JPH0697640B2 - Acceleration energy control method in high frequency quadrupole accelerator - Google Patents

Acceleration energy control method in high frequency quadrupole accelerator

Info

Publication number
JPH0697640B2
JPH0697640B2 JP63176540A JP17654088A JPH0697640B2 JP H0697640 B2 JPH0697640 B2 JP H0697640B2 JP 63176540 A JP63176540 A JP 63176540A JP 17654088 A JP17654088 A JP 17654088A JP H0697640 B2 JPH0697640 B2 JP H0697640B2
Authority
JP
Japan
Prior art keywords
voltage
frequency
energy
accelerator
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63176540A
Other languages
Japanese (ja)
Other versions
JPH0227699A (en
Inventor
亮 開本
正敏 浅利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63176540A priority Critical patent/JPH0697640B2/en
Priority to EP89307126A priority patent/EP0353888A1/en
Publication of JPH0227699A publication Critical patent/JPH0227699A/en
Publication of JPH0697640B2 publication Critical patent/JPH0697640B2/en
Priority to US08/532,116 priority patent/US5796219A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/12Arrangements for varying final energy of beam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/02Circuits or systems for supplying or feeding radio-frequency energy

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は高周波四重極加速器における加速エネルギの制
御方法に関し、特に、例えば半導体へのイオン注入等に
応用するのに適した制御方法に関する。
TECHNICAL FIELD The present invention relates to a method of controlling acceleration energy in a high frequency quadrupole accelerator, and more particularly to a control method suitable for application to, for example, ion implantation into a semiconductor.

<従来の技術> 高周波四重極加速器(Radio Frequency Quadrupole加速
器、以下、RFQ加速器と称する)は、大電流のイオンビ
ームを高透過率のもとに高エネルギに加速し得る能力を
持ち、近年、多くの分野での応用が研究されている。
<Prior Art> A high frequency quadrupole accelerator (Radio Frequency Quadrupole accelerator, hereinafter referred to as RFQ accelerator) has a capability of accelerating a high current ion beam to high energy with high transmittance, and in recent years, Applications in many fields have been studied.

第9図はRFQ加速器のうち、4ベーン型RFQ加速器の概念
構造を示す部分断面斜視図である。なお、このほか、RF
Q加速器には4ロッド型RFQ加速器等の変形例があるが、
本質的な技術上の特徴は4ベーン型と同一なので、以下
は4ベーン型RFQ加速器に例をとって説明を加える。
FIG. 9 is a partial cross-sectional perspective view showing the conceptual structure of the 4-vane type RFQ accelerator among the RFQ accelerators. In addition to this, RF
There are variations such as 4-rod type RFQ accelerator in the Q accelerator,
Since the essential technical features are the same as those of the 4-vane type, the following description will be given by taking the 4-vane type RFQ accelerator as an example.

両端がプレート91a,91bで閉止された円筒タンク90内に
4個の電極92a〜92dが(以下、ベーン92a〜92dと称す
る)が固着されており、これらで四重極空胴共振器を形
成している。
Four electrodes 92a to 92d (hereinafter referred to as vanes 92a to 92d) are fixed in a cylindrical tank 90 whose both ends are closed by plates 91a and 91b, which form a quadrupole cavity resonator. is doing.

ベーン92a〜92dには、それぞれの先端部にタンク90の軸
方向に沿う波形が形成されており、互いに対向するベー
ンはその波形の山と山,谷と谷とが向き合い、かつ、ベ
ーン92a,92cとベーン92b,92dの波形は180°の位相差を
持っている。また、各波形の周期は入口から出口に向か
って次第に長くなっている。
Each of the vanes 92a to 92d is formed with a corrugated shape along the axial direction of the tank 90 at each tip, and the vanes facing each other have the corrugated peaks and peaks, and the troughs and valleys facing each other, and the vane 92a, The waveforms of 92c and vanes 92b and 92d have a phase difference of 180 °. Further, the cycle of each waveform gradually increases from the entrance to the exit.

