JPH0696107B2 - Selective gas permeable membrane - Google Patents

Selective gas permeable membrane

Info

Publication number
JPH0696107B2
JPH0696107B2 JP1218816A JP21881689A JPH0696107B2 JP H0696107 B2 JPH0696107 B2 JP H0696107B2 JP 1218816 A JP1218816 A JP 1218816A JP 21881689 A JP21881689 A JP 21881689A JP H0696107 B2 JPH0696107 B2 JP H0696107B2
Authority
JP
Japan
Prior art keywords
thin film
gas permeable
permeable membrane
polymer thin
porous support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1218816A
Other languages
Japanese (ja)
Other versions
JPH0380925A (en
Inventor
幸廣 斉藤
克則 藁谷
史朗 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1218816A priority Critical patent/JPH0696107B2/en
Publication of JPH0380925A publication Critical patent/JPH0380925A/en
Publication of JPH0696107B2 publication Critical patent/JPH0696107B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、混合気体から特定の気体を選択的に透過さ
せる気体分離用の選択性気体透過膜に関する。
TECHNICAL FIELD The present invention relates to a selective gas permeable membrane for gas separation that selectively allows a specific gas to permeate from a mixed gas.

従来の技術 近年、混合気体より特定の気体を高分子の膜を介して分
離濃縮する技術が実用化され始め、既に空気中より酸素
の濃縮、工業用水素分離濃縮および炭酸ガスの回収等に
用いられている。特に、空気中より酸素を濃縮するいわ
ゆる酸素富化膜は、その用途が広いために産業界に与え
る影響が大きい。
2. Description of the Related Art In recent years, technology for separating and concentrating a specific gas from a mixed gas through a polymer membrane has begun to be put into practical use. Has been. In particular, a so-called oxygen-enriched film, which concentrates oxygen from the air, has a wide application and has a great influence on the industrial world.

しかしながら、現在、実用化されている酸素富化膜で考
えると、大気空気を処理するものとしては、ポリオルガ
ノシロキサン系の膜が多く、同膜の材料固有の酸素透過
速度は、約0.1cc/cm2・sec・atm程度である。一方、ポ
リオルガノシロキサン系の膜の酸素/窒素の分離比は2
に達せず小さく、生成される酸素富化空気中の酸素濃度
も30%に達しない。
However, considering oxygen-enriched membranes that are currently in practical use, many of them are polyorganosiloxane-based membranes for treating atmospheric air, and the oxygen permeation rate peculiar to the material of the membrane is about 0.1 cc / It is about cm 2 · sec · atm. On the other hand, the polyorganosiloxane-based membrane has an oxygen / nitrogen separation ratio of 2
The oxygen concentration in the produced oxygen-enriched air does not reach 30%.

酸素富化膜のうち医療用に用いられるものは、酸素/窒
素の分離比が3〜4と高く、40%前後の酸素富化空気が
得られるのであるが、気体の処理量が少ない。例えば、
ポリオレフィン系の膜の材料固有の酸素透過速度は、0.
01〜0.001cm2・sec・atmと極めて小さい。
Among the oxygen-enriched membranes, those used for medical purposes have a high oxygen / nitrogen separation ratio of 3 to 4, and oxygen-enriched air of about 40% can be obtained, but the amount of gas treated is small. For example,
The oxygen permeation rate peculiar to the material of the polyolefin membrane is 0.
01-0.001cm 2 · sec · atm is extremely small.

さらに、シリコーン系高分子膜をアセチレン系高分子膜
に積層した出願人の提案になる複合膜がある(特開昭62
−283533号公報)。この複合膜は、シリコーン系の膜に
比べ、流量(約4倍)、気体選択性のいずれもが向上す
るとともに、信頼性の高い画期的な選択性気体透過膜で
ある。一般的にシリコーンゴムの様なゴム状高分子は主
鎖が屈曲性に富み構造緩和現象がなく安定しているが、
アセチレン系高分子のような剛直なガラス性質の高分子
は構造緩和現象があり優れた気体透過性を有していて
も、その経時劣化が避けられないのであるが、上記複合
膜は、シリコーン系高分子膜の上にアセチレン系高分子
膜を積層することにより、アセチレン系高分子膜の経時
劣化を阻止するようにしているのである。
Furthermore, there is a composite film proposed by the applicant in which a silicone-based polymer film is laminated on an acetylene-based polymer film (JP-A-62-62).
-283533 publication). This composite membrane has an improved flow rate (about 4 times) and gas selectivity as compared with a silicone-based membrane, and is a highly reliable and innovative selective gas permeable membrane. Generally, a rubber-like polymer such as silicone rubber has a stable main chain with no flexibility and no structural relaxation phenomenon.
Although a polymer having a rigid glass property such as an acetylene polymer has a structural relaxation phenomenon and has an excellent gas permeability, its deterioration with time cannot be avoided. By stacking the acetylene-based polymer film on the polymer film, deterioration with time of the acetylene-based polymer film is prevented.

発明が解決しようとする課題 しかしながら、この複合膜自体は優れた特性を有する
が、実際の利用にあたってこの複合膜を多孔質支持体上
に設けるようにすると、十分な性能が発揮されず、信頼
性も十分でないという問題があった。
However, although the composite membrane itself has excellent characteristics, when the composite membrane is provided on a porous support for practical use, sufficient performance is not exhibited and reliability is improved. There was a problem that it was not enough.

このような事情に鑑み、この発明は、多孔質支持体上に
設けられた膜の性能が十分に発揮され、しかも、信頼性
の高い選択性気体透過膜を提供することを課題とする。
In view of such circumstances, an object of the present invention is to provide a highly reliable selective gas permeable membrane in which the performance of the membrane provided on the porous support is sufficiently exhibited.

課題を解決するための手段 上記課題を解決するため、発明者らは、様々な角度から
検討を重ねた。
Means for Solving the Problems In order to solve the above problems, the inventors have made repeated studies from various angles.

まず、多孔質支持体の通気性に着目し検討した。First, an examination was conducted focusing on the air permeability of the porous support.

多孔質支持体は、極力、通気性の良い(抵抗が小さい)
ものが好ましい。なぜなら、気体分離の際には、膜の一
次側と二次側に圧力差を設け、この圧力差を駆動源とし
て気体を膜透過させており、多孔質支持体の通気性が不
十分な場合、支持体部分での圧力損失が大きく、結果と
して、選択性気体透過膜部分の圧力差が小さくなってし
まうため、透過流量が少なくなったり、例えば、十分な
酸素濃度の酸素富化気体を得ることが難しくなったりす
るからである。
Porous support has good breathability (low resistance) as much as possible
Those are preferable. This is because when the gas is separated, a pressure difference is provided between the primary side and the secondary side of the membrane, and this pressure difference is used as a driving source to allow the gas to permeate through the membrane. Since the pressure loss in the support part is large and the pressure difference in the selective gas permeable membrane part is small as a result, the permeation flow rate is reduced, or, for example, an oxygen-enriched gas having a sufficient oxygen concentration is obtained. It can be difficult.

支持体部分での圧力損による選択性気体透過膜の実効的
劣化の度合は、膜自身が高性能であるほど顕著である。
第6図は、多孔質支持体の通気性と同支持体部分での圧
力損の関係を表すグラフである。第6図では、多孔質支
持体の通気性をガーレー値で示すとともに、窒素の透過
速度(sec/5ml・10cm2・atm)をパラメータとして、支
持体部分での圧力損を表すようにしている。第6図にみ
るように、同一特性の選択性気体透過膜では、多孔質支
持体のガーレー値が高い(通気性が低下する)ほど圧力
損失が大きい。また、同じガーレー値の多孔質支持体の
場合、選択性気体透過膜の気体透過性がよくなるほど、
圧力損が大きくなる。したがって、高性能膜ほど多孔質
支持体の通気性を考慮する必要があることが分かった。
The degree of effective deterioration of the selective gas permeable membrane due to the pressure loss in the support portion is more remarkable as the membrane itself has higher performance.
FIG. 6 is a graph showing the relationship between the air permeability of the porous support and the pressure loss at the support. In FIG. 6, the air permeability of the porous support is shown by the Gurley value, and the pressure loss at the support is expressed by using the nitrogen permeation rate (sec / 5 ml · 10 cm 2 · atm) as a parameter. . As shown in FIG. 6, in the selective gas permeable membrane having the same characteristics, the higher the Gurley value of the porous support (the lower the air permeability), the larger the pressure loss. Further, in the case of a porous support having the same Gurley value, the better the gas permeability of the selective gas permeable membrane is,
Pressure loss increases. Therefore, it was found that it is necessary to consider the air permeability of the porous support for the higher performance membrane.

さらに、上記複合膜では、高湿度条件下での信頼性が低
いことから、多孔質支持体表面の親水、疎水性、つまり
表面水ぬれ性について検討したところ、支持体自体の親
水性が高いと、支持体表面で剥離が起こりやすいことが
分かった。支持体表面の上にくるポリアセチレン系薄膜
は疎水性であり、そのため、支持体表面の親水性が高い
と多孔質支持体表面での水分吸着が顕著になり、この水
が原因でポリアセチレン系薄膜の剥離が起こるのであ
る。
Further, in the above composite membrane, since the reliability under high humidity conditions is low, the hydrophilicity of the surface of the porous support, the hydrophobicity, that is, the surface water wettability was examined, it was found that the support itself has high hydrophilicity. It was found that peeling is likely to occur on the surface of the support. The polyacetylene-based thin film that comes on the surface of the support is hydrophobic, so if the hydrophilicity of the support surface is high, the adsorption of water on the surface of the porous support becomes remarkable, and this water causes the polyacetylene-based thin film to absorb. The peeling occurs.

そして、上記知見に基づいて、さらに検討を続けた結
果、下記のような構成をとれば、前記課題が解決できる
ことが見出しこの発明を完成させることができたのであ
る。
As a result of further studies based on the above findings, it was found that the above problems can be solved by the following constitution, and the present invention could be completed.

すなわち、請求項1記載の選択性気体透過膜は、ガーレ
ー値50sec/6.45cm2・567g・10cc以下の通気性を有する
とともに水の接触角30゜以上の表面水ぬれ性を有してい
る多孔質支持体と、下記一般式であらわされ前記支持体
上に設けられた気体透過性アセチレン系第1高分子薄膜
と、 (但し、R1は水素原子または炭素数4以下のアルキル基
を表し、R2は式CH2 CH3のアルキル基を表し、上式
においてmは0〜3の整数を表す) 前記第1高分子薄膜における多孔質支持体と反対面に設
けられたオルガノシロキサン共重合体からなる気体透過
性第2高分子薄膜とを備えた構成となっている。
That is, the selective gas permeable membrane according to claim 1 has a Gurley value of 50 sec / 6.45 cm 2 , 567 g, 10 cc or less of air permeability and a surface water wettability of a contact angle of water of 30 ° or more. A porous support, and a gas-permeable acetylene-based first polymer thin film represented by the following general formula and provided on the support, (However, R 1 represents a hydrogen atom or an alkyl group having 4 or less carbon atoms, R 2 represents an alkyl group of the formula CH 2 m CH 3 , and in the above formula, m represents an integer of 0 to 3) The polymer thin film is provided with a porous support and a gas permeable second polymer thin film made of an organosiloxane copolymer provided on the opposite surface.

この選択性気体透過膜の多孔質支持体形成材料は、請求
項2の発明のように、芳香族ポリスルホン、芳香族ポリ
エーテルスルホンのうちの少なくともひとつを用いるよ
うにする。これらの材料の場合、第1高分子薄膜との間
に界面層を形成するためにも好都合である。支持体は、
非対象膜構造であることが好ましい。
As the porous support forming material for the selective gas permeable membrane, at least one of aromatic polysulfone and aromatic polyether sulfone is used as in the invention of claim 2. These materials are also convenient for forming an interface layer with the first polymer thin film. The support is
It is preferably an asymmetric membrane structure.

さらに、第2高分子薄膜形成材料は、ポリオルガノシロ
キサンまたはポリオルガノシロキサンを主成分とするブ
ロック、グラフトまたはグラフト架橋型共重合体のうち
の少なくともひとつであって、シロキサン含有率が85重
量%以上のものが好適である。さらに、ポリオルガノシ
ロキサンとしては、側鎖がメチル基のポリジメチルシロ
キサン、あるいは、ポリジメチルシロキサン共重合体が
特に気体透過性が好ましい。
Further, the second polymer thin film-forming material is at least one of polyorganosiloxane or a block, graft or graft-crosslinking type copolymer having polyorganosiloxane as a main component and having a siloxane content of 85% by weight or more. Are preferred. Further, as the polyorganosiloxane, a polydimethylsiloxane having a methyl group in the side chain or a polydimethylsiloxane copolymer is particularly preferable because it has gas permeability.

この発明の選択性気体透過膜は、例えば、出願人が、特
開昭57−107204号公報で提案する水面展開法を用い、第
1,2高分子薄膜を水面上にそれぞれ形成し、多孔質支持
体表面に、まず第1高分子薄膜を積層し、ついで、第2
高分子薄膜を積層することで容易に製造することができ
る。
The selective gas permeable membrane of the present invention, for example, using the water surface development method proposed by the applicant in JP-A-57-107204,
1, 2 polymer thin film is formed on the water surface, respectively, and the first polymer thin film is first laminated on the surface of the porous support, and then the second polymer thin film is formed.
It can be easily manufactured by stacking polymer thin films.

ただ、第1高分子薄膜はガラス質であるため、膜が比較
的硬く単に支持体と接触させるだけで十分に接着するこ
とは難しく、そのため、支持体裏面から吸引しつつ接着
するか、多孔質支持体表面に部分的に接着剤を配してお
いて接着するようにすることが好ましい。一方、第2高
分子薄膜はゴム質のため非常に軟らかく第1高分子薄膜
に接触させるだけでもよい。
However, since the first polymer thin film is glassy, the film is relatively hard and it is difficult to adhere sufficiently by simply contacting it with the support. It is preferable to partially dispose an adhesive on the surface of the support for adhesion. On the other hand, since the second polymer thin film is made of rubber, it is very soft and may only be brought into contact with the first polymer thin film.

このようにして製造された選択性気体透過膜は多孔質支
持体の上にポリアセチレン系第1高分子薄膜、ポリオル
ガノシロキサン共重合体系第2高分子薄膜が積層された
構造を有することとなる。
The thus-produced selective gas-permeable membrane has a structure in which a polyacetylene-based first polymer thin film and a polyorganosiloxane copolymer-based second polymer thin film are laminated on a porous support.

なお、第1高分子薄膜を多孔質支持体表面に積層する
と、多孔質支持体材料と第1高分子薄膜材料が積層面で
互いに入り組むことで界面層が形成されるようになる。
In addition, when the first polymer thin film is laminated on the surface of the porous support, the porous support material and the first polymer thin film material are intertwined with each other on the laminated surface to form an interface layer.

作 用 この発明の選択性気体透過膜では、多孔質支持体とし
て、ガーレー値50sec/6.45cm2・567g・10cc以下という
十分な通気性を有しているため、支持体部分での圧力損
失が少なく、第1高分子薄膜および第2高分子薄膜の優
れた性能が十分に発揮され、十分な酸素濃度の酸素富化
気体も得ることができる。さらに多孔質支持体は、水の
接触角30゜以上の表面水ぬれ性を有しているため、多孔
質支持体表面における剥離が生じない。これは、支持体
自体の親水性が低く、多孔質支持体表面における水分吸
着が顕著でなくなるからである。
Operation The selective gas permeable membrane of the present invention has sufficient permeability as a Gurley value of 50 sec / 6.45 cm 2 , 567 g ・ 10 cc or less as a porous support, so that the pressure loss at the support part is small. The excellent performances of the first polymer thin film and the second polymer thin film are sufficiently exhibited, and an oxygen-enriched gas having a sufficient oxygen concentration can be obtained. Furthermore, since the porous support has surface water wettability with a contact angle of water of 30 ° or more, peeling does not occur on the surface of the porous support. This is because the support itself has a low hydrophilicity and the water adsorption on the surface of the porous support is not remarkable.

実施例 以下に本発明の実施例を詳細に述べる。Examples Examples of the present invention will be described in detail below.

第1図の構造の選択性気体透過膜を作成し、第2図のモ
ジュールに用い、酸素富化気体を製造してみた。モジュ
ールは枠体11に選択性気体透過膜12が張架されていると
ともに、吸引口13を介して選択性気体透過膜12に圧力差
をかけられるようになっている。選択性気体透過膜12の
具体的構成は、以下の通りである。
A selective gas permeable membrane having the structure shown in FIG. 1 was prepared and used in the module shown in FIG. 2 to produce an oxygen-enriched gas. The module has a frame 11 on which a selective gas permeable membrane 12 is stretched, and a pressure difference can be applied to the selective gas permeable membrane 12 via a suction port 13. The specific configuration of the selective gas permeable membrane 12 is as follows.

第1高分子薄膜 ポリ〔1−(トリメチルシリル)−1−プロピン〕の薄
膜を用いた。
First polymer thin film A thin film of poly [1- (trimethylsilyl) -1-propyne] was used.

第2高分子薄膜 ポリジメチルシロキサンにポリスチレンをグラフト重合
した共重合体でシロキサン含有率が90重量%の薄膜を用
いた。
Second polymer thin film A thin film having a siloxane content of 90% by weight was used as a copolymer obtained by graft-polymerizing polystyrene onto polydimethylsiloxane.

多孔質支持体 東洋クロス社製のポリエーテルスルホン(PES)素材の
もので、ガーレー値30sec/6.45cm2・567g・10cc以下の
通気性、水の接触角60゜の表面水ぬれ性を有するものを
用いた。
Porous support Polyethersulfone (PES) material manufactured by Toyo Cross Co., which has a Gurley value of 30 sec / 6.45 cm 2 , 567 g / 10 cc or less, and has surface water wettability with a water contact angle of 60 °. Was used.

なお、モジュールにおける有効膜面積は250cm2である。The effective membrane area of the module is 250 cm 2 .

この選択性気体透過膜は、流量が駆動圧力−500mmHgで
2.5/分・250cm2であり、得られた酸素富化気体の酸
素濃度は31.8%となった。
This selective gas permeable membrane has a flow rate of -500 mmHg driving pressure.
It was 2.5 / min · 250 cm 2 , and the oxygen concentration of the obtained oxygen-enriched gas was 31.8%.

また、多孔質支持体のガーレー値と選択性気体透過膜を
モジュールに用いた場合の酸素濃度の関係をみると、第
5図に示すように、ガーレー値が50sec/6.45cm2・567g
・10ccであれば、約31.9%とほぼ理論値の酸素濃度が達
成できる。つまり、多孔質支持体のガーレー値が50sec/
6.45cm2・567g・10cc以下であれば、十分な酸素濃度の
酸素富化気体が得られるようになるのである。
Also, looking at the relationship between the Gurley value of the porous support and the oxygen concentration when the selective gas permeable membrane is used in the module, as shown in FIG. 5, the Gurley value is 50 sec / 6.45 cm 2 · 567 g.
・ If it is 10cc, the theoretical oxygen concentration of about 31.9% can be achieved. That is, the Gurley value of the porous support is 50 sec /
If it is 6.45 cm 2 · 567 g · 10 cc or less, an oxygen-enriched gas with a sufficient oxygen concentration can be obtained.

さらに、第4図に示すように、この選択性気体透過膜
を、温度40℃、湿度95%、駆動圧力条件−500mmHg、耐
久試験にかけたところ、1500時間を越えても十分な性能
を維持していることが確認できた。
Furthermore, as shown in FIG. 4, when this selective gas permeable membrane was subjected to a durability test at a temperature of 40 ° C., a humidity of 95%, a driving pressure condition of −500 mmHg, sufficient performance was maintained even after 1500 hours. I was able to confirm.

比較のために、多孔質支持体のガーレー値が95sec/6.45
cm2・567g・10ccである他は、上記と同様の選択性気体
透過膜について調べてみた。この選択性気体透過膜は、
流量が1.82/分・−500mmHgであり、得られた酸素富
化気体の酸素濃度は30.5%であった。多孔質支持体の圧
力損が大きくて十分な膜性能を発揮させることができな
いのである。
For comparison, the Gurley value of the porous support is 95 sec / 6.45.
The same selective gas permeable membrane as the above was examined except that it was cm 2 · 567 g · 10 cc. This selective gas permeable membrane is
The flow rate was 1.82 / min.-500 mmHg, and the oxygen concentration of the obtained oxygen-enriched gas was 30.5%. The pressure loss of the porous support is so large that sufficient membrane performance cannot be exhibited.

さらに、多孔質支持体表面が水の接触角10゜の水ぬれ性
(親水性が強い)である他は、上記と同様の選択性気体
透過膜について信頼性を調べてみた。この選択性気体透
過膜は、温度40℃、湿度95%、駆動圧力条件−500mmHg
の耐久試験にかけたところ、300時間で既に酸素濃度の
低下しており、調べてみると、多孔質支持体表面での剥
離が認められた。
Furthermore, the reliability of the same selective gas permeable membrane as that described above was examined except that the surface of the porous support was wettable by water with a contact angle of 10 ° (strongly hydrophilic). This selective gas permeable membrane has a temperature of 40 ° C, a humidity of 95%, and a driving pressure condition of -500 mmHg.
When subjected to the endurance test, the oxygen concentration had already decreased in 300 hours, and upon examination, peeling was recognized on the surface of the porous support.

<実施例> 多孔質支持体として、芳香族ポリエーテルスルホン(東
洋クロス社製、K1−12タイプ)素材、ガーレー値25sec/
6.45cm2・567g・10cc、水の接触角80゜のものを用い
た。一方、第1高分子薄膜形成用材料として、重量平均
分子量200万のPSMP、すなわちポリ〔1−(トリメチル
シリル)−1−プロピン〕、および、第2高分子薄膜形
成材料として、重量平均分子量40万、シロキサン含有率
94.2重量%のポリジメチルシロキサン−ポリスチレング
ラフト共重合体を準備した。
<Example> As porous support, aromatic polyether sulfone (Toyo cross Co., K 1 -12 type) material, Gurley value 25 sec /
6.45 cm 2 , 567 g, 10 cc, water contact angle 80 ° were used. On the other hand, PSMP having a weight average molecular weight of 2,000,000, that is, poly [1- (trimethylsilyl) -1-propyne] as the first polymer thin film forming material, and a weight average molecular weight of 400,000 as the second polymer thin film forming material. , Siloxane content
A 94.2 wt% polydimethylsiloxane-polystyrene graft copolymer was prepared.

上記薄膜形成材料それぞれのベンゼン希釈溶液を調整
し、水面上に展開し、厚み約200Åの超薄膜を作り、上
記多孔質支持体上に第1高分子薄膜、ついで、第2高分
子薄膜の順に積層し、選択性気体透過膜を得た。
A benzene diluted solution of each of the above thin film forming materials is prepared and spread on the water surface to form an ultrathin film having a thickness of about 200Å, and the first polymer thin film and then the second polymer thin film are formed on the porous support in this order. By laminating, a selective gas permeable membrane was obtained.

第2図のモジュールに用い、性能を調べた。第3図
(a)、(b)の実測値(実線で示す)にみるように、
駆動圧力の増大に伴い、酸素濃度、気体透過流量が高く
なる。圧力−600mmHg以上では、予測値(破線で示す)
より少し低目であるが、透過流量の増大の影響によるも
のと考えられる。ただ、−600mmHg以上の駆動圧力の場
合、減圧ポンプ負荷が大きくなり過ぎる等の理由から実
際面で使われることが少なく、実用上差し支えない。圧
力−500mmHgでは、2.3/分・250cm2、酸素濃度は31.9
%と非常に高い値である。出願人が実用化したシリコー
ン系の酸素負荷膜と比べ、流量で約4倍、酸素濃度で3
%の性能向上が認められる。なお、第3図(a)、
(b)のデータを得る場合、モジュール一次側の空気供
給量を二次側供給量の20倍以上とした。
It was used for the module of FIG. 2 and the performance was investigated. As can be seen from the measured values (shown by the solid line) in FIGS. 3 (a) and 3 (b),
The oxygen concentration and the gas permeation flow rate increase as the driving pressure increases. Predicted value (indicated by the broken line) at pressures above -600 mmHg
Although it is slightly lower, it is considered to be due to the influence of the increase in permeation flow rate. However, when the driving pressure is -600 mmHg or more, it is rarely used in practice due to the reason that the decompression pump load becomes too large, and it is acceptable for practical use. At pressure of -500 mmHg, 2.3 / min.250 cm 2 , oxygen concentration is 31.9
%, Which is a very high value. The flow rate is about 4 times and the oxygen concentration is 3 times that of the silicone-based oxygen-loaded membrane that the applicant has put into practical use.
% Performance improvement is recognized. In addition, FIG.
When obtaining the data of (b), the air supply amount on the primary side of the module was set to 20 times or more the supply amount on the secondary side.

温度40℃、湿度95%、駆動圧力条件−500mmHgで耐久試
験にかけたところ、2000時間を越えても、モジュール流
量の変化は初期流量の80%程度を維持し酸素濃度の低下
も認められず、十分に実用的性能が維持されていること
が確認できた(第4図参照)。
When subjected to an endurance test at a temperature of 40 ° C, a humidity of 95%, and a driving pressure condition of -500 mmHg, the change in the module flow rate was maintained at about 80% of the initial flow rate and the oxygen concentration was not decreased even after 2000 hours. It was confirmed that the practical performance was sufficiently maintained (see FIG. 4).

<比較例> 実施例の選択性気体透過膜と比較するため、第1〜3比
較例の選択性気体透過膜を作製し、性能を調べた。
<Comparative Example> In order to compare with the selective gas permeable membranes of the examples, the selective gas permeable membranes of the first to third comparative examples were prepared and the performance was examined.

多孔質支持体として、ポリエーテルスルホン素材、ガー
レー値86sec/6.45cm2・567g・10cc、水の接触角60゜の
ものを用いた他は、実施例と同様にして第1比較例たる
選択性気体透過膜を作製した。
As the first comparative example, the selectivity was the same as that of the example except that a polyether sulfone material, a Gurley value of 86 sec / 6.45 cm 2 , 567 g, 10 cc, and a contact angle of water of 60 ° were used as the porous support. A gas permeable membrane was prepared.

多孔質支持体として、ポリエーテルスルホン素材、ガー
レー値120sec/6.45cm2・567g・10cc、水の接触角65゜の
ものを用いた他は、実施例と同様にして第1比較例たる
選択性気体透過膜を作製した。
Selectivity as the first comparative example was obtained in the same manner as in the example except that a polyether sulfone material, a Gurley value of 120 sec / 6.45 cm 2 , 567 g, 10 cc, and a contact angle of water of 65 ° were used as the porous support. A gas permeable membrane was prepared.

実施例と同様にして膜の性能を調べた。The performance of the film was investigated in the same manner as in the example.

第1比較例は、圧力−500mmHgでモジュール流量1.98
/分・250cm2、酸素濃度は31.0%であった。
The first comparative example has a module flow rate of 1.98 at a pressure of -500 mmHg.
/ Min · 250 cm 2 , the oxygen concentration was 31.0%.

第2比較例は、圧力−500mmHgでモジュール流量1.63
/分・250cm2、酸素濃度は30.1%であった。
The second comparative example has a module flow rate of 1.63 at a pressure of -500 mmHg.
/ Min · 250 cm 2 , the oxygen concentration was 30.1%.

いずれも実施例のデータに比べ劣っている。Both are inferior to the data of the examples.

多孔質支持体として、ポリエーテルスルホン素材、ガー
レー値45sec/6.45cm2・567g・10cc、水の接触角10゜の
ものを用いた他は、実施例と同様にして第3比較例たる
選択性気体透過膜を作製した。
As the porous support, a polyether sulfone material, a Gurley value of 45 sec / 6.45 cm 2 , 567 g, 10 cc, and a contact angle of water of 10 ° were used. A gas permeable membrane was prepared.

第3比較例は、初期性能としては、圧力−500mmHgで2.2
/分・250cm2、酸素濃度は31.8%であったが、温度40
℃、湿度95%、駆動圧力条件−500mmHgの耐久試験にか
けたところ、約300時間で1.8/分・250cm2、酸素濃度
27.5%の性能に低下してしまった。支持体表面が親水性
となると信頼性が著しく悪くなるのである。
The third comparative example has an initial performance of 2.2 at a pressure of -500 mmHg.
/ Min · 250 cm 2 , oxygen concentration was 31.8%, temperature 40
When subjected to an endurance test under conditions of ℃, humidity 95%, driving pressure-500mmHg, 1.8 / min ・ 250cm 2 , oxygen concentration in about 300 hours
The performance has dropped to 27.5%. When the surface of the support becomes hydrophilic, the reliability becomes extremely poor.

発明の効果 以上に述べたように、この発明の選択性気体透過膜は、
通気性と水ぬれ性が特定の数値範囲にある多孔質支持体
を用いることにより、支持体上の第1,2高分子薄膜が有
する高性能が十分に発揮されるとともに優れた信頼性を
有するため、実用性に優れる。
Effects of the Invention As described above, the selective gas permeable membrane of the present invention is
By using a porous support whose air permeability and water wettability are within specific numerical ranges, the high performance of the first and second polymer thin films on the support can be sufficiently exerted and excellent reliability can be obtained. Therefore, it is excellent in practicality.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明の選択性気体透過膜の一例をあらわ
す概略断面図、第2図は、この発明の選択性気体透過膜
を用いたモジュールをあらわす斜視図、第3図(a),
(b)は、この発明の選択性気体透過膜の初期特性をあ
らわすグラフ、第4図は、この発明の選択性気体透過膜
の信頼性試験の結果をあらわすグラフ、第5図は、多孔
質支持体のガーレー値とモジュールを用いて得られる酸
素富化気体の到達酸素濃度の関係をあらわすグラフ、第
6図は、多孔質支持体のガーレー値と圧力損の関係をあ
らわすグラフである。 1……第2高分子薄膜、2……第1高分子薄膜、3……
多孔質支持体、4……界面層、12……選択性気体透過
膜。
FIG. 1 is a schematic sectional view showing an example of the selective gas permeable membrane of the present invention, FIG. 2 is a perspective view showing a module using the selective gas permeable membrane of the present invention, FIG. 3 (a),
(B) is a graph showing the initial characteristics of the selective gas permeable membrane of the present invention, FIG. 4 is a graph showing the results of the reliability test of the selective gas permeable membrane of the present invention, and FIG. FIG. 6 is a graph showing the relationship between the Gurley value of the support and the reached oxygen concentration of the oxygen-enriched gas obtained by using the module, and FIG. 6 is a graph showing the relationship between the Gurley value of the porous support and the pressure loss. 1 ... second polymer thin film, 2 ... first polymer thin film, 3 ...
Porous support, 4 ... Interface layer, 12 ... Selective gas permeable membrane.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−241529(JP,A) 特開 平1−123619(JP,A) 特開 昭61−192322(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-241529 (JP, A) JP-A-123619 (JP, A) JP-A-61-192322 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ガーレー値50sec/6.45cm2・567g・10cc以
下の通気性を有するとともに水の接触角30゜以上の表面
水ぬれ性を有する多孔質支持体と、下記一般式であらわ
され前記支持体上に設けられた気体透過性第1高分子薄
膜と、 (但し、R1は水素原子または炭素数4以下のアルキル基
を表し、R2は式CH2 CH3のアルキル基を表し、上式
においてmは0〜3の整数を表す) 前記第1高分子薄膜における多孔質支持体と反対面に設
けられたオルガノシロキサン共重合体からなる系気体透
過性第2高分子薄膜とを備えている選択性気体透過膜。
1. A porous support having a Gurley value of 50 sec / 6.45 cm 2 , 567 g, 10 cc or less and a surface water wettability of a water contact angle of 30 ° or more, represented by the following general formula: A gas-permeable first polymer thin film provided on a support, (However, R 1 represents a hydrogen atom or an alkyl group having 4 or less carbon atoms, R 2 represents an alkyl group of the formula CH 2 m CH 3 , and in the above formula, m represents an integer of 0 to 3) A selective gas permeable membrane comprising: a porous thin film of a polymer thin film; and a system gas permeable second polymer thin film made of an organosiloxane copolymer provided on the opposite surface.
【請求項2】多孔質支持体形成材料が、芳香族ポリスル
ホン、芳香族ポリエーテルスルホンのうちの少なくとも
ひとつである請求項1記載の選択性気体透過膜。
2. The selective gas permeable membrane according to claim 1, wherein the porous support-forming material is at least one of aromatic polysulfone and aromatic polyether sulfone.
【請求項3】第2高分子薄膜形成材料が、ポリオルガノ
シロキサンまたはポリオルガノシロキサンを主成分とす
るブロック、グラフトまたはグラフト架橋型共重合体の
うちの少なくともひとつであって、シロキサン含有率が
85重量%以上である請求項1または2記載の選択性気体
透過膜。
3. The second polymer thin film forming material is at least one of a polyorganosiloxane or a block, graft or graft cross-linking type copolymer having polyorganosiloxane as a main component, and the siloxane content is
The selective gas permeable membrane according to claim 1 or 2, which is 85% by weight or more.
JP1218816A 1989-08-25 1989-08-25 Selective gas permeable membrane Expired - Fee Related JPH0696107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1218816A JPH0696107B2 (en) 1989-08-25 1989-08-25 Selective gas permeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1218816A JPH0696107B2 (en) 1989-08-25 1989-08-25 Selective gas permeable membrane

Publications (2)

Publication Number Publication Date
JPH0380925A JPH0380925A (en) 1991-04-05
JPH0696107B2 true JPH0696107B2 (en) 1994-11-30

Family

ID=16725796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1218816A Expired - Fee Related JPH0696107B2 (en) 1989-08-25 1989-08-25 Selective gas permeable membrane

Country Status (1)

Country Link
JP (1) JPH0696107B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054460A1 (en) 2007-10-26 2009-04-30 Asahi Kasei Chemicals Corporation Gas separation membrane

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1006445A3 (en) * 1992-12-03 1994-08-30 Dsm Nv Composite membrane with high selectivity and FLUX AND PROCESS FOR MANUFACTURING THEREOF.
US6136872A (en) * 1998-11-20 2000-10-24 Shell Oil Company Freeze-dried polystyrene-polysiloxane foams
CN101432061B (en) 2006-04-28 2012-09-26 旭化成化学株式会社 Gas separation membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054460A1 (en) 2007-10-26 2009-04-30 Asahi Kasei Chemicals Corporation Gas separation membrane

Also Published As

Publication number Publication date
JPH0380925A (en) 1991-04-05

Similar Documents

Publication Publication Date Title
EP0152011B1 (en) Gas-permeable laminate
US4631075A (en) Composite membrane for gas separation
JPH0696107B2 (en) Selective gas permeable membrane
EP0630682A2 (en) Layered plasma polymer composite membranes
JPH0413011B2 (en)
JPH022802A (en) Reverse-osmosis separation membrane treating device
JPH0761426B2 (en) Selective gas permeable composite membrane
JPS6256775B2 (en)
JP2855332B2 (en) Composite hollow fiber membrane
JPH0440223A (en) Gas separation composite membrane
JPS5959210A (en) Gas permselective composite membrane
JPH02237627A (en) Permselective membrane for gas
JPS5959214A (en) Gas separating composite membrane
JPH0479687B2 (en)
JPH055533B2 (en)
JPS61146321A (en) Permselective compound membrane for gas
JP2541294B2 (en) Composite membrane
JPH0378128B2 (en)
JPS61291018A (en) Gas permeable laminated body
JPH04219130A (en) Gas separating laminated membrane
JPH06246143A (en) Production of gas separating composite membrane
JP3299298B2 (en) Gas selective permeable composite membrane
JPS60137418A (en) Permselective compound membrane for gas
JPH06126138A (en) Multilayer gas separation film
JPS62204826A (en) Gas separating membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees