JPH0699765B2 - Titanium alloy with excellent cold plastic workability - Google Patents

Titanium alloy with excellent cold plastic workability

Info

Publication number
JPH0699765B2
JPH0699765B2 JP60089847A JP8984785A JPH0699765B2 JP H0699765 B2 JPH0699765 B2 JP H0699765B2 JP 60089847 A JP60089847 A JP 60089847A JP 8984785 A JP8984785 A JP 8984785A JP H0699765 B2 JPH0699765 B2 JP H0699765B2
Authority
JP
Japan
Prior art keywords
titanium alloy
less
hardness
cold plastic
plastic workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60089847A
Other languages
Japanese (ja)
Other versions
JPS61250138A (en
Inventor
敏幸 渡辺
雄蔵 大宝
久夫 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP60089847A priority Critical patent/JPH0699765B2/en
Priority to EP86303107A priority patent/EP0202791A1/en
Publication of JPS61250138A publication Critical patent/JPS61250138A/en
Publication of JPH0699765B2 publication Critical patent/JPH0699765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、宇宙航空機用材料,自動車用材料,機械構
造部品用材料,生体材料,一般民需用材料などとして使
用される冷間塑性加工性に優れたチタン合金に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention is used as a material for space aircraft, a material for automobiles, a material for mechanical structural parts, a biomaterial, a material for general civilian use, etc. The present invention relates to a titanium alloy excellent in cold plastic workability.

(従来の技術) チタン合金は、鋼と同等の強度をもち、しかも軽量であ
るため、従来から宇宙航空機用材料としてよく使用され
ている。また、最近では、自動車用材料,機械構造部品
用材料,生体材料,一般民需用材料などとしても使用さ
れ始めている。
(Prior Art) Titanium alloys have the strength equivalent to that of steel and are lightweight, and thus have been often used as materials for spacecraft. In addition, recently, it has begun to be used as a material for automobiles, a material for mechanical structural parts, a biomaterial, a material for general public use, and the like.

チタン合金としては従来より種々の化学組織からなるも
のが開発されているが、これらのうち、Ti−6Al−4V合
金は、機械的性質が安定しており、使いやすい合金であ
るため、最も多く使用されているチタン合金である。し
かしながら、このチタン合金は、変形能の小さい六方晶
の結晶構造をもつα相を80%程度含有するため、25%以
上の冷間加工は困難である。このため、冷間塑性加工性
のよい体心立方晶の結晶構造をもつβ相単相型のチタン
合金が注目されている。このβ相単相型のチタン合金と
しては、例えばTi−11.5%Mo−6%Zr−4.5%Sn,Ti−13
%V−11%Cr−3%Al,Ti−10%V−2%Fe−3%Alな
どがある。
Conventionally, titanium alloys having various chemical structures have been developed, but among them, Ti-6Al-4V alloy has the most stable mechanical properties and is the easiest to use alloy. It is a used titanium alloy. However, since this titanium alloy contains about 80% of α phase having a hexagonal crystal structure having a small deformability, it is difficult to perform cold working of 25% or more. Therefore, a β-phase single-phase titanium alloy having a body-centered cubic crystal structure with good cold plastic workability has been attracting attention. As this β-phase single-phase titanium alloy, for example, Ti-11.5% Mo-6% Zr-4.5% Sn, Ti-13
% V-11% Cr-3% Al, Ti-10% V-2% Fe-3% Al.

(発明が解決しようとする問題点) しかしながら、上記例示した従来のβ相単相型のチタン
合金は、70%程度までの冷間塑性加工は可能であるが、
硬さが約HRC30以上とかなり高いため、冷間鍛造を行う
場合には金型寿命が短く、冷間伸線や冷間圧延を行う場
合にはダイスやロールとの焼付きが起きやすいという問
題点があった。
(Problems to be Solved by the Invention) However, the conventional β-phase single-phase titanium alloy exemplified above is capable of cold plastic working up to about 70%,
Since the hardness is considerably high at about H R C30 or higher, the die life is short when cold forging is performed, and seizure with dies or rolls easily occurs when cold drawing or cold rolling is performed. There was a problem.

この発明は、このような従来の問題点に着目してなされ
たもので、溶体化処理後の硬さが約HRC25以下とかなり
低く、冷間鍛造を行う場合に金型寿命が長く、また冷間
伸線や冷間圧延を行う場合にダイスやロールとの焼付き
が生じがたく、冷間塑性加工性に優れたβ相単相型のチ
タン合金を提供することを目的としている。
The present invention has been made by paying attention to such a conventional problem, the hardness after solution treatment is about H R C25 or less, which is considerably low, and the die life is long when performing cold forging, Another object of the present invention is to provide a β-phase single-phase titanium alloy which is less likely to be seized with a die or roll when cold drawing or cold rolling and which is excellent in cold plastic workability.

