JPH0699865B2 - Composite carbon fiber and manufacturing method thereof - Google Patents

Composite carbon fiber and manufacturing method thereof

Info

Publication number
JPH0699865B2
JPH0699865B2 JP62260488A JP26048887A JPH0699865B2 JP H0699865 B2 JPH0699865 B2 JP H0699865B2 JP 62260488 A JP62260488 A JP 62260488A JP 26048887 A JP26048887 A JP 26048887A JP H0699865 B2 JPH0699865 B2 JP H0699865B2
Authority
JP
Japan
Prior art keywords
carbon fiber
composite
silicon
silicon carbide
composite carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62260488A
Other languages
Japanese (ja)
Other versions
JPH01104879A (en
Inventor
庸博 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP62260488A priority Critical patent/JPH0699865B2/en
Publication of JPH01104879A publication Critical patent/JPH01104879A/en
Publication of JPH0699865B2 publication Critical patent/JPH0699865B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、複合炭素繊維及びその製造方法に関し、詳し
くは宇宙、航空、防衛用の繊維強化複合材料や自動車部
品等の繊維強化複合材料に使用される複合炭素繊維とそ
の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a composite carbon fiber and a method for producing the same, and more particularly to a fiber-reinforced composite material for space, aviation, defense, and a fiber-reinforced composite material for automobile parts. The present invention relates to a composite carbon fiber used and a method for producing the same.

(従来の技術) 金属やセラミックスの短所である強度、剛性、耐摩耗
性、熱膨張などの特性を炭素繊維により向上させた材料
が炭素繊維強化金属、炭素繊維強化セラミックスであ
り、この材料は特に高温下での高強度軽量構造体として
常用されていることは周知である。
(Prior Art) Carbon fiber reinforced metal and carbon fiber reinforced ceramics are materials whose properties such as strength, rigidity, wear resistance, and thermal expansion, which are disadvantages of metals and ceramics, are improved by carbon fiber. It is well known that it is commonly used as a high-strength lightweight structure at high temperatures.

しかし、炭素繊維強化金属を製造する場合には、炭素繊
維と金属マトリックス、特にアルミニウムとの場合は反
応性が高く、高温で容易に反応してAl4C3を生成して強
度低下することが大きな問題となっている。これは特に
黒鉛化率の低い炭素繊維で顕著である。
However, when producing a carbon fiber reinforced metal, the carbon fiber and the metal matrix, especially aluminum, have high reactivity and may easily react at high temperature to form Al 4 C 3 and reduce the strength. It's a big problem. This is particularly remarkable in carbon fibers having a low graphitization rate.

また、炭素繊維強化セラミックスを製造する場合には、
炭素繊維とセラミックスとの濡れ性が悪く、両者の界面
での接着力を十分に高めることができない。
When manufacturing carbon fiber reinforced ceramics,
The wettability between the carbon fiber and the ceramic is poor, and the adhesive force at the interface between the two cannot be sufficiently increased.

このため従来は、炭素繊維表面にCVD処理やPVD処理、メ
ッキ、溶射をして、SiC、WC、TiC、W、Mo、Cuなどを沈
積被覆してマトリックス物質との反応を低くおさえるこ
とが試みられてきた。具体的には特公昭50−26528号公
報のようにCVD処理によって炭素繊維表面に金属珪素を
沈着させ、その金属珪素と炭素繊維自身とを次式のよう
に反応させ繊維表面を炭化珪素化する方法が示されてい
る。
For this reason, conventionally, it has been attempted to suppress the reaction with the matrix substance by depositing and coating SiC, WC, TiC, W, Mo, Cu, etc. on the carbon fiber surface by CVD treatment, PVD treatment, plating, and thermal spraying. Has been. Specifically, as described in Japanese Patent Publication No. 50-26528, metal silicon is deposited on the surface of carbon fiber by a CVD treatment, and the metal silicon and the carbon fiber itself are reacted as shown in the following formula to convert the fiber surface to silicon carbide. The method is shown.

Si+C=SiC 又、最近では特開昭62−107038号公報に開示されている
ように炭素繊維上にMgOやBeOなどの金属酸化物を被覆し
て金属との反応を防止し、セラミックスとの濡れ性を改
善する方法が考えられてきた。
Si + C = SiC Recently, as disclosed in JP-A-62-107038, a carbon fiber is coated with a metal oxide such as MgO or BeO to prevent a reaction with a metal and wet with a ceramic. A method of improving sex has been considered.

(発明が解決しようとする問題点) しかしながら、従来から行われてきた炭素繊維表面への
高融点酸化物、非酸化物、金属などのCVD処理、PVD処
理、メッキ処理、溶射などによる沈積被覆処理、あるい
はMgOやBeOなどの金属酸化物の塗布による方法は、第4
図に示すように炭素繊維(19)表面と被膜物質(21)と
がファン・デル・ワールス力等の物理的接着によって結
合しているため、炭素繊維(19)表面と被膜物質(21)
との界面接着力が十分でなく、マトリックス金属との複
合体にして高温化で負荷をかけて繰り返し使用した場
合、強度劣化が速いという問題があった。
(Problems to be solved by the invention) However, conventional deposition treatment of high-melting-point oxides, non-oxides, metals, etc. on carbon fiber by CVD, PVD, plating, thermal spraying, etc. Alternatively, the method of applying a metal oxide such as MgO or BeO is the fourth method.
As shown in the figure, the surface of the carbon fiber (19) and the coating material (21) are bonded by physical adhesion such as van der Waals force, so the surface of the carbon fiber (19) and the coating material (21)
There is a problem that the strength of the interface is deteriorated rapidly when it is used as a composite with a matrix metal and is repeatedly used under load at high temperature.

又、金属珪素をCVD処理でいったん炭素繊維表面に沈積
させ炭素繊維と直接反応させて炭化珪素化する方法では
珪素原子が余分に炭素繊維に組み込まれるため、大巾な
体積膨張と微細空孔の消滅によってクラックが発生した
り、繊維の柔軟性が過度に失われるといった問題が起こ
り、特に珪素化反応が1500℃以上ではこれら欠点が顕著
にあらわれるということが知られていた。
Further, in the method in which metallic silicon is once deposited on the surface of the carbon fiber by the CVD process and directly reacted with the carbon fiber to form silicon carbide, since silicon atoms are excessively incorporated into the carbon fiber, large volume expansion and fine voids are formed. It has been known that problems such as generation of cracks and excessive loss of flexibility of fibers occur due to disappearance, and that these defects are prominent particularly when the silicidation reaction is 1500 ° C. or higher.

一方、炭素繊維表面へのCVD処理、PVD処理、メッキ処
理、溶射などの沈積被覆作業は生産性が悪くコストダウ
ンを進める上で大きな障害となっていた。
On the other hand, deposition coating work such as CVD treatment, PVD treatment, plating treatment, and thermal spraying on the surface of carbon fiber has a poor productivity and has been a major obstacle to cost reduction.

(問題点を解決するための手段) 本発明は、上記のような問題点に対しなされたものであ
り、炭素繊維と金属、セラミックスとの濡れ性を改善
し、かつ高温下でも製造された複合材料が強度劣化を起
こさないような炭素繊維強化材料の原料となる炭素繊維
及びその製造方法を見い出すことを目的とする。
(Means for Solving Problems) The present invention has been made to solve the above problems, and improves the wettability of carbon fibers with metals and ceramics, and is a composite manufactured even at high temperatures. An object of the present invention is to find a carbon fiber as a raw material of a carbon fiber reinforced material that does not cause strength deterioration and a manufacturing method thereof.

すなわち、本発明の複合炭素繊維は、炭素繊維表面層の
一部又は全部を一酸化珪素を主成分とするガスにより炭
化珪素に転化して成るものである。
That is, the composite carbon fiber of the present invention is obtained by converting a part or all of the carbon fiber surface layer into silicon carbide by a gas containing silicon monoxide as a main component.

さて、炭素繊維表面層を炭化珪素に転化する方法として
は、珪素蒸気又は各種珪素化合物と反応させるか、パッ
クセメンテーションを応用した方法があるが、最も好ま
しい方法として一酸化珪素ガスと炭素繊維を次式のよう
に反応させる方法があげられる。
As a method of converting the carbon fiber surface layer into silicon carbide, there is a method of reacting with silicon vapor or various silicon compounds or applying pack cementation, and the most preferable method is to use silicon monoxide gas and carbon fiber. There is a method of reacting as in the following formula.

SiO(g)+2C=SiC+CO(g) この方法を用いることによって、第3図に示すように炭
素繊維(19)の形状、寸法を保持したまま珪化層(20)
を形成することができる。
SiO (g) + 2C = SiC + CO (g) By using this method, as shown in FIG. 3, the silicified layer (20) is formed while maintaining the shape and size of the carbon fiber (19).
Can be formed.

この反応は1300℃〜2300℃の温度範囲で加熱することに
より進行する。ここで、一酸化珪素ガスを発生させるに
は、珪素粉と二酸化珪素粉の混合体、又は炭化珪素粉と
二酸化珪素粉の混合体、あるいは炭素粉と二酸化珪素粉
の混合体、その他、各種珪素化合物を1200℃〜2300℃に
加熱することにより行なうことができる。
This reaction proceeds by heating in the temperature range of 1300 ° C to 2300 ° C. Here, in order to generate silicon monoxide gas, a mixture of silicon powder and silicon dioxide powder, a mixture of silicon carbide powder and silicon dioxide powder, a mixture of carbon powder and silicon dioxide powder, or other various silicon It can be carried out by heating the compound to 1200 ° C to 2300 ° C.

炭素繊維と一酸化珪素とを反応させて炭素繊維表面を炭
化珪素に転化させるとき、処理温度を1400℃〜2300℃の
範囲で選択することによって、炭素繊維表面の珪化層の
中に未反応炭素を残留させ、炭化珪素分の割合である珪
化率をいろいろ変えたものをつくることができる。又、
処理温度のほかに処理時間を調節することによっても炭
素繊維表面の珪化層の厚さをコントロールすることがで
きる。その他にも、一酸化珪素の濃度を調節することに
よって珪化率、珪化層の厚さをコントロールすることが
できる。
When carbon fiber and silicon monoxide are reacted to convert the surface of carbon fiber to silicon carbide, by selecting the treatment temperature in the range of 1400 ° C to 2300 ° C, unreacted carbon is contained in the silicified layer on the surface of carbon fiber. Can be made to remain and various silicon carbide ratios, which are the proportions of silicon carbide, can be produced. or,
The thickness of the silicified layer on the carbon fiber surface can be controlled by adjusting the treatment time as well as the treatment temperature. In addition, the silicidation rate and the thickness of the silicified layer can be controlled by adjusting the concentration of silicon monoxide.

炭素繊維表面層を炭化珪素に転化した珪化層の中には未
反応炭素を少なくとも10%以上は残留させておくことが
望ましい。このことによって炭素繊維のフレキシビリテ
ィーを確保することができる。
It is desirable to leave at least 10% or more of unreacted carbon in the silicified layer obtained by converting the carbon fiber surface layer into silicon carbide. This ensures the flexibility of the carbon fiber.

次に炭素繊維を連続的に焼成して製造する方法について
図面を用いて説明する。
Next, a method of continuously firing the carbon fiber to produce the carbon fiber will be described with reference to the drawings.

第1図は本発明の複合炭素繊維を製造する装置の概略図
である。
FIG. 1 is a schematic view of an apparatus for producing the composite carbon fiber of the present invention.

第1図において、(1)は炭化前繊維又は炭素繊維であ
り、予熱ヒーター(2)を用いて150℃〜250℃で処理す
る。炉内の雰囲気ガスはガス供給口(3)より導入し、
排気ガスは炉内の排気ガス口(7)及び(13)より取り
出す。
In FIG. 1, (1) is a fiber before carbonization or carbon fiber, which is treated at 150 ° C. to 250 ° C. by using a preheating heater (2). Atmosphere gas in the furnace is introduced from the gas supply port (3),
Exhaust gas is taken out from the exhaust gas ports (7) and (13) in the furnace.

又、炉内のシール用水浴(17)を配した水封部からはシ
ール用ガスを供給口(15)より流し、炉内の排気ガス口
(7)及び(13)より取り出す。
In addition, a sealing gas is supplied from a supply port (15) from a water sealing portion provided with a sealing water bath (17) in the furnace, and taken out from exhaust gas ports (7) and (13) in the furnace.

予熱処理を受けた繊維は焼成炭化用ヒーター(5)によ
って1000℃〜3000℃で加熱され炭化される。以上の処理
を受けた炭素繊維はスリット(12)とスリット(14)に
よって区切られた珪化帯域へ移り、表面層を炭化珪素に
転化される。ここで、珪化用ヒーター(6)を用いて珪
化帯域を1400℃〜2300℃になるようにする。又、一酸化
珪素ガスは黒鉛ルツボ(9)内の一酸化珪素ガス発生源
(10)を1300℃〜2300℃に加熱することによって発生さ
せることができ、それを一酸化珪素ガス供給口(11)よ
り導入して炭素繊維と反応させる。1300℃〜2300℃に加
熱するには誘導加熱コイル(8)を用いて黒鉛ルツボ
(9)を加熱すればよい。残留一酸化珪素ガスは炉内の
排気ガス口(13)より排出する。
The fiber which has been subjected to the pre-heat treatment is heated and carbonized at 1000 ° C. to 3000 ° C. by the firing carbonization heater (5). The carbon fiber that has been subjected to the above-mentioned treatment moves to the silicidation zone divided by the slit (12) and the slit (14), and the surface layer is converted to silicon carbide. Here, the silicidation heater (6) is used to control the silicidation zone to 1400 ° C to 2300 ° C. Further, the silicon monoxide gas can be generated by heating the silicon monoxide gas generation source (10) in the graphite crucible (9) to 1300 ° C to 2300 ° C, and the silicon monoxide gas supply port (11 ) And then react with the carbon fiber. The graphite crucible (9) may be heated using the induction heating coil (8) to heat it to 1300 ° C to 2300 ° C. The residual silicon monoxide gas is discharged from the exhaust gas port (13) in the furnace.

表面層を炭化珪素に転化された炭素繊維はスリット(1
4)とスリット(18)によって区切られた冷却帯域を通
って冷却され、スリット(16)を設けた水封部から出て
くる。
The carbon fiber whose surface layer has been converted to silicon carbide has slits (1
It is cooled through a cooling zone divided by 4) and a slit (18), and comes out from a water seal part provided with a slit (16).

(発明の作用) 本発明では炭素繊維表面層を一酸化珪素ガスが浸透拡散
していき、炭素繊維自体と置換反応させて炭化珪素に転
化させることが特徴になっており、CVD法やPVD法、ある
いはメッキ、溶射、塗布のように炭素繊維表面の上に同
一物質、又は別物質を沈積被膜化したものとは根本的に
違っている。
(Operation of the Invention) The present invention is characterized in that the carbon monoxide gas permeates and diffuses into the carbon fiber surface layer to cause a substitution reaction with the carbon fiber itself to be converted into silicon carbide. Or, it is fundamentally different from the one in which the same substance or another substance is deposited and coated on the surface of carbon fiber such as plating, thermal spraying, and coating.

つまり、CVD法やPVD法、あるいはメッキ、溶射、塗布な
どによって得られた炭素繊維表面は沈積被膜物質と炭素
繊維表面がファン・デル・ワールス力等による物理的接
着のみで結合しており、複合材料の繊維フィラーとして
用いられた場合、高温下での繰り返し使用では沈積被膜
物質が熱膨張差等が原因となって剥離を起こし、強度劣
化をはやめる。
In other words, the carbon fiber surface obtained by the CVD method or PVD method, or plating, thermal spraying, coating, etc., has the deposition coating substance and the carbon fiber surface bonded only by physical adhesion by Van der Waals force, etc. When it is used as a fiber filler of a material, the deposited film substance peels off due to a difference in thermal expansion and the like and the strength deterioration is stopped when it is repeatedly used at a high temperature.

しかし、本発明の炭素繊維表面の炭化珪素層は繊維自体
が一酸化珪素と置換反応して変化したものであるから境
界は完全な連続の組織となっており、高温下での繰り返
し使用によって珪化層が剥離することはない。
However, since the silicon carbide layer on the surface of the carbon fiber of the present invention is changed by the substitution reaction of the fiber itself with silicon monoxide, the boundary has a completely continuous structure and is silicified by repeated use at high temperature. The layers do not peel off.

又、本発明の炭素繊維表面の炭化珪素層は炭素繊維のポ
ロシティーと同一であるので、CVD法やPVD法による沈積
被膜のようにほとんどポアーを持たないものにくらべ耐
熱衝撃性が高く、マトリックスが炭化珪素層の微少ポア
ー中に入り込むことによって、いわゆる投錨効果がはた
らくので、マトリックスと、より強固に結合される。
Further, since the silicon carbide layer on the surface of the carbon fiber of the present invention is the same as the porosity of the carbon fiber, it has a higher thermal shock resistance than a matrix having almost no pores such as a deposited film by the CVD method or the PVD method, and the matrix By entering into the minute pores of the silicon carbide layer, a so-called anchoring effect is exerted, so that it is more firmly bonded to the matrix.

そのほかにも、複合材料の耐摩耗性の点で通常の炭素繊
維フィラーの場合にくらべ本発明の複合炭素繊維フィラ
ーでは大巾に向上することが判明した。
In addition, it has been found that the composite carbon fiber filler of the present invention is greatly improved in wear resistance of the composite material as compared with the case of a normal carbon fiber filler.

本発明は炭素繊維単体のほか、マット、布、不織布、ヤ
ーンなどでも極めて有効である。
The present invention is extremely effective not only for carbon fibers alone but also for mats, cloths, non-woven fabrics, yarns and the like.

次に、本発明を実施例によって具体的に説明する。Next, the present invention will be specifically described with reference to examples.

(実施例) 実施例1 PAN系繊維(2デニール、フィラメント数10000)を第1
図に示す装置を用いて焼成炭化、及び珪化処理を行なっ
た。ガス供給口(3)からは所定量の酸素を含んだ窒素
ガスを送り、ガス供給口(15)からは窒素ガスを送り込
んだ。
(Example) Example 1 First PAN fiber (2 denier, 10000 filaments)
Firing carbonization and silicidation treatment were performed using the apparatus shown in the figure. Nitrogen gas containing a predetermined amount of oxygen was sent from the gas supply port (3), and nitrogen gas was sent from the gas supply port (15).

一酸化珪素ガス発生源(10)は珪素粉と二酸化珪素粉の
混合体300g(モル比1:1)を黒鉛ルツボ(9)に入れ、
誘導加熱によって1850℃に加熱して、一酸化珪素を発生
させた。炉内の温度は予熱ヒーター(2)、焼成炭化用
ヒーター(5)、珪化用ヒーター(6)を用いて第2図
のように調整した。このようにして得られた複合炭素繊
維をアルミ箔と積層して所定の形状に成形した後、ホッ
トプレス法を用いて炭素繊維強化アルミニウム複合体を
作製した。作製した試料の炭素繊維含有体積分率は15vo
l%、20vol%、30vol%とした。
As the silicon monoxide gas generation source (10), 300 g of a mixture of silicon powder and silicon dioxide powder (molar ratio 1: 1) was put into a graphite crucible (9),
It was heated to 1850 ° C. by induction heating to generate silicon monoxide. The temperature inside the furnace was adjusted as shown in FIG. 2 by using a preheating heater (2), a calcination carbonization heater (5), and a silicification heater (6). The composite carbon fiber thus obtained was laminated with an aluminum foil and molded into a predetermined shape, and then a carbon fiber reinforced aluminum composite was produced by using a hot pressing method. The volume fraction containing carbon fiber of the prepared sample is 15 vo
l%, 20vol% and 30vol%.

得られた複合体の室温における引張強度は複合則から計
算される値の85%〜95%となった。又、高温引張強度の
測定の結果、580℃まではほぼ一定値を示した。
The tensile strength of the obtained composite at room temperature was 85% to 95% of the value calculated from the composite law. As a result of the measurement of high temperature tensile strength, it showed an almost constant value up to 580 ° C.

実施例2 実施例1と同じ方法で得られた複合炭素繊維をバインダ
ーで調整されたSiC粉末といっしょに所定の形状に成形
した。これを2000℃で焼結した炭素繊維含有体積分率15
vol%、20vol%、30vol%の炭素繊維強化SiC複合体を作
製した。
Example 2 The composite carbon fiber obtained by the same method as in Example 1 was molded into a predetermined shape together with the SiC powder adjusted with the binder. This was sintered at 2000 ° C. Carbon fiber containing volume fraction 15
Vol%, 20 vol%, and 30 vol% carbon fiber reinforced SiC composites were produced.

得られた複合体の高温引張強度の測定の結果、1800℃ま
で強度を保つことができた。
As a result of measuring the high temperature tensile strength of the obtained composite, the strength could be maintained up to 1800 ° C.

比較例1 実施例1において炭素繊維表面層の珪化処理を行なわな
いこと以外は全て同じ処理を行ない試料を作製した。
Comparative Example 1 A sample was prepared in the same manner as in Example 1, except that the carbon fiber surface layer was not silicified.

得られた複合体試料の室温における引張強度は複合則か
ら計算された値の55%〜65%となった。
The tensile strength at room temperature of the obtained composite sample was 55% to 65% of the value calculated from the composite rule.

又、高温引張強度の測定の結果、280℃までほぼ一定値
を示した。
As a result of measurement of high-temperature tensile strength, it showed an almost constant value up to 280 ° C.

比較例2 実施例2において炭素繊維表面層の珪化処理を行なわな
いこと以外は全て同じ処理を行ない試料を作製した。
Comparative Example 2 A sample was prepared in the same manner as in Example 2, except that the carbon fiber surface layer was not silicified.

得られた複合体試料の高温引張強度の測定の結果、1320
℃まで強度を保つことができた。
The result of the high temperature tensile strength measurement of the obtained composite sample was 1320.
The strength could be maintained up to ℃.

(発明の効果) 以上説明したように、本発明の複合炭素繊維は表面層の
一部又は全部を置換反応により炭化珪素に転化させてい
るため、炭素繊維強化複合体を作製した場合、マトリッ
クスの金属又はセラミックスと、炭素繊維とが反応を起
こしたり、炭化珪素の層が剥離して強度劣化することが
なく高温でも安心して使うことができる。
(Effect of the invention) As described above, in the composite carbon fiber of the present invention, a part or all of the surface layer is converted into silicon carbide by a substitution reaction. The metal or ceramic and the carbon fiber do not react with each other, and the silicon carbide layer is not peeled off so that the strength is not deteriorated.

又、炭素繊維の珪化処理も簡単な装置で連続して行なう
ことができ、生産性を大巾に高めコストダウンを図るこ
とができる。
Further, the silicidation treatment of carbon fibers can be continuously performed by a simple apparatus, and the productivity can be greatly enhanced and the cost can be reduced.

なお、本発明の複合炭素繊維の製造上、珪化処理温度、
処理時間、一酸化珪素ガス濃度等を自由に調整すること
によって、いろいろな珪化率を持った炭素繊維を得るこ
とができ、炭素繊維複合体の摺動特性を簡単に制御でき
る。
In the production of the composite carbon fiber of the present invention, the silicidation temperature,
By freely adjusting the treatment time, the silicon monoxide gas concentration, etc., carbon fibers having various silicidation rates can be obtained, and the sliding characteristics of the carbon fiber composite can be easily controlled.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の複合炭素繊維を製造する装置の断面
図、第2図は第1図に示す複合炭素繊維の製造装置内の
温度分布を示すグラフ、第3図は炭素繊維及び本発明の
複合炭素繊維の断面図、第4図は炭素繊維及びCVD、PV
D、塗布等による表面コーティングされた複合炭素繊維
の断面図である。 符号の説明 1…繊維、2…予熱ヒーター、 3、15…ガス供給口、 4、12、14、16、18…スリット、 5…焼成炭化用ヒーター、 6…珪化用ヒーター、7、13…排気ガス口、 8…誘導加熱コイル、9…黒鉛ルツボ、 10…一酸化珪素ガス発生源、 11…一酸化珪素ガス供給口、 17…シール用水浴、19…炭素繊維、 20…珪化層、21…被膜物質。
FIG. 1 is a sectional view of an apparatus for producing the composite carbon fiber of the present invention, FIG. 2 is a graph showing a temperature distribution in the apparatus for producing the composite carbon fiber shown in FIG. 1, and FIG. 3 is a carbon fiber and the present invention. Cross section of composite carbon fiber of No.4, Fig. 4 shows carbon fiber and CVD, PV
FIG. 3 is a cross-sectional view of a composite carbon fiber whose surface is coated by D, coating, etc. DESCRIPTION OF SYMBOLS 1 ... Fiber, 2 ... Preheating heater, 3, 15 ... Gas supply port, 4, 12, 14, 16, 18 ... Slit, 5 ... Firing carbonization heater, 6 ... Silicification heater, 7, 13 ... Exhaust Gas port, 8 ... Induction heating coil, 9 ... Graphite crucible, 10 ... Silicon monoxide gas generation source, 11 ... Silicon monoxide gas supply port, 17 ... Sealing water bath, 19 ... Carbon fiber, 20 ... Silicified layer, 21 ... Coating material.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】炭素繊維表面層の一部又は全部を一酸化珪
素を主成分とするガスにより炭化珪素に転化して成るこ
とを特徴とする複合炭素繊維。
1. A composite carbon fiber obtained by converting a part or all of a carbon fiber surface layer into silicon carbide by a gas containing silicon monoxide as a main component.
【請求項2】炭素繊維を一酸化珪素ガスを主成分とする
雰囲気中で1500℃〜2300℃の範囲に加熱することを特徴
とする複合炭素繊維の製造方法。
2. A method for producing a composite carbon fiber, which comprises heating the carbon fiber to a range of 1500 ° C. to 2300 ° C. in an atmosphere containing silicon monoxide gas as a main component.
JP62260488A 1987-10-15 1987-10-15 Composite carbon fiber and manufacturing method thereof Expired - Lifetime JPH0699865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62260488A JPH0699865B2 (en) 1987-10-15 1987-10-15 Composite carbon fiber and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62260488A JPH0699865B2 (en) 1987-10-15 1987-10-15 Composite carbon fiber and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01104879A JPH01104879A (en) 1989-04-21
JPH0699865B2 true JPH0699865B2 (en) 1994-12-07

Family

ID=17348661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62260488A Expired - Lifetime JPH0699865B2 (en) 1987-10-15 1987-10-15 Composite carbon fiber and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0699865B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103981467A (en) * 2014-05-22 2014-08-13 天津大学 Method for preparing carbon/silicon carbide complex fiber-reinforced aluminum-based foam material

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01229874A (en) * 1988-03-02 1989-09-13 Agency Of Ind Science & Technol Woven and knitted cloth consisting of silicon-carbon conjugated fiber and production thereof
US5116679A (en) * 1988-07-29 1992-05-26 Alcan International Limited Process for producing fibres composed of or coated with carbides or nitrides
US5292408A (en) * 1990-06-19 1994-03-08 Osaka Gas Company Limited Pitch-based high-modulus carbon fibers and method of producing same
JP6375555B2 (en) * 2015-12-25 2018-08-22 Jfeスチール株式会社 Manufacturing method of magnesia carbon brick
CN109957859B (en) * 2019-03-21 2021-07-13 武汉工程大学 Silicon carbide fiber and preparation method thereof
CN109987955A (en) * 2019-04-12 2019-07-09 王小玲 A kind of C effectively improving interfacial combined functionf/ SiC ceramic matrix composite material and preparation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3890329A (en) * 1973-02-15 1975-06-17 Diamond Shamrock Corp Hydrogenation process with unsupported Group VIII metal hydroxide catalysts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103981467A (en) * 2014-05-22 2014-08-13 天津大学 Method for preparing carbon/silicon carbide complex fiber-reinforced aluminum-based foam material

Also Published As

Publication number Publication date
JPH01104879A (en) 1989-04-21

Similar Documents

Publication Publication Date Title
US5945062A (en) Silicon carbide reinforced reaction bonded silicon carbide composite
CN108264368B (en) Carbon-ceramic composite material with self-lubricating and anti-oxidation functions and preparation method thereof
JP3856338B2 (en) Boron carbide cermet structural material with high bending strength at high temperature
US6277440B1 (en) Preparation of ceramic matrix composites by infiltration of fibrous preforms with fluids or slurries and subsequent pyrolysis
Xue et al. Fabrication and microstructure of ZrB 2–ZrC–SiC coatings on C/C composites by reactive melt infiltration using ZrSi 2 alloy
Wang et al. Oxidation and ablation resistant properties of pack-siliconized Si-C protective coating for carbon/carbon composites
CN110937910A (en) Preparation method of composite nano refractory ceramic modified carbon/carbon composite material
US6117534A (en) Reinforcement for composite material and composite material using the same
JPH0699865B2 (en) Composite carbon fiber and manufacturing method thereof
Maury et al. Chemical vapor co-deposition of C and SiC at moderate temperature for the synthesis of compositionally modulated SixC1-x ceramic layers
JP4539014B2 (en) Oxidation resistant C / C composite and method for producing the same
JP4070816B2 (en) Thermochemical treatment of non-porous or porous materials containing carbon in halogenated atmospheres.
JP3081765B2 (en) Carbon member and method of manufacturing the same
JP2995583B2 (en) Composite carbon fiber used for carbon bonded carbon fiber composite material
Kmetz et al. Silicon carbide/silicon and silicon carbide/silicon carbide composites produced by chemical vapor infiltration
EP0444426B1 (en) Process for producing a silicon carbide whisker-reinforced silicon nitride composite material
JPH0524212B2 (en)
JPH04300327A (en) Conjugate carbon fiber
JPH11199354A (en) Oxidation-resistant c/c composite material and its production
JPH0291270A (en) Oxidation-resistant carbon fiber-reinforced carbon material and production thereof
JPH1160357A (en) Oxidation resistant c/c composite material and its production
JPH06305863A (en) Production of carbon fiber-reinforced carbon composite material coated with silicon carbide
JPH03109269A (en) Sialon-based ceramics composite material reinforced with carbon fiber
Savage Gas phase impregnation/densification of carbon-carbon and other high-temperature composite materials
JPH0867574A (en) Part prepared from fiber-reinforced ceramic-based composite material and its production