このような構造体に高周波を導入すると、相対向するベ
ーンは同相に、隣り合うベーンは逆相に電圧が印加され
て共振することになるが、上述した波形の存在によって
ベーン92a〜92dで囲まれた空間にタンク90の軸心に沿う
加速電界が生成され、ここに入射した荷電粒子ビームは
収束されつつ所定の加速エネルギのもとに加速される。
When a high frequency wave is introduced into such a structure, the opposite vanes resonate when a voltage is applied to the same phase and the opposite vanes to the opposite phase, but they are surrounded by the vanes 92a to 92d due to the existence of the above-mentioned waveform. An accelerating electric field along the axial center of the tank 90 is generated in the enclosed space, and the charged particle beam incident on the space is converged and accelerated under a predetermined acceleration energy.

<発明が解決しようとする課題> ところで、RFQ加速器は高周波共振器を利用して荷電粒
子を加速する、いわゆる高周波加速器であるから、共振
周波数を可変としない限り加速エネルギを可変とするこ
とはできないとされている(Nuclear Instruments and
Method in Physics Research B21(1987)P-P218-223,
H.F.Glavish,“Radio-Frequency Linear Accelerators
for Ion Implanters")。
<Problems to be Solved by the Invention> By the way, since the RFQ accelerator is a so-called high-frequency accelerator that accelerates charged particles using a high-frequency resonator, the acceleration energy cannot be made variable unless the resonance frequency is made variable. (Nuclear Instruments and
Method in Physics Research B21 (1987) P-P218-223,
HFGlavish, “Radio-Frequency Linear Accelerators
for Ion Implanters ").

すなわち、高周波加速器では、共振周波数粒子の入射ス
ピード(エネルギ)、電極の配設位置(ドリフトチュー
ブライナック等では配設ピッチ、RFQ加速器ではベーン
波形の周期)および印加する高周波電圧値は互いに密接
な関係を持つファクタであり、例えば高周波電圧値を変
化させても、他のファクタが一定である限り加速エネル
ギは変化せずに一定であり、むしろ、高周波電圧値を大
幅に低下させると荷電粒子をまったく加速できなくなる
とされている。その理由として、高周波電圧を低下させ
ると、加速電界中において荷電粒子のスピードが遅くな
り、共振周波数電極波形の周期等との関連において共振
条件を満足しなくなるためであると一般には説明されて
いる。
That is, in the high frequency accelerator, the incident speed (energy) of the resonance frequency particles, the electrode arrangement position (the arrangement pitch in the drift tube linac, etc., the vane waveform period in the RFQ accelerator) and the applied high frequency voltage value are closely related to each other. For example, even if the high frequency voltage value is changed, the acceleration energy does not change and remains constant as long as the other factors are constant. It is said to be unable to accelerate. It is generally explained that the reason is that when the high frequency voltage is lowered, the speed of the charged particles in the accelerating electric field becomes slower and the resonance condition is not satisfied in relation to the period of the resonance frequency electrode waveform. .

一方、半導体製造プロセスにおけるイオン注入装置等を
はじめとする多くの応用分野では、加速ネルギの可変性
は必須の要求性能である。そこで、この加速エネルギ可
変性を得るべく、RFQ加速器に複雑な外部共振器等を付
加し、共振周波数を可変にする対策が提案されている。
(例えば、特開昭60−115199号)。
On the other hand, variability of the acceleration energy is an indispensable required performance in many application fields such as an ion implantation apparatus in a semiconductor manufacturing process. Therefore, in order to obtain this accelerating energy variability, a measure has been proposed in which a complicated external resonator or the like is added to the RFQ accelerator to make the resonance frequency variable.
(For example, JP-A-60-115199).

しかし、共振周波数を可変にすることで加速エネルギ可
変性を得る方式では、RFQ加速器に複雑な機構や装置を
追加する必要があるばかりでなく、高周波電力を供給す
るための高周波電源についても周波数を可変にする必要
がある等、高価格化およびメンテナンス等の点で多くの
問題がある。
However, in the method of obtaining the acceleration energy variability by changing the resonance frequency, not only is it necessary to add a complicated mechanism or device to the RFQ accelerator, but also the frequency of the high frequency power source for supplying the high frequency power is changed. There are many problems in terms of price increase and maintenance, such as the need to be variable.

本発明の目的は、RFQ加速器の共振周波数を変化させる
ことなく、容易にその加速エネルギを変化させることの
できる制御方法を提供することにある。
An object of the present invention is to provide a control method capable of easily changing the acceleration energy without changing the resonance frequency of the RFQ accelerator.

<課題を解決するための手段> 本発明のRFQ加速器における加速エネルギの制御方法の
特徴とするところは、電極に印加すべき高周波電圧を、
荷電粒子のRFQ加速器への導入スピードとこの高周波電
圧の周波数、および電極に形成された波形の周期に基づ
く共振条件を満足する電圧値よりも、下方に所定量だけ
継続的にシフトすることによって荷電粒子の加速エネル
ギを変化させることにある。
<Means for Solving the Problems> A feature of the method for controlling acceleration energy in the RFQ accelerator of the present invention is that the high-frequency voltage to be applied to the electrodes is
By continuously shifting the charged particles into the RFQ accelerator by a predetermined amount below the voltage value that satisfies the resonance condition based on the frequency of this high-frequency voltage and the period of the waveform formed on the electrodes, the charging is performed. It is to change the acceleration energy of particles.

なお、本明細書でいう高周波電圧とは、印加する高周波
の電圧振幅値をいう。
The high frequency voltage referred to in this specification refers to a voltage amplitude value of a high frequency to be applied.

<作用> 同一の荷電粒子を同一の入射条件のもとにRFQ加速器に
導入し、共振周波数を変化させずに高周波電圧(ベーン
電圧)のみを変化させた実験結果の例を第3図〜第6図
に示す。RFQ加速器の共振条件を満足するベーン電圧を
与えた場合(第3図)に比し、ベーン電圧を下方にシフ
トすることで加速エネルギを下方に変化させることがで
きた(第4図〜第6図)。
<Operation> The same charged particles are introduced into the RFQ accelerator under the same incident conditions, and only the high frequency voltage (vane voltage) is changed without changing the resonance frequency. It is shown in FIG. Compared to the case where a vane voltage satisfying the resonance condition of the RFQ accelerator was applied (Fig. 3), the acceleration energy could be changed downward by shifting the vane voltage downward (Figs. 4 to 6). Figure).

ベーン電圧を下方にシフトすることで、実際に粒子がど
のような作用を受けてエネルギが変化するのかは現時点
において正確には明らかではない。しかし、RFQ加速器
以外の高周波加速器、例えばドリフトチューブライナッ
ク等との比較において下記の推測が成り立つ。
It is not currently clear exactly what effect the particles will have on the energy change by shifting the vane voltage down. However, the following assumptions hold in comparison with high-frequency accelerators other than the RFQ accelerator, such as drift tube linac.

すなわち、ドリフトチューブライナックでは、加速高周
波電圧を設計値以下にした場合、ビームは共振条件を満
足できず、殆んど発散等によって失われてしまうことは
事実である。ここで、ドリフトチューブライナックとRF
Q加速器との機能上の大きな差異は、そのビーム収束力
にある。前者ではビーム収束力はドリフトチューブ内に
設置された静電もしくは磁気Qレンズ等によって得ら
れ、ドリフトチューブ外では収束力は働かない。これに
対して後者では、ベーンに誘起された高周波電圧が粒子
の収束と加速を同時に行うので、粒子ビームは空間的に
連続して常に強い収束力を受ける。
That is, in the drift tube linac, it is a fact that the beam cannot satisfy the resonance condition and is almost lost due to divergence or the like when the accelerating high-frequency voltage is set to the design value or less. Where Drift Tube Linac and RF
The major functional difference from the Q accelerator is its beam focusing power. In the former case, the beam focusing force is obtained by an electrostatic or magnetic Q lens installed inside the drift tube, and the focusing force does not work outside the drift tube. On the other hand, in the latter case, the high frequency voltage induced in the vanes simultaneously converges and accelerates the particles, so that the particle beam is spatially continuous and always receives a strong focusing force.

従って、RFQ加速では、共振条件を満足できないビーム
も、その強い収束力のために発散することなく最後まで
加速されてしまう。しかし、共振条件を満足していない
が故に、最終的な加速エネルギは設計値よりも低エネル
ギ側にシフトし、前記した結果が得られるものと推定さ
れる。
Therefore, in RFQ acceleration, even a beam that does not satisfy the resonance condition will be accelerated to the end without diverging due to its strong focusing force. However, since the resonance condition is not satisfied, the final acceleration energy shifts to a lower energy side than the design value, and it is presumed that the above result can be obtained.

<実施例> 本発明の実施例を、以下、図面を参照しつつ説明する。<Examples> Examples of the present invention will be described below with reference to the drawings.

第1図は本発明を適用して粒子の加速エネルギを実測し
た実験装置のレイアウトを示すブロック図であり、破線
で囲まれた部分がRFQ加速装置である。
FIG. 1 is a block diagram showing a layout of an experimental apparatus in which the present invention is applied to measure acceleration energy of particles, and a portion surrounded by a broken line is an RFQ accelerator.

イオン源1で発生したイオンは、直流高圧電源2によっ
て所定の所期エネルギまで加速される。これによって生
ずるイオンビームBは、静電Qレンズ3,分析マグネット
4,更に静電Qレンズ5を通過して目的イオンのみのビー
ムとなってRFQ加速器6内に導かれる。
The ions generated by the ion source 1 are accelerated by the DC high-voltage power supply 2 to a predetermined desired energy. The ion beam B generated by this is the electrostatic Q lens 3, the analysis magnet.
4, Further, it passes through the electrostatic Q lens 5 and becomes a beam of only target ions, which is guided into the RFQ accelerator 6.

RFQ加速器6には、そのベーンに高周波電圧を印加する
ための高周波電源7と、実際に加速器6に印加された電
圧を検出する電圧検出器8,およびその検出信号と電圧設
定器10からの設定信号を入力して高周波電源7の出力電
圧を制御する制御回路9が付設されている。
The RFQ accelerator 6 has a high-frequency power source 7 for applying a high-frequency voltage to its vanes, a voltage detector 8 for detecting the voltage actually applied to the accelerator 6, and its detection signal and the setting from the voltage setter 10. A control circuit 9 for inputting a signal and controlling the output voltage of the high frequency power supply 7 is additionally provided.

高周波電源7は、例えば水晶発振器と電力増幅器によっ
て構成され、制御回路9は、例えば電圧検出器8からの
検出信号と電圧設定器10からの設定信号との差信号をフ
ィードバックして、上述の電力増幅器の増幅度を変化さ
せる回路構成を有している。これにより、RFQ加速器6
のベーンに印加される高周波電圧は、電圧設定器10によ
って設定された電圧値に制御される。
The high frequency power supply 7 is composed of, for example, a crystal oscillator and a power amplifier, and the control circuit 9 feeds back a difference signal between a detection signal from the voltage detector 8 and a setting signal from the voltage setting device 10, for example, to obtain the above-mentioned power. It has a circuit configuration for changing the amplification degree of the amplifier. As a result, the RFQ accelerator 6
The high-frequency voltage applied to the vanes is controlled to the voltage value set by the voltage setting device 10.

さて、RFQ加速器6より加速された出射したイオンのエ
ネルギスペクトルを測定すべく、RFQ加速器6の出口に
ラザフォード・バックスキャッタリング・スペクトロス
コピ(Rutherford Backscattering Spectroscopy,以
下、RBSと称する)を配設した。RBSはターゲット11とエ
ネルギ検出器12とからなり、RFQ加速器6から出射した
イオンはターゲット11によって散乱されてエネルギ検出
器12に入り、そこで加速エネルギに応じた電荷量を発生
する。この電荷量を個々の粒子について求めることでエ
ネルギスペクトルを測定することができる。なお、ター
ゲット11はカーボンに金を100〜200Å蒸着したものを使
用し、エネルギ検出器12は表面障壁型粒子エネルギ検出
器を用いた。
A Rutherford Backscattering Spectroscopy (hereinafter referred to as RBS) was arranged at the exit of the RFQ accelerator 6 in order to measure the energy spectrum of the ions accelerated by the RFQ accelerator 6. The RBS is composed of a target 11 and an energy detector 12, and the ions emitted from the RFQ accelerator 6 are scattered by the target 11 and enter the energy detector 12, where the amount of charge corresponding to the acceleration energy is generated. An energy spectrum can be measured by obtaining this charge amount for each particle. The target 11 used was carbon deposited with 100 to 200 liters of gold, and the energy detector 12 used a surface barrier type particle energy detector.

以上のセットアップにより、RFQ加速器6のベーンに印
加する高周波電圧を変化させ、RFQ加速器6から出射し
た粒子のエネルギスペクトルを測定した結果を第3図〜
第8図に示す。なお、これらの図において横軸はエネル
ギ、縦軸は粒子の検出カウント数である。
With the above setup, the high-frequency voltage applied to the vane of the RFQ accelerator 6 was changed, and the energy spectrum of the particles emitted from the RFQ accelerator 6 was measured.
It is shown in FIG. In these figures, the horizontal axis is energy and the vertical axis is the particle detection count number.

第3図〜第6図は14N+粒子についての実験結果である。
すなわち、この実験においては、イオン源1においてN2
ガスから14N+を発生し、これをRFQ加速器6の入射条件
である84keVに加速して加速器6内に導入した。RFQ加速
器6の共振周波数は70.300MHzで一定とした。この条件
におけるRFQ加速器6の設計電圧値、つまりイオンの入
射スピードと高周波の周波数およびRFQ加速器6のベー
ン波形によって定まる共振条件を満足する高周波電圧
は、約54.8kVである。
3 to 6 show the experimental results for 14 N + particles.
That is, in this experiment, in the ion source 1, N 2
14 N + was generated from the gas, which was accelerated to 84 keV which is the incident condition of the RFQ accelerator 6 and introduced into the accelerator 6. The resonance frequency of the RFQ accelerator 6 is constant at 70.300 MHz. The design voltage value of the RFQ accelerator 6 under this condition, that is, the high-frequency voltage satisfying the resonance condition determined by the ion incident speed and the high-frequency frequency and the vane waveform of the RFQ accelerator 6, is about 54.8 kV.

第3図はRFQ加速器6の設計電圧値そのまま(100%)を
印加した場合の測定結果で、設計通りのエネルギ値に単
独のピークが生じた。なお、ピーク以外のエネルギ値に
おいてカウント数が存在するのは、主としてターゲット
11での散乱時において生ずる多重散乱されたエネルギの
低い粒子および測定ノイズ等である。
FIG. 3 shows the measurement result when the design voltage value of the RFQ accelerator 6 is applied as it is (100%), and a single peak appears in the energy value as designed. The number of counts at energy values other than the peak is mainly due to the target.
Multiple scattered low-energy particles and measurement noise, etc., generated at the time of scattering at 11.

第4図,第5図および第6図は、それぞれ高周波電圧を
設計電圧値の87%,84%および78%としたときの測定結
果である。これらの図より明らかなように、高周波電圧
の下方へのシフトにより、またそのシフト量に応じて、
第3図のピークよりも低いエネルギ領域において1個ま
たは複数個のピークが生じた。このことは、明らかにイ
オンのエネルギがベーンに印加する電圧により変化する
ことを示している。
FIGS. 4, 5, and 6 show the measurement results when the high-frequency voltage is 87%, 84%, and 78% of the design voltage value, respectively. As is clear from these figures, due to the downward shift of the high frequency voltage, and according to the shift amount,
One or more peaks occurred in the energy region lower than the peak in FIG. This clearly shows that the energy of the ions changes depending on the voltage applied to the vane.

第7図および第8図は11B+粒子についての実験結果であ
る。この実験では、イオン源1においてBF3ガスから11B
+を発生して、66keVに加速してRFQ加速器6に導いた。R
FQ加速器6の共振周波数は70.340MHzである。この条件
でのRFQ加速器6の設計電圧は約43kVである。
Figures 7 and 8 are the experimental results for 11 B + particles. In this experiment, 11 B from BF 3 gas was used at the ion source 1.
+ Was generated, accelerated to 66 keV and led to the RFQ accelerator 6. R
The resonance frequency of the FQ accelerator 6 is 70.340MHz. The design voltage of the RFQ accelerator 6 under this condition is about 43 kV.

第7図はその設計電圧100%を、また第8図はその88%
の電圧を印加したときの測定結果を示している。
Fig. 7 shows the design voltage of 100%, and Fig. 8 shows the design voltage of 88%.
The measurement result when the voltage of is applied is shown.

この実験においても、100%の電圧印加によって設計通
りのエネルギ値に単独のピークを示したのに対し、電圧
を下方にシフトすることによってそのピークよりも低い
エネルギにおいて別のピークを示し、高周波電圧の下方
へのシフトによって粒子加速エネルギを変化させ得るこ
とが実証された。
In this experiment as well, a single peak was shown at the energy value as designed by applying 100% voltage, but by shifting the voltage downward, another peak was shown at an energy lower than that peak, and high frequency voltage It has been demonstrated that a downward shift of can change the particle acceleration energy.

第2図は本発明を応用した素地の要部構成を示すブロッ
ク図で、第1図と同一のものには同一の番号を付して示
している。前記した実験例より明らかなように、RFQ加
速器6のベーンに印加する高周波電圧を下方にシフトす
ると、複数のエネルギピークが生ずる場合がある。そこ
で、この応用例では、RFQ加速器6の出口に分析マグネ
ット20を配設し、所望のエネルギを持つイオンのみを選
択して目的方向に導くよう構成している。この構成は、
例えば半導体へのイオン注入に本発明を利用する場合等
に極めて有効である。
FIG. 2 is a block diagram showing a main part structure of a base material to which the present invention is applied. The same parts as those in FIG. 1 are designated by the same reference numerals. As is clear from the experimental example described above, when the high frequency voltage applied to the vane of the RFQ accelerator 6 is shifted downward, a plurality of energy peaks may occur. Therefore, in this application example, the analysis magnet 20 is arranged at the exit of the RFQ accelerator 6 so that only ions having desired energy are selected and guided to the target direction. This configuration
For example, it is extremely effective when the present invention is used for ion implantation into a semiconductor.

<発明の効果> 以上説明したように、本発明によれば、ベーンに印加す
る高周波電圧をシフトするだけで荷電粒子の加速エネル
ギを変化させることができ、従来の共振周波数を変化さ
せる方式に比して極めて容易にエネルギの可変性を実現
できる。このことは、例えば半導体へのイオン注入等の
高エネルギ大電流でしかもエネルギ可変性が要求される
イオンビーム応用分野へのRFQ加速器の適用の可能性を
大きく拡げ、この応用分野に革新的な進歩をもたらすも
のと期待される。ここで、本発明によると、複数のエネ
ルギピークが生じる場合があるが、このような場合に
は、必要に応じて加速器の出口に分析マグネット等を配
置して所要のエネルギを持つ粒子のみを抽出すればよ
く、RFQ加速器に複雑な外部共振器を付加することで粒
子加速エネルギを変化させる従来の方法ないしは装置に
比して、大幅に装置構成を簡略化することができる。
<Effects of the Invention> As described above, according to the present invention, the acceleration energy of charged particles can be changed only by shifting the high-frequency voltage applied to the vane, and compared with the conventional method of changing the resonance frequency. Therefore, the variability of energy can be realized very easily. This greatly expands the applicability of the RFQ accelerator to the ion beam application field that requires high energy and large current such as ion implantation into semiconductors, and energy variability is required. Is expected to bring. Here, according to the present invention, a plurality of energy peaks may occur. In such a case, an analysis magnet or the like is arranged at the exit of the accelerator as necessary to extract only particles having a required energy. The RFQ accelerator can be added with a complicated external resonator to greatly simplify the apparatus configuration as compared with the conventional method or apparatus in which the particle acceleration energy is changed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明を適用して粒子の加速エネルギを実測し
た実験装置のレイアウトを示すブロック図、 第2図は本発明を応用した装置の要部構成を示すブロッ
ク図、 第3図乃至第8図は第1図に示した装置による実験結果
を示すグラフ、 第9図はRFQ加速器の概念構造を示す部分断面斜視図で
ある。 1……イオン源 2……直流高圧電源 3,5……静電Qレンズ 4……分析マグネット 6……RFQ加速器 7……高周波電源 8……電圧検出器 9……制御回路 10……電圧設定器
FIG. 1 is a block diagram showing a layout of an experimental apparatus in which the acceleration energy of particles is measured by applying the present invention, FIG. 2 is a block diagram showing a main configuration of an apparatus to which the present invention is applied, and FIGS. FIG. 8 is a graph showing an experimental result by the apparatus shown in FIG. 1, and FIG. 9 is a partial sectional perspective view showing a conceptual structure of the RFQ accelerator. 1 …… ion source 2 …… DC high voltage power supply 3,5 …… electrostatic Q lens 4 …… analyzing magnet 6 …… RFQ accelerator 7 …… high frequency power supply 8 …… voltage detector 9 …… control circuit 10 …… voltage Setting device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】円筒タンク内にそのタンクの軸方向に沿う
波形が先端部に形成された4個の電極が配設されてなる
空胴共振器に所定周波数の高周波電圧を印加して共振さ
せた状態で、上記電極の先端で囲まれた空間内に所定ス
ピードのもとに荷電粒子を導くことによって、その荷電
粒子を加速する装置において、上記印加すべき高周波電
圧を、荷電粒子の導入スピードとこの高周波電圧の周波
数および上記各電極の波形の周期に基づく共振条件を満
足する電圧値よりも、下方に所定量だけ継続的にシフト
することによって荷電粒子の加速エネルギを変化させる
ことを特徴とする高周波四重極加速器における加速エネ
ルギ制御方法。
1. A high-frequency voltage of a predetermined frequency is applied to a cavity of a cylindrical tank in which four electrodes having a corrugated shape along the axial direction of the tank are formed to resonate. In the state where the charged particles are guided into the space surrounded by the tip of the electrode at a predetermined speed, the high-frequency voltage to be applied is set to And a voltage value satisfying the resonance condition based on the frequency of the high-frequency voltage and the period of the waveform of each electrode, the acceleration energy of the charged particles is changed by continuously shifting the voltage value downward by a predetermined amount. Energy control method for high frequency quadrupole accelerator.
JP63176540A 1988-07-15 1988-07-15 Acceleration energy control method in high frequency quadrupole accelerator Expired - Lifetime JPH0697640B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63176540A JPH0697640B2 (en) 1988-07-15 1988-07-15 Acceleration energy control method in high frequency quadrupole accelerator
EP89307126A EP0353888A1 (en) 1988-07-15 1989-07-13 Method and apparatus for controlling the acceleration energy of a radiofrequency multipole linear accelerator
US08/532,116 US5796219A (en) 1988-07-15 1995-09-22 Method and apparatus for controlling the acceleration energy of a radio-frequency multipole linear accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63176540A JPH0697640B2 (en) 1988-07-15 1988-07-15 Acceleration energy control method in high frequency quadrupole accelerator

Publications (2)

Publication Number Publication Date
JPH0227699A JPH0227699A (en) 1990-01-30
JPH0697640B2 true JPH0697640B2 (en) 1994-11-30

Family

ID=16015380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63176540A Expired - Lifetime JPH0697640B2 (en) 1988-07-15 1988-07-15 Acceleration energy control method in high frequency quadrupole accelerator

Country Status (2)

Country Link
EP (1) EP0353888A1 (en)
JP (1) JPH0697640B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012048166A3 (en) * 2010-10-06 2012-07-05 Lawrence Livermore National Security, Llc Particle beam couplingsystem and method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2617240B2 (en) * 1990-11-16 1997-06-04 株式会社島津製作所 Control method of acceleration energy in high frequency quadrupole accelerator
US5801488A (en) * 1996-02-29 1998-09-01 Nissin Electric Co., Ltd. Variable energy radio-frequency type charged particle accelerator
DE19750904A1 (en) * 1997-07-29 1999-02-18 Accsys Technology Inc Dual energy ion beam accelerator
KR20010091241A (en) * 2000-03-14 2001-10-23 장인순 Screen grid controer of cyclotron RF power amplifier

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115199A (en) * 1983-11-28 1985-06-21 株式会社日立製作所 Quadruple pole particle accelerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012048166A3 (en) * 2010-10-06 2012-07-05 Lawrence Livermore National Security, Llc Particle beam couplingsystem and method

Also Published As

Publication number Publication date
JPH0227699A (en) 1990-01-30
EP0353888A1 (en) 1990-02-07

Similar Documents

Publication Publication Date Title
Tsimring Gyrotron electron beams: Velocity and energy spread and beam instabilities
US7994473B2 (en) Mass spectrometer with an electrostatic ion trap
Burkhart et al. A virtual‐cathode reflex triode for high‐power microwave generation
JPH0697640B2 (en) Acceleration energy control method in high frequency quadrupole accelerator
US5796219A (en) Method and apparatus for controlling the acceleration energy of a radio-frequency multipole linear accelerator
Richardson et al. Development of the frequency modulated cyclotron
Lobanov et al. Bunching and chopping for tandem accelerators. Part I: Bunching
Yokota et al. Performance and operation of a beam chopping system for a cyclotron with multiturn extraction
Bailey Crossed Electric and Magnetic Field Multichannel Ion Analyzer
Starodubov et al. Higher harmonics generation in low-voltage vircator system
JP2617240B2 (en) Control method of acceleration energy in high frequency quadrupole accelerator
JP2569812B2 (en) High energy ion implanter
Kas' yanenko et al. Lowfrequency parasitic oscillations in the 74.2 GHz moderate-power pulse gyrotron
Wang et al. Electron beam injector for longitudinal beam physics experiments
Akimov et al. High-power X-band pulse magnicon
Feschenko Bunch shape monitors using low energy secondary electron emission
Linardakis et al. Nanosecond Pulsing for Tandem Accelerator
US4861991A (en) Electron storage source for electron beam testers
Chen et al. Breakthrough of the mini-cyclotron mass spectrometer for 14C analysis
Zakhary Beam diagnostic techniques for a small‐size high‐efficiency radio‐frequency ion source
Anderson et al. Klystron bunching of the ion beam of a 5.5 MV Van de Graaff
Stenzel et al. Energetic Ion Beam Source and Free‐Stream Beam Diagnostic Techniques
Arzumanov et al. Current Status and Future Project of Cyclotron Laboratory in Alma-Ata
Ilyakov et al. 10-MW, Ka-band gyrotron
Orlov et al. Gamma-electron dynamics and radio frequency capacitive sheath diagnostics