JPH0698476B2 - Method for manufacturing fiber-reinforced composite material - Google Patents

Method for manufacturing fiber-reinforced composite material

Info

Publication number
JPH0698476B2
JPH0698476B2 JP63078067A JP7806788A JPH0698476B2 JP H0698476 B2 JPH0698476 B2 JP H0698476B2 JP 63078067 A JP63078067 A JP 63078067A JP 7806788 A JP7806788 A JP 7806788A JP H0698476 B2 JPH0698476 B2 JP H0698476B2
Authority
JP
Japan
Prior art keywords
fiber
shape
composite material
jig
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63078067A
Other languages
Japanese (ja)
Other versions
JPH01254369A (en
Inventor
道之 鈴木
忠司 山本
芳春 和久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP63078067A priority Critical patent/JPH0698476B2/en
Publication of JPH01254369A publication Critical patent/JPH01254369A/en
Publication of JPH0698476B2 publication Critical patent/JPH0698476B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、繊維強化複合材料の製造に使用する繊維強化
複合材料の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a fiber-reinforced composite material used for producing a fiber-reinforced composite material.

[従来の技術] 無機質繊維等を強化材とする繊維強化複合材料の製造方
法として、前記強化材の成形体にマトリックス金属溶湯
を圧入,含浸,凝固させる、いわゆる、加圧鋳造法が知
られている。
[Prior Art] A so-called pressure casting method is known as a method for producing a fiber-reinforced composite material using inorganic fibers or the like as a reinforcing material, in which a molten matrix metal is press-fitted, impregnated and solidified into a molded body of the reinforcing material. There is.

従来、この方法に用いられる無機質繊維成形体は、無機
質繊維にコロイダルシリカ等の無機質バインダを含浸,
乾燥させて固形化させて、固形化させるか、あるいは、
ステンレスパイプの一端あるいは数個所に穴をあけ、こ
の中に無機質繊維をつめて、前記ステンレスパイプによ
り形状を保持したものである。
Conventionally, the inorganic fiber molded body used in this method is obtained by impregnating an inorganic fiber with an inorganic binder such as colloidal silica.
Dry and solidify, solidify, or
A hole is made in one end or several places of a stainless pipe, inorganic fibers are packed in the hole, and the shape is held by the stainless pipe.

そして、この前記成形体を型のキャビティ内に設置し、
前記キャビティ内にマトリックス金属溶湯を注ぎ、これ
に加圧し、前記成形体に含浸,凝固させ、繊維強化複合
材料を製造している。
Then, the molded body is placed in the mold cavity,
A matrix metal melt is poured into the cavity and pressed to impregnate and solidify the molded body to manufacture a fiber-reinforced composite material.

[発明が解決しようとする課題] しかし、前記の方法によれば、無機質繊維を無機質バイ
ンダにより保形させた場合、前記バインダが複合材料の
内部に残存するため、これにより製造された複合材料の
特性が十分得られない。また、無機質繊維の成形体の表
面のみを前記バインダで覆ったとしても、複合材料の製
造後、表面層を機械加工等により除去する必要があり、
複合材料の仕上げ加工の工程を増え、しかも、通常この
表面層は非常に固いため、特殊な工具,加工法を要求さ
れるので、非常に繁雑である。
[Problems to be Solved by the Invention] However, according to the above method, when the shape of the inorganic fiber is retained by the inorganic binder, the binder remains inside the composite material, so that the composite material The characteristics cannot be obtained sufficiently. Further, even if only the surface of the inorganic fiber molded body is covered with the binder, it is necessary to remove the surface layer by machining or the like after the production of the composite material,
The number of steps for finishing the composite material is increased, and since this surface layer is usually very hard, special tools and working methods are required, which is very complicated.

一方、無機質繊維をステンレスパイプにつめる場合、丸
棒等の単純形状でなければ、前記無機質繊維の配向を乱
さずにステンレスパイプ内につめることが難しく、製造
された複合材料の特性の劣化,ばらつきの原因になる。
On the other hand, when the inorganic fiber is packed in a stainless pipe, it is difficult to pack the inorganic fiber in the stainless pipe without disturbing the orientation of the inorganic fiber unless it has a simple shape such as a round bar, and deterioration and dispersion of characteristics of the manufactured composite material. Cause

[課題を解決するための手段] 本発明は、以上のような課題を解決することを目的とし
ており、本発明によれば、無機質繊維を保形する方法と
して、前記無機質繊維成形体を収納できる空間を有し、
一体型もしくは、少なくとも2分割の割型であり、前記
空間と外部をつなぐ穴を少なくとも2箇所有し、材質と
して黒鉛質あるいは炭素質を用い、少なくとも前記無機
質繊維と接触する面に、離型剤を塗布した保形用治具を
使用する。そして、前記治具内に前記無機質繊維を収納
し、鋳造型の型内にマトリックス金属の溶湯を注入し、
前記治具を型のキャビティ内に配設して、プランジャに
よって前記溶湯を加圧,凝固させることにより繊維強化
複合材料を製造する。
[Means for Solving the Problems] The present invention is intended to solve the above problems, and according to the present invention, the inorganic fiber molded body can be stored as a method for retaining the shape of the inorganic fibers. Have a space,
It is an integral type or a split type with at least two divisions, has at least two holes that connect the space and the outside, uses graphite or carbonaceous material, and at least the surface in contact with the inorganic fibers has a release agent. Use a shape-retaining jig coated with. Then, the inorganic fibers are housed in the jig, and a molten matrix metal is poured into the casting mold.
The jig is arranged in the cavity of the mold, and the molten metal is pressed and solidified by the plunger to manufacture the fiber-reinforced composite material.

[作用] この方法によれば、黒鉛質あるいは炭素質からなる無機
質繊維の保形用治具により、無機質繊維の形状が保持さ
れるため、無機質バインダを使用する必要がない。ま
た、保形用治具を一体型もしくは少なくとも2分割の割
型にすることにより、前記無機質繊維を種々の形状に、
繊維配向を乱さずに、前記保形用治具により保形するこ
とができる。さらに、前記保形用治具の材質を黒鉛質あ
るいは炭素質とし、少なくとも無機質繊維と接触する面
に離型剤を塗布することにより、複合材料製造後、前記
保形用治具と複合材料の界面が容易に剥離でき、前記保
形用治具の除去についても、従来技術のステンレスパイ
プにおいては切削により前記ステンレスパイプを除去し
なければならないが、本発明においては衝撃等を加える
ことにより容易に崩壊・除去できる。
[Operation] According to this method, since the shape of the inorganic fiber is maintained by the jig for retaining the inorganic fiber made of graphite or carbonaceous material, it is not necessary to use the inorganic binder. Further, by making the shape-retaining jig an integral type or a split type of at least two divisions, the inorganic fibers can be formed into various shapes,
The shape can be retained by the shape retaining jig without disturbing the fiber orientation. Further, the material of the shape-retaining jig is graphite or carbonaceous material, and a mold release agent is applied to at least the surface in contact with the inorganic fiber, so that after the composite material is manufactured, the shape-retaining jig and the composite material are The interface can be easily peeled off, and in removing the shape-retaining jig, the stainless pipe must be removed by cutting in the conventional stainless pipe, but in the present invention, it can be easily removed by applying an impact or the like. Can be disintegrated and removed.

そして、繊維成形体のガス抜き用に少なくとも2個所、
外部と無機質繊維成形体をつなぐ穴を設けることによ
り、複合材料を製造する際、マトリックス金属の前記成
形体への含浸、ならびに前記成形体中の気体の外部への
除去が容易に達成でき、健全な複合材料を製造すること
ができる。
And at least two places for degassing the fiber molding,
By providing a hole that connects the outside and the inorganic fiber molded body, when manufacturing a composite material, it is possible to easily achieve the impregnation of the molded body of the matrix metal and the removal of the gas in the molded body to the outside, which is sound. Various composite materials can be manufactured.

この発明に用いることのできる無機質繊維としては、Al
2O3繊維,Al2O3−SiO2繊維,C繊維,B繊維,SiC繊維,Si-Ti
-C−O繊維等の長繊維、または、これらをチョップ状に
した短繊維、または、SiC,Si3N4等のウイスカ等が挙げ
られる。また、マトリックス金属としては、Al系(Al単
体およびAl合金),Mg系(Mg単体およびMg合金),Zn系
(Zn単体およびZn合金)等が用いられるが、特にこれら
に限定されるものではない。
As the inorganic fiber that can be used in the present invention, Al
2 O 3 fiber, Al 2 O 3 -SiO 2 fiber, C fiber, B fiber, SiC fiber, Si-Ti
Examples include long fibers such as —C—O fibers, chopped short fibers thereof, and whiskers such as SiC and Si 3 N 4 . As the matrix metal, Al-based (Al simple substance and Al alloy), Mg-based (Mg simple substance and Mg alloy), Zn-based (Zn simple substance and Zn alloy), etc. are used, but are not particularly limited to these. Absent.

[実施例] 実施例1 本発明の第1の実施例を第1図〜第3図に基づいて説明
する。
[Embodiment] Embodiment 1 A first embodiment of the present invention will be described with reference to FIGS. 1 to 3.

第1図〜第3図は本発明の1実施例である繊維保形用治
具の状態を示し、第1図は斜視図、第2図はプランジャ
を離間させたときの縦断面図、第3図はプランジャにて
加圧したときの状態における縦断面図である。
1 to 3 show a state of a fiber shape-retaining jig which is one embodiment of the present invention. FIG. 1 is a perspective view, FIG. 2 is a longitudinal sectional view when a plunger is separated, FIG. 3 is a vertical cross-sectional view in a state where pressure is applied by the plunger.

第1図に示すように、連続無機SiC繊維を図示した方向
に、体積率を50%として、1方向に幅80mm,厚さ10mmに
なるようにそろえ、あらかじめ前記繊維1と接触する面
に黒鉛系の離型剤(商品名:ヒタゾール)を塗布した繊
維配向方向と平行方向に長さ150mmの黒鉛製保形用治具2
a,2bにより、前記繊維配向方向と直角の方向から、前記
連続無機SiC繊維を挟み、前記黒鉛製保形用治具2a,2bを
さら小ねじにより締結し、両端の繊維を切断した。この
ように、連続無機SiC繊維を収納した黒鉛製保形用治具
を大気中650℃に加熱し、第2図に示すように、金型4
の中に750℃のアルミニウム溶湯(JIS規格1070)を注入
した後、前記保形用治具をガス抜き用穴10を設けた2bが
上になるように、金型内に設置した。ついで、第3図に
示すように、プランジャ5により前記アルミニウム溶湯
を1000Kg/cm2に加圧し、両側の開口孔および治具2aの下
面に適当に穿設されたアルミニウム注入穴10から溶湯を
保形用治具内に圧入,凝固させ、繊維強化複合材料を製
造した。この複合材料を取り出し、断面組織観察を行な
ったところ、空孔等の鋳造欠陥、繊維配向の乱れ等は、
全く観察されなかった。さらに、この複合材料につい
て、繊維配向方向の曲げ強度を測定したところ、150kg/
mm2という高い値が得られた。なお、この複合材料を取
り出す際、アルミニウム溶湯の開口孔11(前記した繊維
の切断面)部分の切断、保形用治具の打撃による崩壊と
いう単純な工程のみで取り出しが完了した。
As shown in FIG. 1, continuous inorganic SiC fibers are aligned in the direction shown in the figure with a volume ratio of 50% so as to have a width of 80 mm and a thickness of 10 mm in one direction. Graphite shape-fixing jig 2 with a length of 150 mm applied in parallel with the fiber orientation direction coated with a system release agent (trade name: Hitazole) 2
The continuous inorganic SiC fibers were sandwiched by a and 2b from the direction perpendicular to the fiber orientation direction, the graphite shape-retaining jigs 2a and 2b were fastened with countersunk screws, and the fibers at both ends were cut. In this way, the graphite shape-retaining jig containing the continuous inorganic SiC fibers was heated to 650 ° C. in the atmosphere and, as shown in FIG.
After 750 ° C. molten aluminum (JIS standard 1070) was poured into the container, the shape-retaining jig was placed in the mold so that 2b provided with the gas vent hole 10 was on top. Next, as shown in FIG. 3, the plunger 5 pressurizes the aluminum melt to 1000 kg / cm 2 , and the molten metal is retained from the opening holes on both sides and the aluminum injection holes 10 appropriately formed in the lower surface of the jig 2a. A fiber-reinforced composite material was manufactured by press-fitting into a shaping jig and solidifying. When this composite material was taken out and the cross-sectional structure was observed, casting defects such as voids, disorder of fiber orientation, etc.
It was not observed at all. Furthermore, when the bending strength in the fiber orientation direction was measured for this composite material, it was 150 kg /
A high value of mm 2 was obtained. Incidentally, when taking out this composite material, the taking out was completed only by simple steps of cutting the opening hole 11 (the above-mentioned cut surface of the fiber) of the molten aluminum and collapsing it by the impact of the shape-retaining jig.

なお、第3図において繊維保形用治具2bのガス抜き用穴
9に対接するプランジャ下面に水平にガス排気溝12を設
けると、一層ガスの排出が良好となる。
In FIG. 3, if a gas exhaust groove 12 is provided horizontally on the lower surface of the plunger which is in contact with the gas vent hole 9 of the fiber shape retaining jig 2b, the gas can be discharged even better.

実施例2 本発明の第2の実施例を第4図〜第10図に基づいて説明
する。
Second Embodiment A second embodiment of the present invention will be described with reference to FIGS.

第4図〜第10図は本発明の他の実施例である繊維保形用
治具およびその使用状態を示し、第4図は繊維成形体を
繊維保形用治具に収納した状態を示す平面図、第5図は
第4図の側面図、第6図は同じく繊維保形体の平面図、
第7図は第6図の側面図、第8図は一対の繊維保形体を
組合せて締結したときの側面図、第9図と第10図は鋳造
装置内に繊維保形体を配設したときの状態で、第9図は
プランジャが離間している状態を示す縦断面図、第10図
はプランジャで加圧している状態を示す縦断面図であ
る。
4 to 10 show another embodiment of the present invention, a fiber shape-maintaining jig and its use state, and FIG. 4 shows a state in which the fiber molded body is housed in the fiber shape-maintaining jig. A plan view, FIG. 5 is a side view of FIG. 4, and FIG. 6 is a plan view of the same fiber shape retention body.
FIG. 7 is a side view of FIG. 6, FIG. 8 is a side view when a pair of fiber shape retainers are combined and fastened, and FIGS. 9 and 10 are when the fiber shape retainer is arranged in a casting apparatus. In this state, FIG. 9 is a vertical sectional view showing a state where the plungers are separated from each other, and FIG. 10 is a vertical sectional view showing a state where pressure is applied by the plunger.

第4図に示すように、黒鉛系の離型剤(商品名:ヒタゾ
ール)を内周に塗布した自動車エンジン用部品コネクテ
ィングロッド状の空間と、6個のさら小ねじ用穴8およ
びガス抜き用穴9を有する炭素製保形用治具7aに、連続
無機アルミナ繊維を収納し、前記保形用治具7aと前記連
続無機アルミナ繊維と接する面に、保形用治具7aと同様
に、黒鉛系の離型剤(商品名:ヒタゾール)を塗布した
アルミニウム溶湯圧入用の穴10を複数個設けた炭素製保
形用治具7bを、第8図に示すように、保形用治具7aにさ
ら小ねじにより密着締結した。このように、連続無機ア
ルミナ繊維を体積率を50%として収納した炭素製保形用
治具を、大気中650℃に加熱し、第9図に示すように、
金型4の中に750℃のアルミニウム溶湯(JIS規格1070)
を注入した後、前記保形用治具をガス抜き用穴9を設け
た7aが7bに対して上になるように、金型4内に設置し
た。ついで、第10図に示すように、プランジャ5により
前記アルミニウム溶湯を800Kg/cm2に加圧し、溶湯を保
形用治具内に圧入,凝固させ、コネクティングロッド状
の形状をもつ繊維強化複合材料を製造した。この複合材
料を取り出し、断面組織観察を行なったところ、繊維配
向の直線部分,円状部分のいずれの部分においても、空
孔等の鋳造欠陥、繊維配向の乱れ等は、全く観察されな
かった。さらに、この複合材料の繊維配向の直線部分よ
り曲げ試験片を採取し、曲げ強度を測定したところ、13
0Kg/mm2という高い値を示した。なお、この複合材料を
取り出す際、前記炭素製保形用治具7aと7bの境界面に合
せての切断分離、前記炭素製保形用治具7aの打撃による
崩壊という工程のみで取り出しが完了した。
As shown in Fig. 4, a space for the automotive engine parts connecting rod-like, which has a graphite-based mold release agent (trade name: Hitazole) applied to the inner circumference, and six countersunk screw holes 8 and gas vents. A continuous inorganic alumina fiber is housed in a carbon shape-retaining jig 7a having a hole 9, and a surface contacting the shape-retaining jig 7a and the continuous inorganic-alumina fiber is, similarly to the shape-retaining jig 7a, As shown in FIG. 8, a carbon shape-retaining jig 7b provided with a plurality of holes 10 for press-fitting aluminum molten metal coated with a graphite-based mold release agent (trade name: Hitasol) is used as a shape-retaining jig. It was tightly fastened to 7a with a machine screw. In this way, the carbon shape-retaining jig containing the continuous inorganic alumina fibers at a volume ratio of 50% was heated to 650 ° C. in the atmosphere, and as shown in FIG.
Aluminum melt at 750 ℃ in mold 4 (JIS standard 1070)
Then, the shape-retaining jig was placed in the mold 4 so that 7a provided with the vent hole 9 was on the upper side of 7b. Then, as shown in FIG. 10, the aluminum melt is pressurized to 800 kg / cm 2 by the plunger 5, and the melt is press-fitted and solidified in the shape-retaining jig to form a fiber-reinforced composite material having a connecting rod shape. Was manufactured. When this composite material was taken out and the cross-sectional structure was observed, casting defects such as voids and disorder of the fiber orientation were not observed at all in the linear portion and the circular portion of the fiber orientation. Furthermore, a bending test piece was taken from the linear portion of the fiber orientation of this composite material, and the bending strength was measured.
It showed a high value of 0 kg / mm 2 . When this composite material is taken out, the removal is completed only by the steps of cutting and separating in accordance with the boundary surface of the carbon shape-keeping jigs 7a and 7b, and collapsing by the impact of the carbon shape-keeping jig 7a. did.

[発明の効果] 以上、本発明による繊維強化複合材料製造用繊維保形用
治具およびこの治具を使用した繊維強化複合材料の製造
方法によれば、種々の形状に繊維配向を乱すことなく保
形することができ、さらに、ピンホール(気泡)等の鋳
造欠陥、繊維配向の乱れ等の無い健全な複合材料を製造
することができ、前記複合材料の取り出しも容易に完了
することができる。
EFFECTS OF THE INVENTION As described above, according to the fiber shape-retaining jig for producing a fiber-reinforced composite material and the method for producing a fiber-reinforced composite material using this jig, the fiber orientation is not disturbed in various shapes. The shape can be retained, and a sound composite material without casting defects such as pinholes (air bubbles) and disorder of fiber orientation can be manufactured, and the extraction of the composite material can be completed easily. .

【図面の簡単な説明】[Brief description of drawings]

第1図〜第3図は本発明の1実施例である繊維保形用治
具の状態を示し、第1図は繊維保形用治具の斜視図、第
2図はプランジャを離間させたときの繊維保形用治具の
状態を示す縦断面図、第3図はプランジャにて溶湯を加
圧含浸させたときの状態における縦断面図である。第4
図〜第10図は本発明の他の実施例である繊維保形用治具
およびその使用状態を示し、第4図は繊維成形体を繊維
保形用治具に収納した状態を示す平面図、第5図は第4
図のV矢視側面図、第6図は同じく繊維保形体の平面
図、第7図は第6図のVII矢視側面図、第8図は一対の
繊維保形体を組合せて締結したときの側面図、第9図と
第10図は鋳造装置内に繊維保形体を配設したときの状態
図で、第9図はプランジャが離間している状態を示す縦
断面図、第10図はプランジャで加圧している状態を示す
縦断面図である。 1……連続無機SiC繊維、 2a,2b……黒鉛製繊維保形用治具、 3……アルミニウム溶湯、4……金型、 5……プランジャ、 6……連続無機アルミナ繊維、 7a,7b……炭素製保形用治具、 8……接合ボルト穴、9……ガス抜き用穴、 10……アルミニウム注入穴、 11……開口孔、12……ガス排気溝。
1 to 3 show the state of a fiber shape-retaining jig that is one embodiment of the present invention. FIG. 1 is a perspective view of the fiber shape-retaining jig, and FIG. FIG. 3 is a vertical cross-sectional view showing the state of the fiber shape-retaining jig, and FIG. 3 is a vertical cross-sectional view showing the state when the molten metal is pressure-impregnated with the plunger. Fourth
FIG. 10 to FIG. 10 show another embodiment of the present invention, which is a fiber shape-maintaining jig, and its use state, and FIG. 4 is a plan view showing a state in which a fiber molding is stored in the fiber shape-maintaining jig. , FIG. 5 is the fourth
FIG. 6 is a side view as seen from the direction of arrow V, FIG. 6 is a plan view of the same fiber shape body, FIG. 7 is a side view as seen from the direction VII of FIG. 6, and FIG. 8 is a view when a pair of fiber shape bodies are combined and fastened. Side views, FIGS. 9 and 10 are state views when the fiber shape retention body is arranged in the casting apparatus, FIG. 9 is a longitudinal sectional view showing a state where the plungers are separated, and FIG. 10 is a plunger. It is a longitudinal cross-sectional view showing a state of being pressurized by. 1 ... Continuous inorganic SiC fiber, 2a, 2b ... Graphite fiber shape retention jig, 3 ... Aluminum melt, 4 ... Mold, 5 ... Plunger, 6 ... Continuous inorganic alumina fiber, 7a, 7b …… Carbon shape retention jig, 8 …… Joint bolt hole, 9 …… Gas vent hole, 10 …… Aluminum injection hole, 11 …… Opening hole, 12 …… Gas exhaust groove.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】無機質繊維成形体を収納できる空間を有
し、外部から該空間に通ずる透孔を少なくとも2箇所備
え、材質が黒鉛質または炭素質で、一体型もしくは少な
くとも2分割の割型より形成された繊維強化複合材料製
造用の繊維保形用治具の少なくとも無機質繊維成形体と
接触する面に予め離型剤を塗布したうえ、無機質繊維成
形体を該繊維保形用治具の該空間に収納し、該繊維保形
用治具をマトリックス金属の融点以上に予熱後、鋳型の
キャビティ内に設置し、溶融マトリックス金属を該鋳型
内に注入し、プランジャによって該溶融マトリックス金
属を加圧しつつ前記透孔を介して該繊維保形用治具内に
浸入ならびに凝固させて繊維強化複合材料を鋳造する繊
維強化複合材料の製造方法。
1. A space having a space for accommodating an inorganic fiber molded body, at least two through holes communicating with the space from the outside, and made of a graphite or carbonaceous material, which is an integral type or at least a split type. A release agent is applied in advance to at least the surface of the fiber shape-holding jig for producing the fiber-reinforced composite material that comes into contact with the inorganic fiber molded body, and then the inorganic fiber molded body is applied to the fiber shape-holding jig of the jig. Stored in a space, preheated the fiber shape-retaining jig above the melting point of the matrix metal, placed in the cavity of the mold, injecting the molten matrix metal into the mold, pressurizing the molten matrix metal with a plunger. At the same time, a method for manufacturing a fiber-reinforced composite material, in which the fiber-reinforced composite material is cast by infiltrating and solidifying into the fiber shape-retaining jig through the through hole.
JP63078067A 1988-04-01 1988-04-01 Method for manufacturing fiber-reinforced composite material Expired - Lifetime JPH0698476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63078067A JPH0698476B2 (en) 1988-04-01 1988-04-01 Method for manufacturing fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63078067A JPH0698476B2 (en) 1988-04-01 1988-04-01 Method for manufacturing fiber-reinforced composite material

Publications (2)

Publication Number Publication Date
JPH01254369A JPH01254369A (en) 1989-10-11
JPH0698476B2 true JPH0698476B2 (en) 1994-12-07

Family

ID=13651497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63078067A Expired - Lifetime JPH0698476B2 (en) 1988-04-01 1988-04-01 Method for manufacturing fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JPH0698476B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001048816A1 (en) 1999-12-24 2001-07-05 Ngk Insulators, Ltd. Heat sink material and method of manufacturing the heat sink material
CN102921925B (en) * 2012-10-29 2015-06-10 江苏大学 Method for reducing pouring temperature of iron-based surface composite material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827943A (en) * 1981-08-12 1983-02-18 Toyota Motor Corp Method and apparatus for manufacturing composite material
JPS60177140A (en) * 1984-02-24 1985-09-11 Toray Ind Inc Composite metallic material and its production

Also Published As

Publication number Publication date
JPH01254369A (en) 1989-10-11

Similar Documents

Publication Publication Date Title
KR920003685B1 (en) Method of squeeze rorming metal articles
JPS6239067B2 (en)
JPH0698476B2 (en) Method for manufacturing fiber-reinforced composite material
JPS6296627A (en) Production of fiber reinforced composite metallic material
JP3073105B2 (en) Manufacturing method of light alloy composite member
JP2697851B2 (en) Method of manufacturing fiber reinforced metal member
JPH0350618B2 (en)
JP2520548Y2 (en) Reinforcement molding for metal-based composite material manufacturing
JP4081426B2 (en) Manufacturing method of fiber reinforced metal composite material
JPH0422559A (en) Method for preforming reinforcing member of metal matrix composite
JP2836905B2 (en) Method for producing fiber-reinforced metal matrix composite
JPH068472B2 (en) Method for producing fiber molding for fiber-reinforced composite material
JPH0110143Y2 (en)
JPS6362306B2 (en)
JP2811452B2 (en) Method for producing fiber-reinforced composite material
JPS61221341A (en) Production of single composite material
JPS62127159A (en) Production of fiber reinforced metallic member
JPS62238039A (en) Manufacture of fiber reinforced composite member
JPS61202769A (en) Production of fiber reinforced composite material
JPH11320075A (en) Molding for cylinder block and its production
JPH0790355B2 (en) Casting method for fiber-reinforced metal member
JPS61132263A (en) Manufacture of composite member
JPH08210394A (en) Composite material caliper
JPH03254347A (en) Die casting method
JP2000038645A (en) Fiber reinforced preform