid, 2.4 parts of polyoxyethylene alkylphenyl ether sulfuric acid ester, 0.2 part of t-dodecyl mercaptan, 0.8 part of potassium persulfate, and 0.8 part of potassium chloride were added, and the mixture was sealed and well stirred. Next, 80 parts of isoprene was added to the reaction vessel through an injection valve, and the temperature was 60 ° C.
The emulsion polymerization reaction was carried out for 12 hours.

【0042】乳化重合したポリイソプレンゴムラテック
ス4kgに水15リットルを加えてよく攪拌し、濃塩酸(36
%)20リットルを加えた。これを実施例1と同じ反応容
器に仕込んだ。窒素ガスで系内をパージした後室温にお
いて、反応容器の底部にもうけた口から塩素ガスを吹き
込んだ。徐々に昇温しながら塩素化を続け、塩素を4kg
吹込んだところでサンプリングし塩素含有率を測定する
と52%、DSCによる軟化開始温度は60℃であった。反
応温度を70℃に上げ、徐々に昇温しながら塩素化を続け
た。反応温度が 120℃になったところで温度を保持して
塩素化を続け、塩素を6kg吹込んだところで反応を終了
した。
To 4 kg of emulsion-polymerized polyisoprene rubber latex, 15 liters of water was added and well stirred, and concentrated hydrochloric acid (36
%) 20 liters were added. This was charged into the same reaction vessel as in Example 1. After purging the system with nitrogen gas, at room temperature, chlorine gas was blown into the bottom of the reaction vessel through a port. Chlorination is continued while gradually raising the temperature to 4 kg of chlorine.
When the gas was blown in, it was sampled and the chlorine content was measured to be 52%, and the softening start temperature by DSC was 60 ° C. The reaction temperature was raised to 70 ° C, and the chlorination was continued while gradually raising the temperature. When the reaction temperature reached 120 ° C, the temperature was maintained to continue the chlorination, and the reaction was terminated when 6 kg of chlorine was blown.

【0043】実施例1と同様にして後処理と分析を行っ
た。遠心脱水した樹脂の含水率は35%、乾燥した塩化ゴ
ム粉末の塩素含有率は65.0%、平均粒子径は28μmであ
った。トルエンに固形分濃度20%で溶解させると粘度は
20cpであった。
Post-treatment and analysis were carried out in the same manner as in Example 1. The water content of the centrifugally dehydrated resin was 35%, the chlorine content of the dried chlorinated rubber powder was 65.0%, and the average particle size was 28 μm. When dissolved at a solid concentration of 20% in toluene, the viscosity
It was 20 cp.

【0044】(比較例1)天然ゴムラテックス(Soctex
−CC、ハイアンモニアタイプ、固形分60%)3kgにノ
ニオン系界面活性剤(エマノーン3199、花王製)54
gを水1リットルに溶解させた水溶液と水10リットルを
加えてよく攪拌し、濃塩酸(36%)25リットルを加え
た。これを実施例1と同じ反応容器に仕込んだ。
Comparative Example 1 Natural rubber latex (Soctex
-CC, high ammonia type, solid content 60%) 3kg nonionic surfactant (Emanon 3199, manufactured by Kao) 54
An aqueous solution prepared by dissolving g in 1 liter of water and 10 liters of water were added and well stirred, and 25 liters of concentrated hydrochloric acid (36%) was added. This was charged into the same reaction vessel as in Example 1.

【0045】窒素ガスで系内をパージした後室温におい
て、反応容器の底部にもうけた口から塩素ガスを吹き込
んだ。10℃/時間の速さで徐々に昇温しながら塩素化を
続け、塩素を4kg吹込んだところでサンプリングし塩素
含有率を測定すると55%、DSCによる軟化開始温度は
80℃であった。反応温度を75℃とし、高圧水銀ランプを
点灯して紫外線の照射を開始し徐々に昇温しながら塩素
化を続けた。反応温度が90℃になったところで温度を保
持して塩素化を続けたが、反応液がクリーム状となって
粘度が上昇し塩素ガスの吹込みが難しくなった。塩素ガ
スを少量ずつ間欠的に吹込みながら時間をかけて塩素7
kg吹込んだところで反応を終了した。
After purging the inside of the system with nitrogen gas, at room temperature, chlorine gas was blown into the bottom of the reaction vessel through a port. Chlorination was continued while gradually raising the temperature at a rate of 10 ° C / hour, and chlorine content of 55% was measured by sampling when 4 kg of chlorine had been blown, and the softening start temperature by DSC was
It was 80 ° C. The reaction temperature was set to 75 ° C., the high pressure mercury lamp was turned on, the irradiation of ultraviolet rays was started, and the chlorination was continued while gradually raising the temperature. When the reaction temperature reached 90 ° C, the temperature was maintained and chlorination was continued, but the reaction solution became creamy and the viscosity increased, making it difficult to blow chlorine gas. Chlorine gas is slowly blown in small amounts and chlorine
The reaction was terminated when kg was blown.

【0046】実施例1と同様にして後処理と分析を行っ
た。遠心脱水を1時間行った樹脂の含水率は65%であり
乾燥に長時間かかった。乾燥した塩化ゴム粉末の塩素含
有率は67.0%、平均粒子径は3μmであった。トルエン
に固形分濃度20%で溶解させると粘度は40cpであった。
Post-treatment and analysis were carried out in the same manner as in Example 1. The water content of the resin after centrifugal dehydration for 1 hour was 65%, and it took a long time to dry. The chlorine content of the dried chlorinated rubber powder was 67.0%, and the average particle size was 3 μm. When it was dissolved in toluene at a solid concentration of 20%, the viscosity was 40 cp.

【0047】(比較例2)天然ゴムラテックス(Soctex
−CC、ハイアンモニアタイプ、固形分60%)3kgにノ
ニオン系界面活性剤(エマノーン3199、花王製)54
gを水1リットルに溶解させた水溶液と水10リットルを
加えてよく攪拌し、濃塩酸(36%)25リットルを加え
た。これを実施例1と同じ反応容器に仕込んだ。
Comparative Example 2 Natural rubber latex (Soctex
-CC, high ammonia type, solid content 60%) 3kg nonionic surfactant (Emanon 3199, manufactured by Kao) 54
An aqueous solution prepared by dissolving g in 1 liter of water and 10 liters of water were added and well stirred, and 25 liters of concentrated hydrochloric acid (36%) was added. This was charged into the same reaction vessel as in Example 1.

【0048】窒素ガスで系内をパージした後60℃の温度
で、反応容器の底部にもうけた口から塩素ガスを吹き込
んだ。10℃/時間の速さで徐々に昇温しながら塩素化を
続けた。塩素を3kg吹込んだところでサンプリングした
が、サンプリング口が詰り気味であった。塩素含有率を
測定すると45%、DSCによる軟化開始温度は60℃であ
った。反応温度を70℃とし、高圧水銀ランプを点灯して
紫外線の照射を開始し徐々に昇温しながら塩素化を続け
た。反応温度が 110℃になったところで温度を保持して
塩素化を続け、塩素を7kg吹込んだところで反応を終了
した。
After purging the inside of the system with nitrogen gas, chlorine gas was blown into the bottom of the reaction vessel at a temperature of 60 ° C. from a port provided. Chlorination was continued while gradually raising the temperature at a rate of 10 ° C / hour. Sampling was performed when 3 kg of chlorine was blown in, but the sampling port seemed clogged. The chlorine content was measured to be 45%, and the softening start temperature by DSC was 60 ° C. The reaction temperature was 70 ° C., the high pressure mercury lamp was turned on, the irradiation of ultraviolet rays was started, and the chlorination was continued while gradually raising the temperature. When the reaction temperature reached 110 ° C, the temperature was maintained to continue chlorination, and the reaction was terminated when 7 kg of chlorine was blown.

【0049】実施例1と同様にして後処理と分析を行っ
た。反応液をロ過したとき数cmの塊が多数あった。遠心
脱水した樹脂の含水率は35%、乾燥した塩化ゴム粉末は
篩い分けして 200メッシュを通過したものを集めた。塩
素含有率は67.0%、平均粒子径は50μmであった。トル
エンに固形分濃度20%で溶解させると粘度は45cpであっ
たが、トルエン溶液は濁っておりトルエンに溶解しない
小さな塊が多数沈澱した。
Post-treatment and analysis were carried out in the same manner as in Example 1. When the reaction solution was filtered, there were many lumps of several cm. The water content of the centrifugally dehydrated resin was 35%, and the dried chlorinated rubber powder was sieved and collected after passing through 200 mesh. The chlorine content was 67.0%, and the average particle size was 50 μm. When it was dissolved in toluene at a solid concentration of 20%, the viscosity was 45 cp, but the toluene solution was turbid and many small lumps that did not dissolve in toluene were precipitated.

【0050】塩化ゴムの性能試験 実施例1、3、比較例1、2の塩化ゴムおよび溶液法の
塩化ゴム(スーパークロンCR−10(日本製紙(株)
製))を 100部取り、塩パラ(A−40)45部、二酸化チ
タン 125部、安定剤 2.5部、キシレンを加え、混練して
塗料を調整した。塗料調整時に実施例1、3の塩化ゴム
は溶液法の塩化ゴムと同様の扱いやすさであった。比較
例1の塩化ゴムは微粉末が舞い散り周辺が粉で汚れた。
各塗料を無機ジンク塗料を下塗りしたサンドブラスト鋼
板に塗装し、性能を試験した。結果を次の表1に示し
た。
Performance test of chlorinated rubber Chlorinated rubbers of Examples 1 and 3 and Comparative Examples 1 and 2 and chlorinated rubber of solution method (Super Clone CR-10 (Nippon Paper Industries Co., Ltd.)
100 parts), 45 parts of salt para (A-40), 125 parts of titanium dioxide, 2.5 parts of stabilizer and xylene were added and kneaded to prepare a paint. The chlorinated rubbers of Examples 1 and 3 were as easy to handle as the chlorinated rubbers of the solution method when the paints were prepared. In the chlorinated rubber of Comparative Example 1, fine powder was scattered and the periphery was soiled with powder.
Each paint was applied to a sandblasted steel plate primed with an inorganic zinc paint to test its performance. The results are shown in Table 1 below.

【0051】[0051]

【表1】 [Table 1]

【0052】表中、脱水性 :遠心脱水の時間
(分)/含水率(%) 取扱いやすさ :塩化ゴム粉末の扱いやすさ 試験方法 接着性 :ゴバン目試験、7日後 塩水噴霧テスト:5%NaCl水を35℃において噴霧、
30日後 耐湿性 :50℃、 100%RH、30日後 耐アルカリ性 :3%NaOH水に浸漬、30日後 促進耐候性 :サンシャインウェザオメーター、 200
時間後 結果は◎、○、△、×、××の5段階で表示した。
Dehydration in the table: Centrifugal dehydration time (minutes) / water content (%) Ease of handling: Ease of handling chlorinated rubber powder Test method Adhesiveness: Goggle test, after 7 days Salt spray test: 5% Spray NaCl water at 35 ° C,
After 30 days Moisture resistance: 50 ° C, 100% RH, after 30 days Alkali resistance: Immersed in 3% NaOH water, after 30 days Accelerated weather resistance: Sunshine weatherometer, 200
After time, the results were displayed in 5 grades of ⊚, ○, Δ, ×, and XX.

【0053】[0053]

【発明の効果】本発明の方法では塩素化反応の後半にお
いても塩素化反応速度が低下せず、また反応液性状も悪
化しない。実施例1と比較例1とを比べてみれば明らか
で、比較例1では反応後半において液がクリーム状とな
って反応の進行が遅れるのに対し、本発明を実行した実
施例1では反応がスムーズに進行している。
According to the method of the present invention, the chlorination reaction rate does not decrease even in the latter half of the chlorination reaction, and the reaction liquid properties do not deteriorate. It is clear by comparing Example 1 and Comparative Example 1 that, in Comparative Example 1, the liquid becomes creamy in the latter half of the reaction and the progress of the reaction is delayed, whereas in Example 1 in which the present invention is carried out, the reaction is It is progressing smoothly.

【0054】本発明の方法では得られた塩化ゴムの粒子
径が大きいので、脱水性の向上やハンドリングの向上と
いった効果がある。実施例1〜5と比較例1を比べれば
脱水性の向上効果がはっきりする。実施例1〜5では含
水率が低く乾燥が速いのに対し、比較例1では含水率が
非常に高く脱水性、乾燥性とも劣るものである。さら
に、塩化ゴムの性能試験の項にあるように本発明の塩化
ゴムは従来からある溶液法の塩化ゴムと同様の扱いやす
さであるのに対し、比較例1のものは微粉末でハンドリ
ングが劣る。
Since the obtained chlorinated rubber has a large particle size by the method of the present invention, it is effective in improving the dehydration property and handling. Comparing Examples 1 to 5 with Comparative Example 1, the effect of improving the dehydration property becomes clear. In Examples 1 to 5, the water content is low and the drying is fast, whereas in Comparative Example 1, the water content is very high and the dehydration property and the drying property are inferior. Further, as described in the performance test of chlorinated rubber, the chlorinated rubber of the present invention is as easy to handle as the conventional chlorinated rubber of the solution method, whereas the chlorinated rubber of Comparative Example 1 is fine powder and is easy to handle. Inferior.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 ゴムラテックスに界面活性剤および酸を
加え塩素ガスで塩素含有率60%〜75%まで水媒体中のま
ま塩素化することにより得られる塩化ゴムにおいて、塩
素含有率が50%を越えてから、少なくとも1回、反応系
の温度を樹脂の軟化開始温度より高い温度に上げゴム粒
子を凝集させて塩素化したことを特徴とする有機溶剤に
溶解し取扱いの容易な塩化ゴム。
1. A chlorinated rubber obtained by adding a surfactant and an acid to a rubber latex and chlorinating with chlorine gas to a chlorine content of 60% to 75% in an aqueous medium. A chlorinated rubber that is easy to handle by dissolving it in an organic solvent, characterized in that the temperature of the reaction system is raised to a temperature higher than the softening start temperature of the resin at least once after the temperature is exceeded to agglomerate and chlorinate the rubber particles.
【請求項2】 得られた塩化ゴムの平均粒子径が10μm
以上、 200μm以下である請求項1記載の塩化ゴム。
2. The average particle size of the obtained chlorinated rubber is 10 μm.
The chlorinated rubber according to claim 1, which is not less than 200 μm.
【請求項3】 原料ゴムが天然ゴムまたは合成ポリイソ
プレンゴムである請求項1または2記載の塩化ゴム。
3. The chlorinated rubber according to claim 1, wherein the raw rubber is natural rubber or synthetic polyisoprene rubber.
【請求項4】 ゴムラテックスに界面活性剤および酸を
加え塩素ガスで塩素含有率60%〜75%まで水媒体中のま
ま塩素化する塩化ゴムの製法において、塩素含有率が50
%を越えてから、少なくとも1回、反応系の温度を樹脂
の軟化開始温度より高い温度に上げゴム粒子を凝集させ
て塩素化したことを特徴とする有機溶剤に溶解する塩化
ゴムの製造方法。
4. A method for producing a chlorinated rubber in which a surfactant and an acid are added to rubber latex and chlorine content is chlorinated with chlorine gas in an aqueous medium to a chlorine content of 60% to 75%.
%, The temperature of the reaction system is raised to a temperature higher than the softening start temperature of the resin at least once to agglomerate the rubber particles for chlorination, and a method for producing a chlorinated rubber dissolved in an organic solvent.
【請求項5】 得られた塩化ゴムの平均粒子径が10μm
以上となるように反応系の温度を樹脂の軟化開始温度よ
り高い温度に上げて塩素化する請求項4記載の塩化ゴム
の製造方法。
5. The average particle size of the obtained chlorinated rubber is 10 μm.
The method for producing a chlorinated rubber according to claim 4, wherein the temperature of the reaction system is raised to a temperature higher than the softening start temperature of the resin to chlorinate as described above.
【請求項6】 塩素含有率が58%を越えてから反応系の
温度を90℃以上、180 ℃未満の温度で塩素化する請求項
4または5記載の塩化ゴムの製造方法。
6. The method for producing a chlorinated rubber according to claim 4, wherein after the chlorine content exceeds 58%, the reaction system is chlorinated at a temperature of 90 ° C. or higher and lower than 180 ° C.
【請求項7】 塩素化を攪拌下に行う請求項5または6
記載の塩化ゴムの製造方法。
7. The method according to claim 5, wherein the chlorination is carried out with stirring.
A method for producing a chlorinated rubber as described above.
【請求項8】 原料ゴムが天然ゴムまたは合成ポリイソ
プレンゴムである請求項4から7のいずれか1項記載の
塩化ゴムの製造方法。
8. The method for producing a chlorinated rubber according to claim 4, wherein the raw rubber is natural rubber or synthetic polyisoprene rubber.
【請求項9】 原料ゴムが解重合した天然ゴムである請
求項4から7のいずれか1項記載の塩化ゴムの製造方
法。
9. The method for producing a chlorinated rubber according to claim 4, wherein the raw rubber is a depolymerized natural rubber.
【請求項10】 塩素化反応中または塩素化反応後に解
重合を行う請求項4から9のいずれか1項記載の塩化ゴ
ムの製造方法。
10. The method for producing a chlorinated rubber according to claim 4, wherein depolymerization is performed during or after the chlorination reaction.
【請求項11】 請求項1記載の塩化ゴムを用いた塩化
ゴム塗料。
11. A chlorinated rubber paint using the chlorinated rubber according to claim 1.
JP5267961A 1993-09-30 1993-09-30 Manufacturing method of chlorinated rubber Expired - Fee Related JP2715245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5267961A JP2715245B2 (en) 1993-09-30 1993-09-30 Manufacturing method of chlorinated rubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5267961A JP2715245B2 (en) 1993-09-30 1993-09-30 Manufacturing method of chlorinated rubber

Publications (2)

Publication Number Publication Date
JPH07102018A true JPH07102018A (en) 1995-04-18
JP2715245B2 JP2715245B2 (en) 1998-02-18

Family

ID=17452002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5267961A Expired - Fee Related JP2715245B2 (en) 1993-09-30 1993-09-30 Manufacturing method of chlorinated rubber

Country Status (1)

Country Link
JP (1) JP2715245B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446905A (en) * 1990-06-15 1992-02-17 Asahi Denka Kogyo Kk Production of chlorinated rubber
JPH0459801A (en) * 1990-06-29 1992-02-26 Sanyo Kokusaku Pulp Co Ltd Production of chlorinated rubber
JPH05202101A (en) * 1991-11-29 1993-08-10 Asahi Denka Kogyo Kk Production of chlorinated rubber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446905A (en) * 1990-06-15 1992-02-17 Asahi Denka Kogyo Kk Production of chlorinated rubber
JPH0459801A (en) * 1990-06-29 1992-02-26 Sanyo Kokusaku Pulp Co Ltd Production of chlorinated rubber
JPH05202101A (en) * 1991-11-29 1993-08-10 Asahi Denka Kogyo Kk Production of chlorinated rubber

Also Published As

Publication number Publication date
JP2715245B2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
JP3640415B2 (en) Polytetrafluoroethylene micropowder and methods for producing and using them
US4098977A (en) Method for preparing polymers from water soluble vinyl monomers
JPH0670086B2 (en) Method for producing chlorinated rubber
JP2934623B2 (en) Method for producing hydrogenated acrylonitrile butadiene rubber
CA1056542A (en) Process for forming acrylic elastomer containing interpolymer particles by emulsion polymerization
JP2715245B2 (en) Manufacturing method of chlorinated rubber
JPS587401A (en) Treatment of polymerization reactor
JP6981431B2 (en) Method for Producing Hydrogenated Conjugated Diene Polymer Latex
JP3215491B2 (en) Manufacturing method of chlorinated rubber
JP2660478B2 (en) Chlorinated rubber and method for producing the same
JP3457044B2 (en) Method for producing thermoplastic resin
JP7153412B2 (en) Rubber particles and method for producing the same
JPS6261044B2 (en)
JP2567287B2 (en) Chlorinated polyolefin coating composition
JPH0637522B2 (en) Manufacturing method of chlorinated rubber
JP3315545B2 (en) Method for producing polymer by emulsion polymerization
EP2470577A1 (en) Nano-sized diene-based polymer latex particles
JPH08104704A (en) Production of polyisoprene rubber latex useful for production of chlorinated rubber
JPS5834814A (en) Polymerization of vinylidene fluoride
JPH11209405A (en) Agglomeration of rubber latex particle
JPH11130814A (en) Extraction of metallic residue from polymer cement
JP2721717B2 (en) Method for producing powdery granular polymer
JP3260954B2 (en) Polymer scale adhesion inhibitor and method for producing polymer using the same
JPH02158601A (en) Prevention of sticking of polymer scale
JP3260953B2 (en) Polymer scale adhesion inhibitor and method for producing polymer using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees