JPH0699806B2 - Thin film manufacturing equipment - Google Patents

Thin film manufacturing equipment

Info

Publication number
JPH0699806B2
JPH0699806B2 JP1010426A JP1042689A JPH0699806B2 JP H0699806 B2 JPH0699806 B2 JP H0699806B2 JP 1010426 A JP1010426 A JP 1010426A JP 1042689 A JP1042689 A JP 1042689A JP H0699806 B2 JPH0699806 B2 JP H0699806B2
Authority
JP
Japan
Prior art keywords
vapor deposition
thin film
chamber
substrate
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1010426A
Other languages
Japanese (ja)
Other versions
JPH0320093A (en
Inventor
恵吉 中村
正次 貝瀬
恵一 小川
淳一 佐藤
久雄 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Hitachi Cable Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Sumitomo Electric Industries Ltd filed Critical Hitachi Cable Ltd
Priority to JP1010426A priority Critical patent/JPH0699806B2/en
Publication of JPH0320093A publication Critical patent/JPH0320093A/en
Publication of JPH0699806B2 publication Critical patent/JPH0699806B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、薄膜製造装置に関するものである。さらに
詳しくは、この発明は、酸化物高温超電導体等の製造に
有用な、基板への蒸着と基板での蒸着膜の成長とをそれ
ぞれに最適の雰囲気条件下に行うことのできる薄膜製造
装置に関するものである。
TECHNICAL FIELD The present invention relates to a thin film manufacturing apparatus. More specifically, the present invention relates to a thin film production apparatus which is useful for the production of high temperature oxide superconductors and which can perform vapor deposition on a substrate and growth of a vapor deposited film on the substrate under optimum atmospheric conditions. It is a thing.

(従来の技術との課題) 従来より薄膜製造技術として真空蒸着やスパッタリング
等の蒸着技術が知られており、これらの蒸着技術は近年
注目されている酸化物超電導体薄膜の製造に対しても試
みられている。
(Issues with conventional technologies) Vapor deposition technologies such as vacuum deposition and sputtering have been known as thin film manufacturing technologies, and these vapor deposition technologies have also been tried for the manufacture of oxide superconductor thin films, which have been attracting attention in recent years. Has been.

しかしながら、従来の蒸着技術では基板への蒸着と基板
での蒸着膜の成長とを同一の真空槽内で行っているた
め、蒸着源やその雰囲気ガス、さらには反応性ガスの種
類の選択と、それらのガス分圧の設定について、蒸着物
質の蒸発と基板での蒸着膜の成長とをそれぞれに異なる
最適条件下で行うことができないという欠点がある。こ
のため、酸化物超電導体の薄膜のようにその結晶構造や
組成が蒸着膜の形成および成長時の雰囲気条件に大きく
依存し、しかも蒸発時と成長時とでは大きく異なる場合
については、同一雰囲気条件下の真空槽内での蒸着では
所望の結晶構造や組成を有し、しかも優れた性能のもの
が得られないという問題があった。
However, in the conventional vapor deposition technology, since vapor deposition on the substrate and growth of the vapor deposition film on the substrate are performed in the same vacuum chamber, the vapor deposition source and its atmospheric gas, and further the selection of the type of reactive gas, Regarding the setting of these gas partial pressures, there is a drawback in that evaporation of the vapor deposition material and growth of the vapor deposition film on the substrate cannot be performed under different optimum conditions. Therefore, when the crystal structure and composition of the thin film of an oxide superconductor largely depend on the atmospheric conditions at the time of forming and growing the vapor-deposited film, and when vaporization and growth are significantly different, the same atmospheric conditions are used. The vapor deposition in the lower vacuum chamber has a problem that a desired crystal structure and composition and excellent performance cannot be obtained.

すなわち、酸化物超電導体薄膜の場合には、基板に蒸着
膜を形成中あるいはさらにその後蒸着膜を酸素ガスと反
応させ超電導薄膜とするが、このように蒸着後さらに同
一真空槽内で蒸着の進行と並行して断続的に所定の気体
と反応させ酸化物、窒化物等の薄膜を得るためには所定
の気体のガス分圧Peをある一定値以上にすることが必要
となる。実際、酸化物超電導体の薄膜を良好に形成する
には、通常10-2〜10-3Torr以上の高い真空槽内の酸素分
圧が必要となる。
That is, in the case of an oxide superconductor thin film, during or after forming the vapor deposition film on the substrate, the vapor deposition film is reacted with oxygen gas to form a superconducting thin film, and after the vapor deposition, the vapor deposition progresses in the same vacuum chamber. In parallel with this, in order to intermittently react with a predetermined gas to obtain a thin film of oxide, nitride, etc., it is necessary to set the gas partial pressure Pe of the predetermined gas to a certain value or more. In fact, in order to form a good oxide superconductor thin film, a high oxygen partial pressure in the vacuum chamber of 10 -2 to 10 -3 Torr or more is usually required.

また、基板表面で蒸着膜を成長させるためには、基板温
度Tsをその蒸着膜の結晶化温度Tcよりも高くすることが
必要となり、この基板温度Tsを高くするにつれてガス分
圧Peも必然的に高くなる。このため、蒸着膜の成長に好
適なガス分圧Peは一層高いものとなる。
Further, in order to grow the vapor deposition film on the substrate surface, it is necessary to raise the substrate temperature Ts higher than the crystallization temperature Tc of the vapor deposition film, and the gas partial pressure Pe is inevitably increased as the substrate temperature Ts is raised. Become higher. Therefore, the gas partial pressure Pe suitable for growth of the vapor deposition film becomes higher.

これに対して、蒸着源物質の基板への蒸着時において
は、蒸着膜の形成に十分な量の金属蒸気等を蒸発させな
くてはならないため、蒸着源付近の雰囲気ガス分圧P
を、通常は上記のガス分圧Peよりも遥かに低い10-5〜10
-9Torr程度にすることが必要となる。
On the other hand, during vapor deposition of the vapor deposition source material onto the substrate, it is necessary to vaporize a sufficient amount of metal vapor or the like to form a vapor deposited film.
Is usually much lower than the above gas partial pressure Pe of 10 −5 to 10
-9 Torr is required.

このように酸化物超電導体薄膜を初めとして、蒸着後同
一の真空槽内でさらに所定の気体と反応させて製造する
酸化物、窒化物等の薄膜を所望の結晶構造や組成のもの
として形成するには、蒸着源から基板への蒸着時の雰囲
気ガス分圧Pと基板での蒸着膜成長時のガス分圧Peとを
それぞれ異なる範囲に制御することが必要となる。ま
た、このような膜を積層形成する場合には、基板への蒸
着と成長とを交互に雰囲気条件を変更して行うことが必
要となる。
In this way, starting from the oxide superconductor thin film, a thin film of oxide, nitride, etc. produced by further reacting with a predetermined gas in the same vacuum chamber after vapor deposition is formed with a desired crystal structure and composition. For this purpose, it is necessary to control the atmospheric gas partial pressure P during vapor deposition from the vapor deposition source onto the substrate and the gas partial pressure Pe during vapor deposition film growth on the substrate within different ranges. Further, when such films are laminated, it is necessary to alternately perform vapor deposition and growth on a substrate by changing atmospheric conditions.

しかしながら、従来の蒸着装置においては、同一の真空
槽内で基板への蒸着と基板上での蒸着膜の成長を行って
いるので、蒸着時の雰囲気圧Pと蒸着膜成長時のガス分
圧Peとを各々独立に制御をすることは本来的に不可能で
ある。このため所望の結晶構造を有し、優れた性質の薄
膜を得るとができないのが実状である。
However, in the conventional vapor deposition apparatus, since vapor deposition on the substrate and growth of the vapor deposition film on the substrate are performed in the same vacuum chamber, the atmospheric pressure P during vapor deposition and the gas partial pressure Pe during vapor deposition film growth Pe It is inherently impossible to control and independently of each other. Therefore, in reality, it is impossible to obtain a thin film having a desired crystal structure and excellent properties.

また、従来の蒸着装置において酸化物超電導体薄膜を製
造する場合、真空槽内の酸素分圧を酸化物超電導体の蒸
着膜成長に適したガス分圧となるように高くすると、蒸
着源自体が酸化したり、炉のヒータやE形電子銃のフィ
ラメントが酸化する等の問題が生じ、この点からも従来
の装置には大きな問題がある。
Further, in the case of producing an oxide superconductor thin film in a conventional vapor deposition apparatus, if the oxygen partial pressure in the vacuum chamber is increased to a gas partial pressure suitable for growth of the vapor deposition film of the oxide superconductor, the vapor deposition source itself Problems such as oxidation and oxidation of the heater of the furnace and the filament of the E-shaped electron gun occur. From this point as well, the conventional device has a serious problem.

この発明は、以上の通りの事情を踏まえてなされたもの
であり、基板への蒸着と基板での蒸着膜の成長とを、基
板の設置場所を変更することなく、その場で、それぞれ
に最適の雰囲気条件を容易に設定することができ、酸化
物超電導体を初めとする種々の酸化物、窒化物等の薄膜
を、所望の結晶構造と組成を有し、優れた特性を有する
ものとして形成することができ、しかも装置コストを低
減させることのできる新しい薄膜製造装置を提供するこ
とを目的としている。
The present invention has been made in view of the above circumstances, and is suitable for vapor deposition on a substrate and growth of a vapor deposition film on the substrate on the spot without changing the installation location of the substrate. The atmosphere conditions can be easily set, and thin films of various oxides such as oxide superconductors, nitrides, etc. can be formed as those having a desired crystal structure and composition and excellent characteristics. It is an object of the present invention to provide a new thin film manufacturing apparatus that can be manufactured and can reduce the apparatus cost.

(課題を解決するための手段) この発明は、上記の課題を解決するために、蒸着源を配
置する蒸着源室と基板を配置して蒸着および反応性気体
との反応により薄膜を成長させる成長室とを、複数の蒸
着源に対応させて配置した複数の窓を有するシールドに
より仕切るとともに、別の窓を有し、シールドの窓を開
閉する回転シャッタを回動自在に配設した薄膜製造装置
であって、回転シャッタの回動によりシールドの窓と回
転シャッタの窓とを一致させ、蒸着源室とともに成長室
を排気し、蒸着源より基板に蒸着物質流を到達させる一
方、シールドの窓とを回転シャッタの窓以外の部分で閉
鎖して、蒸着源室と成長室との雰囲気を独立に制御し、
蒸着膜の成長を行うことを特徴とする薄膜製造装置を提
供する。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a growth method in which a deposition source chamber in which a deposition source is disposed and a substrate are disposed, and a thin film is grown by vapor deposition and reaction with a reactive gas. The chamber is partitioned by a shield having a plurality of windows arranged corresponding to a plurality of vapor deposition sources, and a thin film manufacturing apparatus having a separate window and a rotary shutter for opening and closing the window of the shield is rotatably arranged. The rotation shutter is rotated so that the shield window and the rotation shutter window are aligned with each other, the growth chamber is exhausted together with the vapor deposition source chamber, and the vapor deposition material flow reaches the substrate from the vapor deposition source while the shield window is Is closed by a part other than the window of the rotary shutter to independently control the atmosphere of the vapor deposition source chamber and the growth chamber,
Provided is a thin film manufacturing apparatus characterized by growing a vapor deposition film.

すなわち、この発明の装置は、蒸着源室と成長室とをシ
ールドで仕切るものであると共に、のシールドに開閉制
御自在な窓を設け、その開閉を基板と蒸着源との間に回
動自在に配設した回転シャッタにより行うものである。
回転シャッタを回動させ、シールドの窓が回転シャッタ
の窓と一致することによりシールドの窓は開き、一方、
回転シャッタの窓以外の部分と一致するとシールドの窓
は閉ざされる。このように、シールドの窓を開閉するこ
とにより蒸着源室の所定の蒸着源から成長室の基板への
蒸着物質流の到達を断続的に制御し、かつ、開放時には
蒸着源室とともに成長室を排気し適した雰囲気に、ま
た、閉鎖時には成長に適した雰囲気として基板への蒸着
と基板上での蒸着膜の成長とを交互に連続的に行えるよ
うにしている。
That is, the apparatus of the present invention separates the vapor deposition source chamber and the growth chamber by a shield, and the shield is provided with a window whose opening and closing can be controlled so that the opening and closing can be freely rotated between the substrate and the vapor deposition source. This is performed by the rotary shutter provided.
When the rotary shutter is rotated and the shield window is aligned with the rotary shutter window, the shield window opens, while
The window of the shield is closed when it coincides with a portion other than the window of the rotary shutter. Thus, by opening and closing the window of the shield, it intermittently controls the arrival of the vapor deposition material flow from the predetermined vapor deposition source in the vapor deposition source chamber to the substrate in the growth chamber. The atmosphere suitable for evacuation and the atmosphere suitable for growth when closed are used so that the vapor deposition on the substrate and the growth of the vapor deposition film on the substrate can be alternately and continuously performed.

たとえば第1図は、この発明の一実施例としてスパッタ
装置について示した一部切欠斜視図であり、また、第2
図(a)(b)は第1図に示した装置の回転シャッタの
動きを示したものである。この第1図および第2図に沿
ってこの発明の例を説明すると、まず、この装置では、
基板を設置し、薄膜を成長させる成長室(1)と蒸着源
を設置する蒸着源室(2)とをシールド(3)で仕切っ
ている。
For example, FIG. 1 is a partially cutaway perspective view showing a sputtering apparatus as an embodiment of the present invention.
FIGS. 7A and 7B show the movement of the rotary shutter of the apparatus shown in FIG. An example of the present invention will be described with reference to FIG. 1 and FIG.
A shield (3) separates a growth chamber (1) in which a substrate is placed and a thin film is grown from a deposition source chamber (2) in which an evaporation source is placed.

成長室(1)には基板(4)を取付ける基板ホルダー
(5)を回転板(6)下に設け、基板ホルダー(5)の
近傍には可変リークバルブ(Va)を通して酸素ガスを流
入させる噴出口を有するリング状酸素ノズル(7)を設
けている。また、真空ゲージ(G1)を取付けてもいる。
A substrate holder (5) for mounting the substrate (4) is provided in the growth chamber (1) below the rotating plate (6), and an oxygen gas is injected near the substrate holder (5) through a variable leak valve (Va). A ring-shaped oxygen nozzle (7) having an outlet is provided. A vacuum gauge (G1) is also attached.

蒸着源室(2)には蒸着源(ターゲット)を支持するス
パッタカソードとしてマグネトロンカソード(8a)(8
b)(8c)を複数(この場合には3つ)設けており、こ
のマグネトロンカソード(8a)(8b)(8c)の近傍には
アルゴンガスを蒸着源室(2)に導入する可変リークバ
ルブ(Vb)を設置している。また、蒸着源室(2)は真
空ポンプ(P)により排気し、真空度をモニターする真
空ゲージ(G2)を取付けてもいる。
The deposition source chamber (2) has a magnetron cathode (8a) (8a) as a sputtering cathode for supporting the deposition source (target).
b) A plurality of (8 in this case) are provided (three in this case), and a variable leak valve for introducing argon gas into the vapor deposition source chamber (2) in the vicinity of the magnetron cathodes (8a) (8b) (8c). (Vb) is installed. Further, the vapor deposition source chamber (2) is evacuated by a vacuum pump (P), and a vacuum gauge (G2) for monitoring the degree of vacuum is attached.

仕切りシールド(3)には、第2図(a)(b)に示し
たように、窓(3a)(3b)(3c)を個々の蒸着源のカソ
ード(8a)(8b)(8c)に対応するようにその蒸着源の
真上の位置に設けており、また、それらの窓(3a)(3
b)(3c)の開閉を行う回転シャッタ(9)を設けてい
る。この回転シャッタ(9)は窓(9a)を有し、コンピ
ュータに接続した第1図に示したステップモータ(10)
により駆動する。これにより回転板(6)と同軸回転す
る。この回転シャッタ(9)の回転によりシールド
(3)の窓(3a)(3b)(3c)を開閉する。蒸着時につ
いてみると、回転シャッタ(9)を基板(4)と同時に
同軸回転させて第2図(a)に示すように回転シャッタ
(9)の窓(9a)を所定の蒸着源に対応するシールドの
窓と一致させて、その窓(3a)を開いた状態とし、蒸着
源室(2)内を真空ポンプ(P)により10-5Torr程度に
排気し、可変リークバルブ(Va)(Vb)からそれぞれ酸
素ガス、アルゴンガスを所定量導入する。次いで開いて
いる窓(3a)を通して、マグネトロンカソード(8a)上
の窓(3a)に対応する所定の蒸着源から蒸着源原子ある
いは蒸着源分子の蒸着物質流を基板(4)に到達させ、
基板(4)上に蒸着膜を形成する。なお、この窓(3a)
が開いた状態では、成長室(1)も蒸着源室(2)と同
様に排気される。次に、回転シャッタ(9)を回転さ
せ、第2図(b)に示すように、窓(9a)をシールドの
窓(3a)(3b)(3c)のいずれとも一致させないように
し、成長室(1)と蒸着源室(2)とを隔離する。酸素
ノズル(7)から成長室(1)への酸素の導入は引続き
行い、成長室(1)内を所定の酸素分圧に上昇させる。
これにより蒸着膜を良好に成長させることができる。こ
の場合、蒸着源室(2)の酸素分圧はほとんど上昇しな
い。蒸着膜を成長させた後は、再び前述と同様に、基板
(4)と回転シャッタ(9)を回転させて所定の蒸着源
に対応するシールド(3)の窓を開け、所定の蒸着物質
の蒸着膜を形成し、そして、蒸着膜の形成後にはその窓
を閉じて蒸着膜を成長させることができる。こうして蒸
着膜の形成と成長をそれぞれに最適の雰囲気圧条件の下
で繰返し行うことにより良好な積層膜を得ることができ
る。また、装置構成が単純であり、製造コストが低減さ
れる。
In the partition shield (3), as shown in FIGS. 2 (a) and (b), windows (3a) (3b) (3c) are provided as cathodes (8a) (8b) (8c) of individual vapor deposition sources. Correspondingly, it is provided directly above the vapor deposition source, and their windows (3a) (3
b) A rotary shutter (9) for opening and closing (3c) is provided. This rotary shutter (9) has a window (9a) and is connected to a computer. The step motor (10) shown in FIG.
Driven by. This causes the rotary plate (6) to rotate coaxially. The windows (3a) (3b) (3c) of the shield (3) are opened and closed by the rotation of the rotary shutter (9). Regarding vapor deposition, the rotary shutter (9) is rotated coaxially with the substrate (4) so that the window (9a) of the rotary shutter (9) corresponds to a predetermined vapor deposition source as shown in FIG. 2 (a). The window (3a) is opened so that it coincides with the window of the shield, the inside of the vapor deposition source chamber (2) is evacuated to about 10 -5 Torr by the vacuum pump (P), and the variable leak valve (Va) (Vb) ), Oxygen gas and argon gas are introduced in predetermined amounts. Then, through the open window (3a), a vapor deposition substance stream of vapor deposition source atoms or vapor deposition source molecules reaches the substrate (4) from a predetermined vapor deposition source corresponding to the window (3a) on the magnetron cathode (8a),
A vapor deposition film is formed on the substrate (4). This window (3a)
When the chamber is opened, the growth chamber (1) is also evacuated like the vapor deposition source chamber (2). Next, the rotary shutter (9) is rotated so that the window (9a) is not aligned with any of the shield windows (3a) (3b) (3c) as shown in FIG. 2 (b). The (1) and the vapor deposition source chamber (2) are separated from each other. Introduction of oxygen from the oxygen nozzle (7) into the growth chamber (1) is continued to raise the inside of the growth chamber (1) to a predetermined oxygen partial pressure.
This allows the deposited film to grow well. In this case, the oxygen partial pressure in the vapor deposition source chamber (2) hardly rises. After the vapor deposition film is grown, the substrate (4) and the rotary shutter (9) are rotated again to open the window of the shield (3) corresponding to the predetermined vapor deposition source in the same manner as described above, and the predetermined vapor deposition material is removed. The vapor deposition film can be formed, and the window can be closed after the vapor deposition film is formed to grow the vapor deposition film. In this way, a good laminated film can be obtained by repeatedly forming and growing the vapor-deposited film under optimum atmospheric pressure conditions. Further, the device configuration is simple, and the manufacturing cost is reduced.

なお、この発明の装置により基板(4)への蒸着膜の形
成時には成長室(1)と蒸着源室(2)の双方の雰囲気
圧を低くし、一方、蒸着膜の成長時には成長室(1)だ
けの酸素分圧を高くすることができるということは、気
体のコンダクタンスを基礎に酸素分圧を計算することに
よっても確認できる。
By the device of the present invention, the atmospheric pressure in both the growth chamber (1) and the vapor deposition source chamber (2) is lowered when the vapor deposition film is formed on the substrate (4), while the growth chamber (1 ) Can be confirmed by calculating the oxygen partial pressure based on the conductance of the gas.

すなわち、基板(4)への蒸着膜の形成時において、例
えばシールドの窓(3a)(3b)(3c)の直径が6cmであ
って、そのシールドの窓を通してのコンダクタンスが31
0l/sである場合に、成長室(1)と蒸着源室(2)とを
開放・連通した状態で最終的に10-5Torrに排気し、酸素
ノズル(7)からの酸素流入量Q0を3×10-2Torr・l/s
とすると、成長室(1)の酸素分圧P1は、 P1=(Q0/310)+10-5 =1.05×10-4Torr となる。
That is, when the vapor deposition film is formed on the substrate (4), for example, the shield windows (3a) (3b) (3c) have a diameter of 6 cm, and the conductance through the shield window is 31 cm.
When it is 0 l / s, the growth chamber (1) and the vapor deposition source chamber (2) are opened and communicated with each other, and finally exhausted to 10 -5 Torr, and the oxygen inflow amount Q from the oxygen nozzle (7) 0 to 3 × 10 -2 Torr · l / s
When the oxygen partial pressure P 1 of the growth chamber (1) becomes P 1 = (Q 0/310 ) +10 -5 = 1.05 × 10 -4 Torr.

一方、基板(4)での蒸着膜の成長時において、シール
ドの窓(3a)(3b)(3c)を閉じることによりそのコン
ダクタンスが約1/10に低下して30l/sになるとすると、
成長室(1)の酸素分圧P2は、 P2=(Q0/30)+10-5 =1.01×10-3Torr となる。
On the other hand, if the shield windows (3a) (3b) (3c) are closed during the growth of the vapor-deposited film on the substrate (4), its conductance is reduced to about 1/10 and becomes 30 l / s.
The oxygen partial pressure P 2 of the growth chamber (1) becomes P 2 = (Q 0/30 ) +10 -5 = 1.01 × 10 -3 Torr.

以上のように、シールドの窓(3a)(3b)(3c)を開閉
することにより、成長室(1)の酸素分圧の範囲を大き
く制御できることがわかる。なお、上記の計算例では酸
素ノズル(7)から流入させる酸素量を一定としたが、
勿論、流入させる酸素量を制御してもよく、それにより
成長室(1)の酸素分圧Psをより一層所望の大きさに制
御することが容易となる。
As described above, it is understood that the range of oxygen partial pressure in the growth chamber (1) can be largely controlled by opening / closing the shield windows (3a) (3b) (3c). In the above calculation example, the amount of oxygen introduced from the oxygen nozzle (7) is constant,
Of course, the amount of oxygen to be flown may be controlled, which makes it easier to control the oxygen partial pressure Ps in the growth chamber (1) to a desired level.

なお、複数の蒸着源を配置する場合には、第1図に示し
たように、適宜な大きさと形状の相互仕切り板(20)を
設けてもよい。蒸着物質流の流れをより有効なものとす
ることができる。
When a plurality of vapor deposition sources are arranged, a mutual partition plate (20) having an appropriate size and shape may be provided as shown in FIG. The vapor deposition material stream can be made more effective.

第3図は、上記第1図および第2図と異なり、クヌード
センセル(Knudsen cell)、E形電子銃等を備えたMBE
装置としてこの発明を構成したものである。なお、上記
第1図および第2図と共通の要素には同一の符号を付し
てある。
Unlike FIG. 1 and FIG. 2, FIG. 3 is an MBE equipped with a Knudsen cell, an E-shaped electron gun, etc.
The present invention is configured as a device. Elements common to those in FIGS. 1 and 2 are designated by the same reference numerals.

たとえば、この第3図に示した装置においては、基板
(4)は回転せず固定式となっており、4つのクヌード
センセル(11a〜11d)は、そこから発生する分子線流
が、それぞれこの基板(4)に到達するように設置して
ある。
For example, in the apparatus shown in FIG. 3, the substrate (4) is fixed and does not rotate, and the four Knudsen cells (11a to 11d) have a molecular beam flow generated from them. Each of them is installed so as to reach the substrate (4).

また、この装置においては、成長室(1)と蒸着源室
(2)とを2つのシールド(3I)、(3II)で仕切り、
これにより成長室(1)を蒸着源室(2)とを隔離して
機密性を向上させ、良質の酸素分圧差を大きくできるよ
うにしている。この装置によれば10-5Torr程度以下の極
低圧下で蒸着膜を形成するMBEも効率よく行うことがで
きる。
Further, in this apparatus, the growth chamber (1) and the vapor deposition source chamber (2) are partitioned by two shields (3I) and (3II),
As a result, the growth chamber (1) is isolated from the vapor deposition source chamber (2) to improve the airtightness, so that a high-quality oxygen partial pressure difference can be increased. According to this apparatus, MBE for forming a vapor-deposited film can be efficiently performed under an extremely low pressure of about 10 −5 Torr or less.

この2つのシールド(3I)(3II)には、それぞれ4つ
のクヌードセンセル(11a〜11d)からの分子線流の通過
位置に4つの窓(3Ia〜3Id)(3IIa〜3IId)を設けてお
り、さらにそれらの窓を開閉する回転シャッタ(9I)
(9II)を設けている。これらの2つの回転シャッタ(9
I)(9II)は、上記第1図および第2図に示した装置と
同様に、それぞれ1つの窓(9Ia)(9IIa)を有し、連
動して回転することにより、所定のクヌードセンセル
(11a〜11d)に対応するシールド(3I)(3II)の窓(3
Ia〜3Id)(3IIa〜3IId)を同時に開閉する。こうして
所定のクヌードセンセル(11a〜11d)からの分子線流の
みを基板(4)の到達させられるようにしている。
These two shields (3I) and (3II) are provided with four windows (3Ia to 3Id) (3IIa to 3IId) at the positions where the molecular beam flows from the four Knudsen cells (11a to 11d) pass. And a rotary shutter (9I) that opens and closes those windows
(9II) is provided. These two rotary shutters (9
I) and (9II) each have one window (9Ia) and (9IIa), like the device shown in FIG. 1 and FIG. Shield (3I) (3II) windows (3 corresponding to cells (11a-11d)
Ia ~ 3Id) (3IIa ~ 3IId) are opened and closed at the same time. Thus, only the molecular beam flow from the predetermined Knudsen cells (11a to 11d) can reach the substrate (4).

以下、この発明を実施例に基づいて具体的に説明する。Hereinafter, the present invention will be specifically described based on Examples.

(実施例) 第1図および第2図に示したスパッタ装置を用い、Bi2S
r2CanCun+1Ox(n=0〜4)の組成を有する酸化物超電導体の
薄膜を形成した。
(Example) Using the sputtering apparatus shown in FIGS. 1 and 2, Bi 2 S was used.
A thin film of oxide superconductor having a composition of r 2 Ca n Cu n + 1 O x (n = 0 to 4) was formed.

蒸着源として、Biと、焼結したSr−Ca−Cu酸化物(Sr:C
a:Cu=2:2:2)とをそれぞれ2つのマグネトロンカソー
ドに設置し、また基板としてへき開したMgO結晶を基板
ホルダー(5)に設置した。
As a vapor deposition source, Bi and sintered Sr-Ca-Cu oxide (Sr: C
a: Cu = 2: 2: 2) were set on two magnetron cathodes, and the cleaved MgO crystal was set on the substrate holder (5) as a substrate.

成長室(1)と蒸着源室(2)からなる装置全体を5×
10-6Torrの真空に排気し、真空ゲージ(G2)で測定して
酸素が3×10-4Torrとなるように可変リークバルブ(V
a)を調整して酸素ガスを導入した。また同様にAr(ア
ルゴン)が3×10-3Torrとなるよう可変リークバルブ
(Vb)を調整してArを導入した。
The entire apparatus consisting of the growth chamber (1) and the vapor deposition source chamber (2) is 5 ×
Evacuate to a vacuum of 10 -6 Torr and use a variable leak valve (V to adjust the oxygen to 3 x 10 -4 Torr as measured by a vacuum gauge (G2).
A) was adjusted and oxygen gas was introduced. Similarly, Ar was introduced by adjusting the variable leak valve (Vb) so that Ar (argon) was 3 × 10 −3 Torr.

この場合に真空ゲージ(G1)の測定では、成長室の圧力
は4×10-3Torr、蒸着源室(G2で測定)の圧力は3.3×1
0-3Torrであった。
In this case, when measuring with a vacuum gauge (G1), the pressure in the growth chamber was 4 × 10 -3 Torr, and the pressure in the vapor deposition source chamber (measured with G2) was 3.3 × 1.
It was 0 -3 Torr.

回転シャッタ(9)によりシールド(3)の窓を閉じた
ところ、成長室(1)内の圧力は6〜7×10-3Torrに上
昇した。この上昇は酸素によるもので、シールド(3)
の窓を閉じることにより酸素分圧が大巾に上昇すること
が確認された。
When the window of the shield (3) was closed by the rotary shutter (9), the pressure in the growth chamber (1) rose to 6-7 × 10 −3 Torr. This rise is due to oxygen, shield (3)
It was confirmed that the oxygen partial pressure was greatly increased by closing the window.

ターゲット材として設置したBiをスパッターし、シール
ド(3)の窓を開けて650℃に加熱した基板上にBiの蒸
着膜を形成た後に窓を閉じて蒸着膜を酸化した。また同
様にして、Sr−Ca−Cu酸化物の蒸着膜の形成と、その酸
化を行った。このBiとSr−Ca−Cu酸化物の蒸着膜の形成
と酸化を交互に100回繰返し、積層膜を形成した。この
際CaとCu組成、n,n+1の調整はSr−Ca−Cu酸化物蒸着
時間を変化させることによって行った。成長室(1)と
蒸着源室(2)の圧力を測定したところ、第4図に示す
ように変化した。この第4図から明らかなように、薄膜
を形成するに際し、蒸着源室(2)内の圧力をほとんど
変化させずに成長室(1)内の圧力だけを変化させるこ
とができる。
Bi provided as a target material was sputtered, the window of the shield (3) was opened, and the vapor deposition film of Bi was formed on the substrate heated to 650 ° C. After that, the window was closed and the vapor deposition film was oxidized. Further, similarly, a vapor deposition film of Sr-Ca-Cu oxide was formed and its oxidation was performed. The formation and oxidation of the deposited film of Bi and Sr-Ca-Cu oxide were alternately repeated 100 times to form a laminated film. At this time, the Ca and Cu compositions and n, n + 1 were adjusted by changing the Sr-Ca-Cu oxide deposition time. When the pressures in the growth chamber (1) and the vapor deposition source chamber (2) were measured, the pressures changed as shown in FIG. As is clear from FIG. 4, when forming a thin film, it is possible to change only the pressure in the growth chamber (1) without changing the pressure in the vapor deposition source chamber (2).

積層膜の形成の結果、蒸着したままの状態でBi2Sr2CanC
un+1Ox(n=0〜4)の組成を有する薄膜が得られた。n=
3、n=4は、従来の固相反応法では得られず、本法で
可能となったものである。この薄膜のCuKαX線回折像
を第5図に示す。また走査電子顕微鏡像を撮ったとこ
ろ、表面が平滑で板状の積層構造からなることがわかっ
た。
As a result of the formation of the laminated film, Bi 2 Sr 2 Ca n C
A thin film having a composition of u n + 1 O x (n = 0 to 4) was obtained. n =
No. 3, n = 4 cannot be obtained by the conventional solid-phase reaction method, and are made possible by this method. A CuK α X-ray diffraction image of this thin film is shown in FIG. In addition, when a scanning electron microscope image was taken, it was found that the surface was smooth and had a plate-like laminated structure.

第5図には、Bi:Sr:Ca:cuが2:2:n+1(n=0〜4)の
組成と構造を有する完全な単相から成っていることが示
されている。図中の回折ピークの数字l(l=2〜10)
は、回折線が(… … l)のピークであることを示して
いる。
FIG. 5 shows that Bi: Sr: Ca: cu consists of a complete single phase with a composition and structure of 2: 2: n + 1 (n = 0-4). Number 1 of the diffraction peak in the figure (l = 2 to 10)
Indicates that the diffraction line is the peak of (... L).

さらにこの薄膜を空気中810〜850℃で1時間加熱し焼鈍
した後、超電導特性を測定したところ、110Kから超電導
遷移の開始が認められた。
Furthermore, after heating this thin film in air at 810 to 850 ° C. for 1 hour and annealing, the superconducting characteristics were measured. As a result, the initiation of superconducting transition was confirmed at 110 K.

比較例 基板への蒸着と基板での蒸着膜の成長とを同一真空槽内
で行う従来の装置を使用して、上記実施例と同様の蒸着
源から薄膜を形成した。得られた薄膜のX線回折では、 Bi2Sr2CanCun+1Oxの存在を示す回折像を示さなかった。
なお、最近、同一真空槽内での従来の方法によりn=0
〜3の膜の合成に成功したことが報告されたが、全体の
酸素分圧は本法の6倍(ArO220%−3Pa)であるため、
蒸着速度は本法の1/20と遅く(3時間で300A)、しかも
蒸着したままの状態でCuO等の不純物が認められた。走
査電子顕微鏡像を撮ったところ、その表面には微細な結
晶粒が数多く認められた。また焼鈍した薄膜の超電導遷
移の開始温度も実施例で得た薄膜よりも低かった。
Comparative Example A thin film was formed from the same vapor deposition source as in the above-described example using a conventional apparatus in which vapor deposition on a substrate and growth of a vapor deposited film on the substrate were performed in the same vacuum chamber. The X-ray diffraction of the obtained thin film showed no diffraction pattern indicating the presence of Bi 2 Sr 2 Ca n Cu n + 1 O x.
Incidentally, recently, n = 0 by the conventional method in the same vacuum chamber.
Since it was reported the successful synthesis of ~ 3 of the membrane, but the whole of the oxygen partial pressure is 6 times that of the method (A r O 2 20% -3Pa ),
The vapor deposition rate was as slow as 1/20 of this method (300A in 3 hours), and impurities such as CuO were observed in the as-deposited state. When a scanning electron microscope image was taken, many fine crystal grains were observed on the surface. The onset temperature of the superconducting transition of the annealed thin film was also lower than that of the thin films obtained in the examples.

(発明の効果) この発明の装置によれば、基板への蒸着と蒸着膜の成長
とをそれぞれの異なる最適の雰囲気条件下で行えるの
で、酸化物超電導体を初めとする種々の酸化物、窒化物
等の薄膜を、所望の結晶構造および組成を有し、優れた
特性のものとして製造することができる。特に、酸化物
超電導体の製造において蒸着膜の成長を高い酸素分圧下
で行うと、表面が平滑で優れた超電導特性を発揮する薄
膜を形成することができる。装置コストが安価となる。
(Effects of the Invention) According to the apparatus of the present invention, since vapor deposition on a substrate and growth of a vapor deposition film can be performed under different optimal atmospheric conditions, various oxides such as oxide superconductors, nitrides It is possible to manufacture a thin film of a material having a desired crystal structure and composition and excellent characteristics. In particular, when the vapor deposition film is grown under a high oxygen partial pressure in the production of an oxide superconductor, a thin film having a smooth surface and exhibiting excellent superconducting properties can be formed. The cost of the device is low.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明の装置のスパッタ装置としての一例
を示した部分切欠斜視図である。 第2図は、第1図の装置の回転シャッタの動きを例示し
た拡大斜視図である。 第3図は、この発明の装置の別の例を示した部分切欠斜
視図である。 第4図は、この発明の装置のシールドの窓の開閉に伴う
成長室と蒸着源室の圧力変化を示した相関図である。 第5図は、積層膜の形成の結果得られた膜のX線回折像
を示している。 (1)成長室 (2)蒸着源室 (3)シールド (3a)(3b)(3c)窓 (3I)(3II)シールド (3Ia)(3Ib)(3Ic)窓 (3IIa)(3IIb)(3IIc)窓 (4)基板 (5)基板ホルダー (6)回転板 (7)酸素ノズル (8a)(8b)(8c)マグネトロンカソード (9)回転シャッタ (9I)(9II)回転シャッタ (9a)窓 (9Ia)(9IIa)窓 (10)ステップモータ (11a)(11b)(11c)(11d)クヌードセンセル (20)蒸着源仕切り板 (G1)(G2)真空ゲージ (P)真空ポンプ (Va)(Vb)可変リークバルブ
FIG. 1 is a partially cutaway perspective view showing an example of a sputtering apparatus of the apparatus of the present invention. FIG. 2 is an enlarged perspective view illustrating the movement of the rotary shutter of the apparatus shown in FIG. FIG. 3 is a partially cutaway perspective view showing another example of the device of the present invention. FIG. 4 is a correlation diagram showing pressure changes in the growth chamber and the vapor deposition source chamber due to opening / closing of the window of the shield of the apparatus of the present invention. FIG. 5 shows an X-ray diffraction image of the film obtained as a result of forming the laminated film. (1) Growth chamber (2) Vapor deposition source chamber (3) Shield (3a) (3b) (3c) window (3I) (3II) shield (3Ia) (3Ib) (3Ic) window (3IIa) (3IIb) (3IIc) ) Window (4) Substrate (5) Substrate holder (6) Rotating plate (7) Oxygen nozzle (8a) (8b) (8c) Magnetron cathode (9) Rotating shutter (9I) (9II) Rotating shutter (9a) Window ( 9Ia) (9IIa) window (10) Step motor (11a) (11b) (11c) (11d) Knudsen cell (20) Evaporation source partition plate (G1) (G2) Vacuum gauge (P) Vacuum pump (Va) (Vb) Variable leak valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 恵吉 茨城県つくば市千現1丁目2番1号 科学 技術庁金属材料技術研究所筑波支所内 (72)発明者 貝瀬 正次 茨城県つくば市千現1丁目2番1号 科学 技術庁金属材料技術研究所筑波支所内 (72)発明者 小川 恵一 茨城県つくば市千現1丁目2番1号 科学 技術庁金属材料技術研究所筑波支所内 (72)発明者 佐藤 淳一 茨城県日立市川尻町1500番地 日立電線株 式会社金属研究所内 (72)発明者 服部 久雄 兵庫県伊丹市昆陽北1丁目1番1号 住友 電気工業株式会社伊丹製作所内 (56)参考文献 特開 昭51−126047(JP,A) 特開 昭63−235462(JP,A) 特開 昭59−70774(JP,A) 特開 昭61−227170(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Eikichi Nakamura 1-2-1, Sengen, Tsukuba-shi, Ibaraki Prefectural Government, Science and Technology Agency, Materials Research Laboratory, Tsukuba Branch (72) Inventor Masatsugu Kaise, Sengen, Tsukuba-shi, Ibaraki 2-1-1, Institute of Materials Research, Tsukuba Branch, Science & Technology Agency (72) Inventor Keiichi Ogawa 1-2-1, Sengen, Sengen, Tsukuba, Ibaraki Prefecture In-house Tsukuba Branch, Institute of Materials Research, Science & Technology Agency (72) Inventor Junichi Sato, 1500 Kawajiri-cho, Hitachi-shi, Ibaraki Hitachi Cable Co., Ltd. Metal Research Laboratory (72) Inventor Hisao Hattori 1-1-1 Kunyo Kita, Itami City, Hyogo Sumitomo Electric Industries Itami Works (56) References JP-A-51-126047 (JP, A) JP-A-63-235462 (JP, A) JP-A-59-70774 (JP, A) JP-A-61-227170 (JP, A) A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】蒸着源を配置する蒸着源室と基板を配置し
て蒸着および反応性気体との反応により薄膜を成長させ
る成長室とを、複数の蒸着源に対応させて配置した複数
の窓を有するシールドにより仕切るとともに、別の窓を
有し、シールドの窓を開閉する回転シャッタを回動自在
に配設した薄膜製造装置であって、回転シャッタの回動
によりシールドの窓と回転シャッタの窓とを一致させ、
蒸着源室とともに成長室を排気し、蒸着源より基板に蒸
着物質流を到達させる一方、シールドの窓を回転シャッ
タの窓以外の部分で閉鎖して、蒸着源室と成長室との雰
囲気を独立に制御し、蒸着膜の成長を行うことを特徴と
する薄膜製造装置。
1. A plurality of windows in which a vapor deposition source chamber for arranging a vapor deposition source and a growth chamber for arranging a substrate for growing a thin film by vapor deposition and reaction with a reactive gas are arranged corresponding to a plurality of vapor deposition sources. A thin film manufacturing apparatus in which a rotary shutter for opening and closing the window of the shield is rotatably arranged while being partitioned by a shield having a shield window. Match the windows,
The growth chamber is evacuated together with the deposition source chamber to allow the deposition material flow from the deposition source to reach the substrate, while the shield window is closed except for the rotary shutter window to separate the atmospheres of the deposition source chamber and the growth chamber. The thin film manufacturing apparatus is characterized in that the growth of the deposited film is controlled by controlling
【請求項2】蒸着源室と成長室とを複数のシールドで仕
切った請求項(1)記載の薄膜製造装置。
2. The thin film manufacturing apparatus according to claim 1, wherein the vapor deposition source chamber and the growth chamber are partitioned by a plurality of shields.
【請求項3】請求項(1)または(2)記載の装置から
なる酸化物高温超電導体薄膜の製造装置。
3. An apparatus for producing an oxide high-temperature superconductor thin film, comprising the apparatus according to claim 1 or 2.
JP1010426A 1989-01-19 1989-01-19 Thin film manufacturing equipment Expired - Fee Related JPH0699806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1010426A JPH0699806B2 (en) 1989-01-19 1989-01-19 Thin film manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1010426A JPH0699806B2 (en) 1989-01-19 1989-01-19 Thin film manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH0320093A JPH0320093A (en) 1991-01-29
JPH0699806B2 true JPH0699806B2 (en) 1994-12-07

Family

ID=11749829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1010426A Expired - Fee Related JPH0699806B2 (en) 1989-01-19 1989-01-19 Thin film manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH0699806B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2865946B1 (en) * 2004-02-09 2007-12-21 Commissariat Energie Atomique METHOD FOR PRODUCING A LAYER OF MATERIAL ON A SUPPORT

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51126047A (en) * 1974-12-23 1976-11-02 Fujitsu Ltd Growth device for semi-conductor crystals
JPS5970774A (en) * 1982-10-18 1984-04-21 Matsushita Electric Ind Co Ltd Vapor deposition device
JPS61227170A (en) * 1985-03-29 1986-10-09 Fujitsu Ltd Sputtering device
JPS63235462A (en) * 1987-03-25 1988-09-30 Hitachi Ltd Formation of thin oxide film with k2nif4-type crystalline structure

Also Published As

Publication number Publication date
JPH0320093A (en) 1991-01-29

Similar Documents

Publication Publication Date Title
US5055319A (en) Controlled high rate deposition of metal oxide films
Carcia et al. Synthesis and properties of thin film polymorphs of molybdenum trioxide
US5196101A (en) Deposition of thin films of multicomponent materials
CN101168836A (en) Method for preparing bismuth telluride alloy thin film by employing cosputtering sedimentation method
Murayama et al. Structure of a silicon carbide film synthesized by rf reactive ion plating
JP3603112B2 (en) Low temperature production of alumina crystalline thin film
US4151329A (en) Nb3 Ge Superconductive films
Sanderson et al. Stoichiometry control of magnetron sputtered Bi2Sr2Ca1− xYxCu2Oy (0⩽ x⩽ 0.5) thin film, composition spread libraries: Substrate bias and gas density factors
US5421973A (en) Reactive sputter deposition of lead chevrel phase thin films
EP0104916B1 (en) Depositing a film onto a substrate including electron-beam evaporation
JPH0699806B2 (en) Thin film manufacturing equipment
Gan et al. Optical and electrical properties of sputtered vanadium oxide films
JP2522617B2 (en) Carbon alloyed cubic boron nitride film
Harris et al. MBE growth of high critical temperature superconductors
CN100400703C (en) Method for preparing film material of metal hafnium
JP2741814B2 (en) Method for producing tantalum metal thin film
KR19990048866A (en) Fabrication of SNO2 Thin Films for Gas Sensors from SN Taeget using Dual-ion Beam Sputtering
Ressler et al. The development of biaxial alignment in yttria-stabilized zirconia films fabricated by ion beam assisted deposition
Kim et al. Microstructural characterization of radio frequency magnetron sputter-deposited Ga 2 O 3: Mn phosphor thin films
JPH05263219A (en) Production of copper indium selenide thin film
Mao et al. Study on the growth of biaxially aligned yttria-stabilized zirconia films during ion beam assisted deposition
JP2001335917A (en) Method for producing crystalline alumina thin film at low temperature
KR19990048865A (en) Fabrication of SNO2 Thin Films for Gas Sensors from SNO2 Taaget with Dual Ion Beam Sputtering
JPH06346228A (en) Method for producing dielectric thin film and device therefor
Levasseur et al. The Physical Formation Processes of Thin Films, Their Characterization by XPS, AES and SIMS and Their Applications in Microbatteries

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees