JPH0697544A - Solid laser osillator - Google Patents

Solid laser osillator

Info

Publication number
JPH0697544A
JPH0697544A JP27242692A JP27242692A JPH0697544A JP H0697544 A JPH0697544 A JP H0697544A JP 27242692 A JP27242692 A JP 27242692A JP 27242692 A JP27242692 A JP 27242692A JP H0697544 A JPH0697544 A JP H0697544A
Authority
JP
Japan
Prior art keywords
solid
state laser
laser medium
thermal
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27242692A
Other languages
Japanese (ja)
Inventor
Hirofumi Imai
浩文 今井
Masahiro Daimon
正博 大門
Satoru Yamaguchi
哲 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27242692A priority Critical patent/JPH0697544A/en
Publication of JPH0697544A publication Critical patent/JPH0697544A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To reduce thermal lens effect having anisotropy thermal abberation effect and thermal double refraction effect of a solid laser medium, by reducing anisotropic temperature rise in the surface vertical to the optical axis of the solid laser medium, when a pumping light source wherein the optical distribution of radiation light has anisotropy is used. CONSTITUTION:A heat dissipating film 6 is provided with a hole 6a brought into close contact with at least either one of the end surfaces of solid laser medium 5, and pumping light is inputted and/or outputted through the hole 6a, which has a shape compensating the anisotropic thermal distribution of the solid laser medium and obtaining an isotropic thermal distribution. By using the above heat dissipating film 6, thermal lens effect having anisotropoy in solid laser, thermal abberation effect and thermal double refraction effect can be reduced, so that the aberration of laser light can be reduced and it can be expected to obtain a high quality light beam. In a light source applying a second harmonic wave, the control of a plane of polarization is enabled up to large pumping light intensity, so that a green light source of high output and low noise can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体レーザや他の光
源からの光を直接あるいは光ファイバ等で導光し、これ
を励起光として固体レーザ媒質を端面励起させる固体レ
ーザ発振器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state laser oscillator in which light from a semiconductor laser or another light source is guided directly or through an optical fiber, and the solid-state laser medium is end-excited by using this as excitation light. .

【0002】[0002]

【従来の技術】従来から、互いに対向する一対のミラー
間にNd:YAGなどの固体レーザ媒質を設置してなる
共振器中に、その一方の端面から半導体レーザからの放
射光を励起光として入射して固体レーザ媒質を励起させ
る形式の固体レーザ発振器があり、これは電球やフラッ
シュランプ等を用いた形式の固体レーザ発振器よりも手
軽なレーザ光源と知られている。
2. Description of the Related Art Conventionally, a radiated light from a semiconductor laser is incident as excitation light from one end face of a resonator in which a solid laser medium such as Nd: YAG is installed between a pair of opposed mirrors. There is a type of solid-state laser oscillator that excites a solid-state laser medium, and this is known as a laser light source that is easier than a type of solid-state laser oscillator that uses a light bulb, a flash lamp, or the like.

【0003】上記した端面励起型固体レーザ発振器の構
成の一例を図5に示す。励起光源としての半導体レーザ
チップ1の出射光の光軸上に集光レンズ2と、共振器と
しての1対の共振器ミラー3、4と、両ミラー3、4間
に設けられた円柱状のNd:YAGレーザ媒質5とから
構成される。尚、図示されていないが、これら半導体レ
ーザチップ1、集光レンズ2、共振器ミラー3、4、レ
ーザ媒質5はその光学的位置を維持するべくホルダ等に
より支持されていることは云うまでもない。
FIG. 5 shows an example of the structure of the above-mentioned edge-pumped solid-state laser oscillator. A condenser lens 2 on the optical axis of the emitted light of a semiconductor laser chip 1 as an excitation light source, a pair of resonator mirrors 3 and 4 as a resonator, and a cylindrical shape provided between both mirrors 3 and 4. It is composed of an Nd: YAG laser medium 5. Although not shown, it goes without saying that the semiconductor laser chip 1, the condenser lens 2, the resonator mirrors 3 and 4, and the laser medium 5 are supported by a holder or the like in order to maintain their optical positions. Absent.

【0004】このような端面励起型固体レーザ発振器に
於て、その固体レーザ媒質を励起する励起光の強度出力
を大きくする場合、その励起光によってレーザ媒質が局
部的に加熱されて温度上昇し、そのレーザ媒質への入熱
と熱伝導と放熱方法で決まる温度分布が発生する。この
局部熱による温度分布は光軸に対して平行な面と光軸に
対して垂直な面とに分けて考えられる。光軸に対して平
行な面の温度上昇を低減するための方法として、例えば
特開平4ー82281号公報には、固体レーザ媒質の励
起光側の表面に熱伝導率の高い透明なヒートシンクを設
ける方法が開示されている。
In such an edge-pumped solid-state laser oscillator, when the intensity output of the pumping light for pumping the solid-state laser medium is increased, the pumping light locally heats the laser medium to raise the temperature, A temperature distribution that is determined by the heat input to the laser medium, heat conduction, and heat dissipation method occurs. The temperature distribution due to this local heat can be considered as being divided into a plane parallel to the optical axis and a plane perpendicular to the optical axis. As a method for reducing the temperature rise of the plane parallel to the optical axis, for example, in Japanese Patent Laid-Open No. 4-82281, a transparent heat sink having a high thermal conductivity is provided on the surface of the solid-state laser medium on the excitation light side. A method is disclosed.

【0005】一方、後者の光軸に対して垂直な面の温度
分布は光の強度分布が異方性を有する励起光源を採用し
た場合に発生する。良く知られているように半導体レー
ザの放射光分布は半導体レーザの活性層に対して平行な
方向と垂直な方向とで異方性を有し、その形状は概ね楕
円形をなす。そして、この半導体レーザを励起光源とし
て使用する場合には上記光軸に対して垂直な面の温度分
布が異方性を有することとなる。これをレーザ媒質5の
端面を模式的に示す図6をもって説明すると、半導体レ
ーザチップ1からの出射光で励起する励起光の分布状態
Lは楕円形をなす。また、固体レーザ媒質5の光軸に対
して垂直な面の温度分布はこの励起光を吸収することに
よる発熱に基づくものであることから、上記励起光分布
を反映して励起光の分布状態Lと同じ形、即ち楕円形の
ままレーザ媒質5の光軸に対して垂直な面内で広がるこ
ととなる。
On the other hand, the latter temperature distribution on a surface perpendicular to the optical axis occurs when an excitation light source having an anisotropic light intensity distribution is adopted. As is well known, the emitted light distribution of a semiconductor laser has anisotropy in a direction parallel to the active layer of the semiconductor laser and in a direction perpendicular to the active layer, and its shape is substantially elliptical. When this semiconductor laser is used as an excitation light source, the temperature distribution on the plane perpendicular to the optical axis has anisotropy. This will be described with reference to FIG. 6 which schematically shows the end face of the laser medium 5. The distribution state L of the excitation light excited by the emitted light from the semiconductor laser chip 1 is elliptical. Further, since the temperature distribution of the plane perpendicular to the optical axis of the solid-state laser medium 5 is based on the heat generated by absorbing this excitation light, the distribution state L of the excitation light is reflected by reflecting the excitation light distribution. The same shape, that is, an elliptical shape, spreads in a plane perpendicular to the optical axis of the laser medium 5.

【0006】しかしながら、固体レーザ媒質5の端面5
aは円形をなすことから、上記励起光分布を反映する異
方性の温度分布により、固体レーザ媒質5が異方性を有
する熱レンズ効果、熱収差効果と熱複屈折効果を発生
し、固体レーザ発振器としての出力限界を低下させ、固
体レーザ発振器を高出力化することができなかった。ま
た、出力可能範囲であっても、低出力発振器として使用
する場合には問題ないが、高出力発振器として使用する
場合に光出力ビームに収差が含まれることから、例えば
光ディスク装置の光源のように収差に厳しい要求がある
ものに用途には不向きであった。更に、この光ディスク
装置の緑色光源では、光ノイズを可及的に小さくするこ
とが望まれており、この実現のために、例えば特開平1
ー220879号公報にはレーザ共振内の基本波の偏光
面を制御する方法が開示されているが、レーザ出力を増
大させるために励起光を大きくすれば、上記したように
固体レーザ媒質の熱複屈折効果が大きくなるために偏光
面制御が困難になり、光源の光ノイズが小さくならない
という短所もあった。
However, the end face 5 of the solid-state laser medium 5 is
Since a has a circular shape, the solid-state laser medium 5 produces a thermal lens effect, a thermal aberration effect, and a thermal birefringence effect having anisotropy due to the anisotropic temperature distribution reflecting the excitation light distribution. It was not possible to reduce the output limit of the laser oscillator and increase the output of the solid-state laser oscillator. Also, even if it is in the outputtable range, there is no problem when it is used as a low output oscillator, but when it is used as a high output oscillator, since the optical output beam contains aberrations, for example, like a light source of an optical disk device, It was unsuitable for applications where there are severe requirements for aberrations. Furthermore, in the green light source of this optical disk device, it is desired to reduce optical noise as much as possible, and in order to realize this, for example, Japanese Patent Laid-Open No.
Japanese Unexamined Patent Publication No. 220879/1990 discloses a method of controlling the plane of polarization of the fundamental wave in the laser resonance. However, if the excitation light is increased in order to increase the laser output, as described above, the thermal energy of the solid laser medium is increased. Since the refraction effect is increased, it is difficult to control the polarization plane, and the optical noise of the light source is not reduced.

【0007】上記したような半導体レーザ放射光の光強
度分布の異方性を補正するために、シリンドリカルレン
ズやプリズムをもってビーム整形する方法が知られてい
るが、完全に補正することは困難であり、実際には補正
後も上記異方性が残ることとなる。また、云うまでもな
く特開平4ー82281号公報に開示された方法では光
軸に対して垂直な面の異方的な温度分布は解決されな
い。
In order to correct the anisotropy of the light intensity distribution of the semiconductor laser radiated light as described above, there is known a method of beam-shaping with a cylindrical lens or a prism, but it is difficult to completely correct it. Actually, the anisotropy remains after the correction. Needless to say, the method disclosed in Japanese Patent Application Laid-Open No. 4-82281 does not solve the anisotropic temperature distribution on the plane perpendicular to the optical axis.

【0008】他方、例えば光源からの光を複数の光ファ
イバをもって共振器に導く形式の固体レーザ発振器があ
るが、この場合も各光ファイバから出射された光を一点
に集光させて共振器への入射光の断面を円形とすること
は困難であり、光軸に対して垂直な面の温度分布が異方
性を有することとなる。
On the other hand, for example, there is a solid-state laser oscillator in which light from a light source is guided to a resonator through a plurality of optical fibers. In this case as well, the light emitted from each optical fiber is condensed at one point to the resonator. It is difficult to make the cross section of the incident light into a circular shape, and the temperature distribution of the plane perpendicular to the optical axis has anisotropy.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記したよ
うな従来技術の問題点に鑑みなされたものであり、その
主な目的は、放射光の光分布が異方性を有する励起光源
を用いた場合の、固体レーザ媒質の光軸に対して垂直な
面の異方的な温度上昇を低減し、固体レーザ媒質の異方
性を有する熱レンズ効果、熱収差効果、熱複屈折効果を
低減することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and its main purpose is to provide an excitation light source having an anisotropic light distribution of emitted light. When used, the anisotropic temperature rise of the surface perpendicular to the optical axis of the solid-state laser medium is reduced, and the thermal lens effect, the thermal aberration effect, and the thermal birefringence effect having the anisotropy of the solid-state laser medium are reduced. To reduce.

【0010】[0010]

【課題を解決するための手段】上記した目的は本発明に
よれば、1対のミラーからなる共振器と、前記共振器中
に配置された固体レーザ媒質と、前記固体レーザ媒質を
端面励起するべく光軸に対して垂直な面について異方的
に分布する励起光を発生する励起光源と、前記固体レー
ザ媒質に発生した熱を放熱させる手段とを備える固体レ
ーザ発振器に於て、前記放熱手段が、前記固体レーザ媒
質の端面の少なくともいずれか一方に成膜されると共に
前記励起光が入射及び/または出射する孔を有する放熱
膜からなり、前記孔が、前記異方的な熱分布を補償して
等方的な熱分布となるような形状をなすことを特徴とす
る固体レーザ発振器を提供することにより達成される。
According to the present invention, the above object is achieved by: a resonator comprising a pair of mirrors; a solid-state laser medium arranged in the resonator; and end-pumping the solid-state laser medium. A solid-state laser oscillator comprising: a pumping light source for generating pumping light anisotropically distributed on a plane perpendicular to the optical axis; and a means for radiating heat generated in the solid-state laser medium. Is formed on at least one of the end faces of the solid-state laser medium and has a heat dissipation film having a hole through which the excitation light enters and / or exits, and the hole compensates for the anisotropic heat distribution. This is achieved by providing a solid-state laser oscillator characterized by having a shape such that an isotropic heat distribution is obtained.

【0011】[0011]

【作用】このように、励起光により発生する異方的な熱
の分布を補償して等方的な熱の分布となるように固体レ
ーザ媒質の端面に上記熱分布に応じた形状の孔を有する
放熱膜を設けることにより、励起光源からの励起光によ
り発生する熱が異方的に放熱され、放熱効率が大きな方
向と発熱が大きな方向とが一致し、熱の蓄積の異方性が
小さくなる。
In this way, holes having a shape corresponding to the above heat distribution are formed on the end face of the solid-state laser medium so that the anisotropic heat distribution generated by the excitation light is compensated to obtain an isotropic heat distribution. By providing the heat-dissipating film, the heat generated by the excitation light from the excitation light source is dissipated anisotropically, the direction of large heat dissipation coincides with the direction of large heat generation, and the anisotropy of heat accumulation is small. Become.

【0012】[0012]

【実施例】以下、本発明の好適実施例を添付の図面につ
いて詳しく説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will now be described in detail with reference to the accompanying drawings.

【0013】図1は、本発明が適用された第1の実施例
に於ける固体レーザ発振器の構成を示す模式的斜視図で
ある。本実施例の固体レーザ発振器の基本構成は図4に
示す従来の固体レーザ発振器と同様であり、同じ部分に
は同一の符号を付し、その詳細な説明を省略する。図
2、図3に併せて示すように、本実施例では、固体レー
ザ媒質5の入射側端面5a及び出射側端面5bに光学的
多層膜9、10が設けられている。例えば1.06μm
の波長のレーザ発振では膜9が1.06μm、0.80
8μmの波長の光を全透過し、膜10が1.06μmの
波長の光を全透過し、かつ0.808μmの波長の光を
全反射するようになっており、レーザ発振を容易にして
いる。また、入射側端面5a光学的多層膜9上には金属
膜からなる放熱膜6が成膜している。
FIG. 1 is a schematic perspective view showing the structure of a solid-state laser oscillator according to a first embodiment of the present invention. The basic configuration of the solid-state laser oscillator of the present embodiment is the same as that of the conventional solid-state laser oscillator shown in FIG. As shown in FIGS. 2 and 3, in this embodiment, optical multilayer films 9 and 10 are provided on the incident side end face 5a and the emitting side end face 5b of the solid-state laser medium 5. For example, 1.06 μm
In the laser oscillation of the wavelength of 1.06 μm, 0.80
The film 10 transmits all the light having a wavelength of 8 μm, the film 10 totally transmits the light having a wavelength of 1.06 μm, and totally reflects the light having a wavelength of 0.808 μm, which facilitates laser oscillation. . In addition, a heat dissipation film 6 made of a metal film is formed on the incident side end surface 5a of the optical multilayer film 9.

【0014】放熱膜6には半導体レーザチップ1からの
半導体レーザの中心Oを中心とし、半導体レーザの活性
層に対して平行な方向が短軸であり、かつ垂直な方向が
長軸の楕円形の孔6aが設けられている。この孔6aに
より半導体レーザの活性層に対して平行な方向と垂直な
方向との放熱性が異なるようになる。従って、励起光に
より発生する異方的な熱の分布を補償して固体レーザ媒
質5に現れる蓄熱の異方性が小さくなる。
The heat dissipation film 6 has an elliptical shape with the minor axis being the center O of the semiconductor laser from the semiconductor laser chip 1, the direction parallel to the active layer of the semiconductor laser being the minor axis, and the direction perpendicular to the major axis being the major axis. Hole 6a is provided. Due to the holes 6a, the heat radiation properties in the direction parallel to the active layer of the semiconductor laser and in the direction perpendicular to the active layer are different. Therefore, the anisotropic distribution of heat generated in the solid-state laser medium 5 is reduced by compensating the anisotropic heat distribution generated by the excitation light.

【0015】ここで、放熱膜6は公知の成膜法により形
成されていることから光学的多層膜9との密着性が高
く、密着性が低いことによる各部間の放熱性のばらつき
がない。尚、本実施例では端面5a上に光学的多層膜9
を介して放熱膜6を設けたが、実際には直接端面5aに
放熱膜6を設けても良い。また、本実施例では端面5a
上に放熱膜6を設けたが、端面5b上に設けても良い。
Here, since the heat dissipation film 6 is formed by a known film forming method, it has high adhesion to the optical multilayer film 9, and there is no variation in heat dissipation between the respective parts due to the low adhesion. In this embodiment, the optical multilayer film 9 is formed on the end surface 5a.
Although the heat dissipation film 6 is provided via the above, the heat dissipation film 6 may actually be provided directly on the end face 5a. Further, in this embodiment, the end surface 5a
Although the heat dissipation film 6 is provided on the upper surface, it may be provided on the end surface 5b.

【0016】実際に、固体レーザ媒質5の端面5aは励
起光源としての半導体レーザチップ1からの励起光の照
射を受けて、その励起光分布に応じた入熱分布となる。
この熱は熱伝導により、放熱膜6に放熱される。その
際、放熱性が異方性を有することから入熱の異方性を補
償でき、蓄熱の異方性が小さくなる。従って、本実施例
では、従来と比較して固体レーザ媒質5の励起光による
温度上昇が等方的になり、半導体レーザのように異方的
な放射分布を有する励起光光源を用いた固体レーザ発振
器に於ても、固体レーザ媒質の異方性を有する熱レンズ
効果、熱収差効果及び熱複屈折効果を低減できる。
Actually, the end surface 5a of the solid-state laser medium 5 receives irradiation of excitation light from the semiconductor laser chip 1 as an excitation light source, and has a heat input distribution corresponding to the excitation light distribution.
This heat is radiated to the heat dissipation film 6 by heat conduction. At that time, since the heat dissipation property has anisotropy, the anisotropy of heat input can be compensated, and the anisotropy of heat storage becomes small. Therefore, in the present embodiment, the temperature rise due to the pumping light of the solid-state laser medium 5 is isotropic as compared with the conventional one, and a solid-state laser using a pumping light source having an anisotropic radiation distribution like a semiconductor laser is used. Also in the oscillator, the thermal lens effect, the thermal aberration effect, and the thermal birefringence effect having the anisotropy of the solid-state laser medium can be reduced.

【0017】図4は本発明が適用された第2の実施例を
示す図1と同様の図である。
FIG. 4 is a view similar to FIG. 1 showing a second embodiment to which the present invention is applied.

【0018】本実施例では第1の実施例と同様な放熱膜
6の表面に孔6aと同様な形状の孔11aを有する放熱
板11が密着している。これによりレーザ媒質5の入射
側端面5aに放熱膜6のみを設けたものに比較して放熱
性が高くなっている。また、放熱板11のみを設けたも
のに比較して、放熱膜6が放熱板11表面と固体レーザ
媒質5の端面5aとの間で変形することで両者間の密着
性を向上することができる。尚、図示されていないが、
放熱板11に形成された孔11aは半導体レーザチップ
1からの励起光の収束形状に対応してテーパ状をなして
いる。それ以外の構成は第1の実施例と同様である。
In this embodiment, a heat dissipation plate 11 having a hole 11a having the same shape as the hole 6a is closely attached to the surface of the heat dissipation film 6 similar to that of the first embodiment. As a result, the heat radiation performance is higher than that in the case where only the heat radiation film 6 is provided on the incident side end surface 5a of the laser medium 5. Further, as compared with the case where only the heat dissipation plate 11 is provided, the heat dissipation film 6 is deformed between the surface of the heat dissipation plate 11 and the end surface 5a of the solid-state laser medium 5, so that the adhesion between the two can be improved. . Although not shown,
The hole 11a formed in the heat dissipation plate 11 has a tapered shape corresponding to the convergent shape of the excitation light from the semiconductor laser chip 1. The other configuration is the same as that of the first embodiment.

【0019】尚、第二高調波発生(SHG)を目的とし
た固体レーザ発振器に於ても、図1の共振器中にSHG
素子と複屈折物質とを挿入するだけであることから上記
放熱機構を設けることで同様な効果を得ることができ
る。
In the solid-state laser oscillator for the purpose of generating the second harmonic (SHG), the SHG in the resonator shown in FIG.
Since only the element and the birefringent substance are inserted, the same effect can be obtained by providing the heat dissipation mechanism.

【0020】[0020]

【発明の効果】以上の説明により明らかなように、本発
明による固体レーザ発振器によれば、固体レーザ媒質の
端面の少なくともいずれか一方に密着し、励起光が入射
及び/または出射すると共に固体レーザ媒質の異方的な
熱分布を補償して等方的な熱分布となるような形状をな
す孔を有する放熱膜を設けることにより、固体レーザに
於て異方性を有する熱レンズ効果、熱収差効果及び熱複
屈折効果を低減することが可能となることから、レーザ
光の収差を低減でき、高品質の光ビームを得ることが期
待できる。また第二高調波を利用する光源では、偏光面
制御が大きな励起光強度まで可能となるので、高出力か
つ低ノイズの緑色光源を提供することができる。
As is apparent from the above description, according to the solid-state laser oscillator of the present invention, the solid-state laser is brought into close contact with at least one of the end faces of the solid-state laser medium, and the excitation light enters and / or emits the solid-state laser. By providing a heat-dissipating film having a hole having a shape that compensates for the anisotropic heat distribution of the medium and has an isotropic heat distribution, the thermal lens effect and the heat which have anisotropy in the solid-state laser can be obtained. Since it is possible to reduce the aberration effect and the thermal birefringence effect, it is expected that the aberration of the laser light can be reduced and a high-quality light beam can be obtained. Further, in the light source using the second harmonic, the polarization plane can be controlled up to a large excitation light intensity, so that a green light source with high output and low noise can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明が適用された第1の実施例に於ける固体
レーザ発振器の構成を示す模式的斜視図である。
FIG. 1 is a schematic perspective view showing a configuration of a solid-state laser oscillator according to a first embodiment to which the present invention is applied.

【図2】励起光の強度分布と固体レーザ媒質の温度分布
とを併せて示す図1の要部拡大正面図である。
FIG. 2 is an enlarged front view of a main part of FIG. 1, which shows the intensity distribution of pumping light and the temperature distribution of a solid-state laser medium together.

【図3】固体レーザ媒質の端面の成膜状態を示す図1の
要部拡大側面図である。
FIG. 3 is an enlarged side view of an essential part of FIG. 1, showing a film formation state on an end face of a solid-state laser medium.

【図4】本発明が適用された第2の実施例に於ける固体
レーザ媒質を示す図3と同様な図である。
FIG. 4 is a view similar to FIG. 3 showing a solid-state laser medium in a second embodiment to which the present invention is applied.

【図5】従来の固体レーザ発振器の構成を示す模式的斜
視図である。
FIG. 5 is a schematic perspective view showing a configuration of a conventional solid-state laser oscillator.

【図6】励起光の強度分布と固体レーザ媒質の温度分布
とを併せて示す図4の要部拡大正面図である。
FIG. 6 is an enlarged front view of the main part of FIG. 4, showing the intensity distribution of the excitation light and the temperature distribution of the solid-state laser medium together.

【符号の説明】[Explanation of symbols]

1 半導体レーザチップ 2 集光レンズ 3、4 共振器ミラー 5 レーザ媒質 5a、5b 端面 6 放熱膜 6a 孔 9、10 光学的多層膜 11 放熱板 11a 孔 1 Semiconductor Laser Chip 2 Condensing Lens 3, 4 Resonator Mirror 5 Laser Medium 5a, 5b End Face 6 Heat Dissipating Film 6a Hole 9, 10 Optical Multilayer Film 11 Heat Sink 11a Hole

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 1対のミラーからなる共振器と、前記
共振器中に配置された固体レーザ媒質と、前記固体レー
ザ媒質を端面励起するべく光軸に対して垂直な面につい
て異方的に分布する励起光を発生する励起光源と、前記
固体レーザ媒質に発生した熱を放熱させる手段とを備え
る固体レーザ発振器に於て、 前記放熱手段が、前記固体レーザ媒質の端面の少なくと
もいずれか一方に成膜されると共に前記励起光が入射及
び/または出射する孔を有する放熱膜からなり、 前記孔が、前記異方的な熱分布を補償して等方的な熱分
布となるような形状をなすことを特徴とする固体レーザ
発振器。
1. A resonator comprising a pair of mirrors, a solid-state laser medium disposed in the resonator, and an anisotropic surface with respect to a plane perpendicular to an optical axis for end-pumping the solid-state laser medium. In a solid-state laser oscillator comprising a pumping light source for generating distributed pumping light, and means for radiating heat generated in the solid-state laser medium, the heat-dissipating means is provided on at least one of the end faces of the solid-state laser medium. The film is formed of a heat dissipation film having a hole through which the excitation light enters and / or exits, and the hole has a shape that compensates the anisotropic heat distribution to form an isotropic heat distribution. A solid-state laser oscillator characterized by being made.
【請求項2】 前記放熱膜に密着する放熱部材を更に
有することを特徴とする請求項1に記載の固体レーザ発
振器。
2. The solid-state laser oscillator according to claim 1, further comprising a heat dissipation member in close contact with the heat dissipation film.
JP27242692A 1992-09-14 1992-09-14 Solid laser osillator Withdrawn JPH0697544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27242692A JPH0697544A (en) 1992-09-14 1992-09-14 Solid laser osillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27242692A JPH0697544A (en) 1992-09-14 1992-09-14 Solid laser osillator

Publications (1)

Publication Number Publication Date
JPH0697544A true JPH0697544A (en) 1994-04-08

Family

ID=17513750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27242692A Withdrawn JPH0697544A (en) 1992-09-14 1992-09-14 Solid laser osillator

Country Status (1)

Country Link
JP (1) JPH0697544A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018152539A (en) * 2017-03-15 2018-09-27 株式会社リコー Laser device, ignition device and internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018152539A (en) * 2017-03-15 2018-09-27 株式会社リコー Laser device, ignition device and internal combustion engine

Similar Documents

Publication Publication Date Title
US5455838A (en) Side pumping arrangement
JP2004128139A (en) Laser beam generator and its manufacturing method
JP3462456B2 (en) Mode-locked solid-state laser
CN109802281A (en) A kind of incoherent spectrum beam combination slab laser oscillator of multi-wavelength
US4887270A (en) Continuous wave, frequency doubled solid state laser systems with stabilized output
JP2664392B2 (en) Laser device
US6944196B2 (en) Solid state laser amplifier
US5838713A (en) Continuously tunable blue microchip laser
JP2000133863A (en) Solid-state laser
JP2725648B2 (en) Solid-state laser excitation method and solid-state laser device
US20060182162A1 (en) Solid laser exciting module and laser oscillator
JP2658961B2 (en) Solid-state laser device
JP3271603B2 (en) LD pumped solid-state laser device
JPH0697544A (en) Solid laser osillator
JP7012311B2 (en) Ultraviolet laser device
JPH0697543A (en) Solid laser oscillator
JPH0685357A (en) Solid laser oscillator
US6341139B1 (en) Semiconductor-laser-pumped solid state laser
JP2849032B2 (en) Laser device
JP2005332989A (en) Laser oscillator
JPH0690044A (en) Solid laser oscillator
KR20020094390A (en) Micro chip Laser for high output
JP3101942B2 (en) Microchip laser
JPH0265283A (en) Solid-state laser
JP3094436B2 (en) Semiconductor laser pumped solid-state laser device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991130