[発明の構成] (問題点を解決するための手段) この発明によるβ相単相型のチタン合金は、重量%で、
V:8〜25%、Al:0.5〜5%、Cr:1.0%未満、Fe:1.0%以
下、Mn:1.0%以下を含み、さらに必要に応じて、0.01〜
3.0%のREMおよび0.01〜1.0%のCa,S,Se,Te,Pb,Biのう
ちの1種または2種以上を合計で5%以下を含み、残部
実質的にTiよりなり、溶体化処理後の硬さがHRC25以下
であることを特徴とし、冷間塑性加工性に優れたβ相単
相型のチタン合金であることを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) The β-phase single-phase titanium alloy according to the present invention is
V: 8 to 25%, Al: 0.5 to 5%, Cr: less than 1.0%, Fe: 1.0% or less, Mn: 1.0% or less, and if necessary, 0.01 to
REM of 3.0% and 0.01 to 1.0% of Ca, S, Se, Te, Pb, Bi containing 1% or more of 5% or less in total, and the balance substantially consisting of Ti. The subsequent hardness is characterized by H R C25 or less, and is characterized by being a β-phase single-phase titanium alloy excellent in cold plastic workability.

以下に、この発明による冷間塑性加工性に優れたβ相単
相型チタン合金の成分範囲(重量%)の限定理由につい
て説明する。
The reasons for limiting the component range (% by weight) of the β-phase single-phase titanium alloy excellent in cold plastic workability according to the present invention will be described below.

V:8〜25% Vは本発明において最も重要な元素である。チタン合金
においては、その冷間塑性加工性を良くするためには、
本質的にβ相単相組織とする必要があるが、このような
β相単相組織はβ安定化元素を添加することによって達
成される。このβ安定化元素としては、Mo,V,Ta,Nb,Fe,
Cr,Mnなどの金属元素があるが、これらの中で強度の低
いβ相単相合金となるのはMoとVを添加した場合だけで
あり、他の元素でβ相単相組織とした場合には硬さがHR
C25よりも大きくなって冷間塑性加工性が低下する。ま
た、Moは融点が高いため製造性が良くないことおよび高
価であることから実用性にとぼしい。
V: 8-25% V is the most important element in the present invention. In order to improve the cold plastic workability of titanium alloys,
Although it is essentially necessary to have a β-phase single-phase structure, such a β-phase single-phase structure is achieved by adding a β-stabilizing element. This β-stabilizing element includes Mo, V, Ta, Nb, Fe,
Although there are metallic elements such as Cr and Mn, the only β-phase single-phase alloy with low strength can be formed by adding Mo and V. When other elements are used to form β-phase single-phase structure. Has hardness H R
It becomes larger than C25 and cold plastic workability decreases. Further, Mo is not practical because it has a high melting point and thus is poor in manufacturability and expensive.

そこで、本発明者は、これら多くのβ安定化元素につい
て数多くの実験を行った結果、Vのみが硬さを高くする
ことなく冷間塑性加工性を改善できる元素であることを
見い出した。これらの実験においては、例えば、Ti合金
中へのV添加量と溶体化処理後の硬さとの関係を調べ
た。すなわち、ボタンアーク溶解によってTi−4.5%Al
−0.3%CrをベースとしかつV含有量を変化させた各種
のチタン合金を溶製し、100gのインゴットを作成したの
ち圧延加工によって直径10mmの直棒とし、これらの直棒
に対して、900℃×0.5時間加熱後水冷の条件で溶体化処
理を施し、この溶体化処理後の硬さおよび冷間塑性加工
性を調べた。
Therefore, the present inventor has conducted many experiments on these many β-stabilizing elements, and has found that only V is an element capable of improving cold plastic workability without increasing hardness. In these experiments, for example, the relationship between the amount of V added to the Ti alloy and the hardness after the solution treatment was examined. That is, Ti-4.5% Al by button arc melting
Various titanium alloys based on -0.3% Cr and varying in V content were melted to make 100 g ingots and then rolled to form straight rods with a diameter of 10 mm. After heat treatment at 0.5 ° C for 0.5 hour and water cooling, solution treatment was performed, and the hardness and cold plastic workability after the solution treatment were investigated.

第1図に、Ti−4.5%Al−0.3%Cr合金中へのVの添加量
と溶体化処理後の硬さとの関係を示した。
FIG. 1 shows the relationship between the amount of V added to the Ti-4.5% Al-0.3% Cr alloy and the hardness after the solution treatment.

第1図に示すように、Vの添加量が多くなるに従って硬
さが低下し、添加量が8%以上となると目標である硬さ
HRC25以下となる。そして、硬さの低下はV添加量が約2
0%まで継続し、これ以上では飽和する。
As shown in FIG. 1, the hardness decreases as the added amount of V increases, and the target hardness is reached when the added amount is 8% or more.
H R C 25 or less. And the decrease of hardness is about 2 V addition
It continues up to 0% and saturates above this.

また、第2図に、直径6mm×長さ11.5mmの試験片を用い
て行った圧縮試験の結果を示す。第2図において、縦軸
の限界圧縮率は、試験片表面に割れが発生した時の歪
(ln[初期高さ(ho)/圧縮後高さ(h)])であり、
この値が大きいほど冷間塑性加工で割れが生じにくいこ
とを示している。
In addition, FIG. 2 shows the result of a compression test conducted using a test piece having a diameter of 6 mm and a length of 11.5 mm. In FIG. 2, the critical compressibility on the vertical axis is the strain (ln [initial height (ho) / compressed height (h)]) when cracks occur on the surface of the test piece,
It is indicated that the larger this value is, the more difficult the cracking is during cold plastic working.

第2図に示すように、Ti−4.5%Al中へのV添加量を増
大するにしたがって冷間塑性加工性が向上していること
がわかる。
As shown in FIG. 2, it can be seen that the cold plastic workability improves as the amount of V added to Ti-4.5% Al increases.

第1図および第2図に示すように、チタン合金における
V添加量は、溶体化処理後の硬さを低くし、冷間塑性加
工性を向上させることができるようにする観点から定め
られるが、このVのより望ましい添加量はβ安定化元素
であるCrの含有量によって定められ、この発明によるチ
タン合金では8〜25%の範囲とした。すなわち、上述か
らも明らかなように、Vが8%よりも少ないと、合金中
にα相が残って冷間塑性加工性が悪くなり、25重量%を
超えると、時効硬化しないために使用時に高強度が得ら
れない。
As shown in FIGS. 1 and 2, the amount of V added to the titanium alloy is determined from the viewpoint of lowering the hardness after the solution treatment and improving the cold plastic workability. The more desirable addition amount of V is determined by the content of Cr which is the β-stabilizing element, and is set to 8 to 25% in the titanium alloy according to the present invention. That is, as is clear from the above, when V is less than 8%, the α phase remains in the alloy to deteriorate the cold plastic workability, and when it exceeds 25% by weight, it does not age-harden and therefore is not used. High strength cannot be obtained.

Al:0.5〜5% β相単相型のチタン合金は、通常の場合、溶体化処理後
に冷間塑性加工し、次いで時効硬化処理を行って使用す
るが、Alの添加は前記時効処理後の延性を高くする。そ
して、この効果は0.5〜3.5%でとくに良好に認められ
る。
Al: 0.5 to 5% A β-phase single phase titanium alloy is usually used by cold plastic working after solution treatment and then age-hardening treatment. Increase ductility. And, this effect is particularly well recognized at 0.5 to 3.5%.

一方、チタン合金の硬さに及ぼすAl添加の影響を調べ
た。すなわち、ボタンアーク溶解によってTi−18%V−
0.3%CrをベースとしかつAl添加量を変化させた各種の
チタン合金を溶製し、100gのインゴットを作成したのち
圧延加工によって直径10mmの直棒とし、これらの直棒に
対して700℃×0.5時間加熱後水冷の条件で溶体化処理を
施し、この溶体化処理後の硬さを調べた。この結果を第
3図に示す。
On the other hand, the effect of Al addition on the hardness of titanium alloy was investigated. That is, Ti-18% V-
Various titanium alloys with 0.3% Cr as the base and varying the amount of Al added were melted to make 100 g ingots, and then rolled to form straight rods with a diameter of 10 mm. After heating for 0.5 hour, solution treatment was performed under water cooling conditions, and the hardness after this solution treatment was examined. The results are shown in FIG.

第3図に示すようにAl含有量が多くなると硬さが増大す
ることが明らかである。したがって、Al添加量が多すぎ
ると硬さのみが高くなって延性の向上が見られなくな
る。
As shown in FIG. 3, it is clear that the hardness increases as the Al content increases. Therefore, if the amount of Al added is too large, only the hardness becomes high and the improvement of ductility cannot be seen.

ところで、β相単相型チタン合金を安価に提供するため
には、Ti−6%Al−4%Vのスクラップを原料として使
用することが有効である。
By the way, in order to provide a β-phase single-phase titanium alloy at low cost, it is effective to use scrap of Ti-6% Al-4% V as a raw material.

そこで、上記したAl添加による延性の向上、硬さの増大
ならびに製造コスト等の関係から、Al添加量は0.5〜5
%の範囲とした。
Therefore, the amount of Al added is 0.5 to 5 due to the above-mentioned relations such as the improvement of ductility, the increase of hardness and the manufacturing cost due to the addition of Al.
The range is%.

Cr:1.0%未満 Crはβ安定化元素であり、基地の結晶構造を体心立方晶
にするのに効果があるが、溶体化処理後の硬さを低くす
るためにはできるだけ少ない方が望ましい。しかし、上
記のようにβ相を安定にする効果を有しているので、1.
0%未満までは許容できる。
Cr: less than 1.0% Cr is a β-stabilizing element and is effective in making the crystal structure of the matrix a body-centered cubic structure, but it is desirable that it is as small as possible to reduce the hardness after solution treatment. . However, since it has the effect of stabilizing the β phase as described above, 1.
Up to 0% is acceptable.

Fe:1.0%以下、 Mn:1.0%以下、 FeおよびMnはいずれもβ安定化元素であり、基地の結晶
構造を体心立方晶にするのに効果があるが、溶体化処理
後の硬さを低くするためにはできるだけ少ない方が好ま
しい。しかし、上記のようにβ相を安定にする効果は、
Vを1とした場合に、Mnは2.4,Feは4.3であっていずれ
もVより大きく、しかも安価であるので複合添加するこ
とにより経済的な効果が大きいため、各々1.0%までは
許容できる。
Fe: 1.0% or less, Mn: 1.0% or less, Fe and Mn are both β-stabilizing elements, and are effective in making the crystal structure of the matrix body-centered cubic, but the hardness after solution treatment It is preferable that the amount is as small as possible in order to lower the value. However, the effect of stabilizing the β phase as described above is
When V is set to 1, Mn is 2.4 and Fe is 4.3, both of which are larger than V, and are inexpensive, so that the composite addition has a large economic effect, so that up to 1.0% can be tolerated.

REM(希土類元素の1種または2種以上:0.01〜3.0% Ca,S,Se,Te,Pb,Biの1種または2種以上:0.01〜1.0% REM,Ca,S,Se,Te,Pb,Biの合計:5%以下 REM,Ca,S,Se,Te,Pb,Biはいずれもチタン合金の被削性を
改善するのに有効な元素である。
REM (1 or 2 or more rare earth elements: 0.01 to 3.0% 1 or 2 or more Ca, S, Se, Te, Pb, Bi: 0.01 to 1.0% REM, Ca, S, Se, Te, Pb , Bi: 5% or less REM, Ca, S, Se, Te, Pb, and Bi are all effective elements for improving the machinability of titanium alloys.

これらのうち希土類元素REM(とくにSc,Yおよびランタ
ニド系(原子番号57〜71)のもの)は、S,Se,Teなどと
安定な化合物をつくり、介在物を粒状にし、靱延性を改
善し、被削性を向上させる効果がある。そしてこのよう
な効果を得るためには必要に応じて0.01%以上含有させ
る。しかしながら、多量に含有するとチタン合金の耐食
性および強度を低下させるので、3.0%以下とする必要
がある。また、CaはS,Se,Teなどと安定な化合物をつく
り、介在物の形態を制御し、チタン合金の靱延性ならび
に被削性を改善するのに有効であるので、このような効
果を得るためには必要に応じて0.01%以上含有させる。
しかしながら、多量に含有するとチタン合金の耐食性や
疲労強度を低下させるので、1.0%以下とする必要があ
る。さらに、S,Se,Te,Pb,Biは前述のようにチタン合金
の被削性を向上させる元素であり、このような効果を得
るためには必要に応じて0.01%以上含有させる。しか
し、多すぎるとチタン合金の熱間加工性を著しく低下さ
せるので、各々1.0%以下とした。そして、これらの被
削性改善元素であるREM,Ca,S,Se,Te,Pb,Biの合計量が多
すぎると、チタン合金の耐食性,強度,熱間加工性等を
低下させるので、これらの合計量を5%以下とする必要
がある。
Among them, the rare earth element REM (especially those of Sc, Y and lanthanide series (atomic number 57-71)) forms stable compounds with S, Se, Te, etc., and makes inclusions granular and improves toughness and ductility. It has an effect of improving machinability. To obtain such effects, 0.01% or more is contained if necessary. However, if it is contained in a large amount, the corrosion resistance and strength of the titanium alloy are reduced, so it is necessary to set it to 3.0% or less. In addition, Ca forms a stable compound with S, Se, Te, etc., controls the morphology of inclusions, and is effective in improving the toughness and ductility and machinability of titanium alloys. In order to achieve this, 0.01% or more is contained if necessary.
However, if it is contained in a large amount, the corrosion resistance and fatigue strength of the titanium alloy are reduced, so it is necessary to set it to 1.0% or less. Further, S, Se, Te, Pb, and Bi are elements that improve the machinability of the titanium alloy as described above, and in order to obtain such effects, 0.01% or more is contained if necessary. However, if the amount is too large, the hot workability of the titanium alloy is remarkably deteriorated, so the content of each is set to 1.0% or less. If the total amount of these machinability improving elements REM, Ca, S, Se, Te, Pb, Bi is too large, the corrosion resistance, strength, hot workability, etc. of the titanium alloy will be reduced. It is necessary that the total amount of the

(実施例) 第1表に示す化学成分のチタン合金をPPC(Plasma Prog
ressive casting)炉で溶製し、造塊後直径50mmの丸棒
に鍛造したのち溶体化処理(800℃×0.5時間加熱保持後
水冷)を施して供試材を作成した。
(Example) A titanium alloy having the chemical composition shown in Table 1 was used for PPC (Plasma Prog
It was melted in a furnace, then forged into a round bar having a diameter of 50 mm, and then subjected to solution treatment (heating at 800 ° C for 0.5 hours and cooling with water) to prepare a test material.

次いで、各々の供試材の溶体化処理後の硬さを測定する
と共に、被削性を評価するための被削性試験および冷間
塑性加工性を評価するための圧縮試験を行った。これら
のうち、硬さの測定はロックウエルCスケールにより行
った。また、被削性試験は第2表に示す条件で行ない、
この条件下での1000mm寿命速度を求め、従来材である6
%Al−4%V−Ti合金の値を100としたときの比、すな
わちドリル寿命速度比で評価した。さらに、圧縮試験
は、第4図に示すように、直径6mm,高さ(ho)11.5mmの
試験片を高さ(h)まで圧縮するときの変形抵抗を求め
て冷間塑性加工性を評価した。
Next, the hardness of each test material after the solution treatment was measured, and a machinability test for evaluating machinability and a compression test for evaluating cold plastic workability were performed. Among these, hardness was measured by Rockwell C scale. The machinability test is conducted under the conditions shown in Table 2,
Under this condition, the life speed of 1000 mm was calculated and
% Al-4% V-Ti alloy value was set to 100, that is, the drill life speed ratio was evaluated. Further, in the compression test, as shown in FIG. 4, cold plastic workability was evaluated by obtaining deformation resistance when a test piece having a diameter of 6 mm and a height (ho) of 11.5 mm was compressed to a height (h). did.

硬さ測定および被削性試験の結果を第1表に示し、圧縮
試験の結果を第5図に示す。
The results of the hardness measurement and the machinability test are shown in Table 1, and the results of the compression test are shown in FIG.

第1表に示すように、この発明によるチタン合金(No.1
〜11)はいずれも溶体化処理後の硬さがHRC25以下であ
り、第5図の圧縮試験結果によれば、この発明によるチ
タン合金(No.1〜3)は従来材であるTi−6Al−4V(No.
12)およびTi−13V−11Cr−3Al(No.13)に比較して変
形抵抗がかなり小さく、かつ表面に割れが著しく発生し
にくいことを示している。すなわち、この発明によるチ
タン合金(No.1〜3)は冷間塑性加工性がすこぶる良好
であると共に、第1表に示すようにドリル寿命速度比が
低く、被削性にも優れたものである。また、この発明に
よるチタン合金において、REM,Ca,S,Se,Te,Pb,Biのうち
の1種以上を添加した合金(No.4〜11)の場合には、第
5図に示したように表面の割れがやゝ発生しやすくなる
ものの、それでも従来材であるTi−6Al−4V(No.12)よ
りも割れが発生しにくく、しかも従来材(No.12,13)に
比べてドリル寿命速度比がかなり高くなり、冷間塑性加
工性のみならず被削性にも著しく優れたものである。
As shown in Table 1, the titanium alloy according to the present invention (No. 1
-11), the hardness after solution treatment is H R C25 or less, and according to the compression test result of FIG. 5, the titanium alloys (No. 1 to 3) according to the present invention are Ti -6Al-4V (No.
12) and Ti-13V-11Cr-3Al (No. 13), the deformation resistance is considerably smaller and the surface is less likely to crack. That is, the titanium alloys (Nos. 1 to 3) according to the present invention are extremely good in cold plastic workability, have a low drill life rate ratio as shown in Table 1, and have excellent machinability. is there. Further, in the case of the alloys (No. 4 to 11) in which one or more kinds of REM, Ca, S, Se, Te, Pb and Bi are added in the titanium alloy according to the present invention, it is shown in FIG. Although the surface cracks are more likely to occur, the cracks are still less likely to occur than the conventional Ti-6Al-4V (No.12) material, and compared to the conventional materials (No.12 and 13). The drill life speed ratio is considerably high, and not only cold plastic workability but also machinability is remarkably excellent.

次に、第1表のNo.7に示したチタン合金の時効硬化特性
を調べた。この結果を第6図に示す。第6図に示すよう
に、このチタン合金は700℃以上で、溶体化処理した後
時効処理を施すことによって硬さが高くなり、時効温度
が400℃の時に硬さの増加は最も大きく、例えば溶体化
処理温度が900℃の場合はHRC16のものがHRC34になり、
溶体化処理後の冷間塑性加工性に優れていると共に、時
効処理後に高強度が得られるものであることが確かめら
れた。そして、溶体化処理後冷間塑性加工した場合は、
冷間塑性加工で硬くなった分だけさらに時効処理後の硬
さは高くなることが確認された。
Next, the age hardening characteristics of the titanium alloys shown in No. 7 of Table 1 were examined. The results are shown in FIG. As shown in FIG. 6, this titanium alloy has a high hardness at a temperature of 700 ° C. or higher and is subjected to solution treatment and then aging treatment, and the hardness increases most when the aging temperature is 400 ° C. When the solution heat treatment temperature is 900 ° C, H R C16 becomes H R C34,
It was confirmed that the cold plastic workability after the solution treatment is excellent and the high strength is obtained after the aging treatment. And, when cold plastic working after solution treatment,
It was confirmed that the hardness after the aging treatment was further increased by the amount hardened by the cold plastic working.

[発明の効果] 以上説明してきたように、この発明によるβ相単相型の
チタン合金は、重量%で、V:8〜25%、Al:0.5〜5%、C
r:1.0%未満、Fe:1.0%以下、Mn:1.0%以下を含み、さ
らに必要に応じて、0.01〜3.0%のREMおよび0.01〜1.0
%のCa,S,Se,Te,Pb,Biのうちの1種または2種以上を合
計で5%以下を含み、残部実質的にTiよりなるものであ
るから、現用のTi−6Al−4Vに比べて冷間塑性加工性に
著しく優れているものであり、冷間塑性加工を行う場合
に金型寿命が長く、また、冷間伸線や冷間圧延を行う場
合にダイスやロールとの焼付きが生じがたく、部品や製
品の製造性に著しく優れたものである。それゆえ、チタ
ン合金の軽量,耐食性,高強度などの特長を生かすこと
によって、宇宙航空機用材料,自動車用材料,機械構造
用材料,生体材料,一般民需用材料等々の幅広い分野に
おいて使用できるようになり、例えば、より具体的に
は、自動車エンジンのバルブ,バルブリテーナー,バル
ブスプリングや、めがねフレームなどに適用することに
よって、軽量でかつ強靱であることによる使用上のメリ
ットと、製造性が良好なことによるコストメリットとを
得ることができるという非常に優れた効果がもたらされ
る。
[Effects of the Invention] As described above, the β-phase single-phase titanium alloy according to the present invention has a weight percentage of V: 8 to 25%, Al: 0.5 to 5%, and C.
r: less than 1.0%, Fe: 1.0% or less, Mn: 1.0% or less, and if necessary, 0.01 to 3.0% REM and 0.01 to 1.0
% Ca, S, Se, Te, Pb, Bi containing 1% or more of 5% or less in total, and the balance substantially consisting of Ti. Therefore, Ti-6Al-4V currently used. It has significantly better cold plastic workability than that of, and has a long die life when performing cold plastic working, and when used for cold drawing and cold rolling It is resistant to seizure and is extremely excellent in manufacturability of parts and products. Therefore, by utilizing the advantages of titanium alloy such as light weight, corrosion resistance, and high strength, it can be used in a wide range of fields such as materials for space aircraft, materials for automobiles, materials for mechanical structures, biomaterials, materials for general public use, etc. For example, more specifically, by being applied to a valve of an automobile engine, a valve retainer, a valve spring, a spectacle frame, etc., it is light in weight and strong, and has good manufacturability. This has a very excellent effect that a cost merit due to this can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図はTi−4.5%Al−0.3%Crをベースと
したチタン合金のV含有量と硬さおよび限界圧縮率との
関係を調べた結果の一例を示すグラフ、第3図はTi−18
%V−0.3%Crをベースとしたチタン合金のAl含有量と
硬さとの関係を調べた結果の一例を示すグラフ、第4図
(a)(b)は圧縮試験において用いた試験片の各々圧
縮試験前後の形状を示す説明図、第5図は圧縮試験によ
り求めた各試験片の変形抵抗および変形限界を示すグラ
フ、第6図は時効処理温度による硬さへの影響を調べた
結果の一例を示すグラフである。
1 and 2 are graphs showing an example of the results of examining the relationship between the V content, hardness and critical compressibility of a titanium alloy based on Ti-4.5% Al-0.3% Cr, FIG. Is Ti-18
The graph which shows an example of the result of having investigated the relationship between the Al content and hardness of the titanium alloy based on% V-0.3% Cr, and Fig. 4 (a) and (b) are each of the test pieces used in the compression test. FIG. 5 is an explanatory view showing the shape before and after the compression test, FIG. 5 is a graph showing the deformation resistance and the deformation limit of each test piece obtained by the compression test, and FIG. 6 is the result of examining the effect of the aging temperature on the hardness. It is a graph which shows an example.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で、V:8〜25%、Al:0.5〜5%、Cr:
1.0%未満、Fe:1.0%以下、Mn:1.0%以下を含み、残部
実質的にTiよりなり、溶体化処理後の硬さがHRC25以下
であることを特徴とする冷間塑性加工性に優れたチタン
合金。
1. By weight%, V: 8 to 25%, Al: 0.5 to 5%, Cr:
Cold plastic workability characterized by less than 1.0%, Fe: 1.0% or less, Mn: 1.0% or less, the balance consisting essentially of Ti, and the hardness after solution treatment is H R C25 or less. Excellent titanium alloy.
【請求項2】重量%で、V:8〜25%、Al:0.5〜5%、Cr:
1.0%未満、Fe:1.0%以下、Mn:1.0%以下を含み、さら
に0.01〜3.0%のREMおよび0.01〜1.0%のCa,S,Se,Te,P
b,Biのうちの1種または2種以上を合計で5%以下を含
み、残部実質的にTiよりなり、溶体化処理後の硬さがHR
C25以下であることを特徴とする被削性および冷間塑性
加工性に優れたチタン合金。
2. In weight%, V: 8-25%, Al: 0.5-5%, Cr:
Less than 1.0%, Fe: 1.0% or less, Mn: 1.0% or less, 0.01 to 3.0% REM and 0.01 to 1.0% Ca, S, Se, Te, P
Includes 5% or less in total of one or more of b and Bi, and the balance is substantially Ti, and the hardness after solution treatment is H R
A titanium alloy with excellent machinability and cold plastic workability, characterized by having C25 or less.
JP60089847A 1985-04-25 1985-04-25 Titanium alloy with excellent cold plastic workability Expired - Fee Related JPH0699765B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60089847A JPH0699765B2 (en) 1985-04-25 1985-04-25 Titanium alloy with excellent cold plastic workability
EP86303107A EP0202791A1 (en) 1985-04-25 1986-04-24 Titanium alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60089847A JPH0699765B2 (en) 1985-04-25 1985-04-25 Titanium alloy with excellent cold plastic workability

Publications (2)

Publication Number Publication Date
JPS61250138A JPS61250138A (en) 1986-11-07
JPH0699765B2 true JPH0699765B2 (en) 1994-12-07

Family

ID=13982160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60089847A Expired - Fee Related JPH0699765B2 (en) 1985-04-25 1985-04-25 Titanium alloy with excellent cold plastic workability

Country Status (2)

Country Link
EP (1) EP0202791A1 (en)
JP (1) JPH0699765B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9306867D0 (en) * 1993-04-01 1993-05-26 Sec Dep For Devence The Improved near beta-phase titanium alloy
GB9306864D0 (en) * 1993-04-01 1993-05-26 Secr Defence Titanium alloy
EP0748876B1 (en) * 1995-06-16 2003-10-15 Daido Tokushuko Kabushiki Kaisha Titanium alloy, member made of the titanium alloy and method for producing the titanium alloy member
JPH11269585A (en) * 1998-03-23 1999-10-05 Horikawa Inc Titanium-vanadium-aluminum superelastic alloy and its production
JP4524584B2 (en) * 2004-06-15 2010-08-18 大同特殊鋼株式会社 Free-cutting β-type Ti alloy
US10066282B2 (en) * 2014-02-13 2018-09-04 Titanium Metals Corporation High-strength alpha-beta titanium alloy
CN105463251A (en) * 2015-12-15 2016-04-06 毛培 Preparing method for rare earth enhanced titanium alloy material
CN105483433A (en) * 2015-12-15 2016-04-13 毛培 Rare earth titanium-alloy-doped material
CN105506370A (en) * 2015-12-15 2016-04-20 毛培 Ce and Nd reinforced titanium alloy material
CN105463252A (en) * 2015-12-15 2016-04-06 毛培 Preparing method for La and Nd doping titanium alloy materials
RU2625148C1 (en) * 2016-10-10 2017-07-11 Юлия Алексеевна Щепочкина Alloy

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2864697A (en) * 1956-01-23 1958-12-16 Mallory Sharon Metals Corp Titanium-vanadium-aluminum alloys
US3147115A (en) * 1958-09-09 1964-09-01 Crucible Steel Co America Heat treatable beta titanium-base alloys and processing thereof
GB1124962A (en) * 1965-05-22 1968-08-21 Imp Metal Ind Kynoch Ltd Improvements in or relating to titanium alloys
JPS4837643A (en) * 1971-09-15 1973-06-02
JPS5521823A (en) * 1978-07-31 1980-02-16 Matsushita Electric Works Ltd Fluorescent lamp

Also Published As

Publication number Publication date
JPS61250138A (en) 1986-11-07
EP0202791A1 (en) 1986-11-26

Similar Documents

Publication Publication Date Title
US5861070A (en) Titanium-aluminum-vanadium alloys and products made using such alloys
JP5442857B2 (en) High-strength near β-type titanium alloy and method for producing the same
Chan et al. Influence of microstructure on crack-tip micromechanics and fracture behaviors of a two-phase TiAl alloy
EP3102711B1 (en) Nickel-chromium-aluminum alloy having good wear resistance, creep resistance, corrosion resistance and processability
US4878966A (en) Wrought and heat treated titanium alloy part
EP0656956B9 (en) Tough aluminum alloy containing copper and magnesium
US7704333B2 (en) Al-Cu-Mg-Ag-Mn alloy for structural applications requiring high strength and high ductility
JP4047939B2 (en) Nickel-cobalt alloy
US5124121A (en) Titanium base alloy for excellent formability
JPH10306335A (en) Alpha plus beta titanium alloy bar and wire rod, and its production
CN110144496A (en) Titanium alloy with improved performance
US5256369A (en) Titanium base alloy for excellent formability and method of making thereof and method of superplastic forming thereof
US5738735A (en) Al-Cu-Mg alloy with high creep resistance
JPH0730419B2 (en) Chromium and silicon modified .GAMMA.-titanium-aluminum alloys and methods for their production
JPH0699765B2 (en) Titanium alloy with excellent cold plastic workability
JPH05117791A (en) High strength and high toughness cold workable titanium alloy
US5362441A (en) Ti-Al-V-Mo-O alloys with an iron group element
US20030084970A1 (en) Titanium alloy having high ductility, fatigue strength and rigidity and method of manufacturing same
US5417779A (en) High ductility processing for alpha-two titanium materials
JP2669004B2 (en) Β-type titanium alloy with excellent cold workability
JP3216837B2 (en) Iron-based super heat-resistant alloy for heat-resistant bolts
JPS61250139A (en) Titanium alloy excelling in cold workability
JPH0441649A (en) Aluminum alloy excellent in scc resistance and having high strength and high formability
JP2934089B2 (en) Manufacturing method of maraging steel
JPH0819502B2 (en) Titanium alloy excellent in superplastic workability, its manufacturing method, and superplastic working method of titanium alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees