JPH0694977B2 - Liquid cooler controller - Google Patents

Liquid cooler controller

Info

Publication number
JPH0694977B2
JPH0694977B2 JP63306506A JP30650688A JPH0694977B2 JP H0694977 B2 JPH0694977 B2 JP H0694977B2 JP 63306506 A JP63306506 A JP 63306506A JP 30650688 A JP30650688 A JP 30650688A JP H0694977 B2 JPH0694977 B2 JP H0694977B2
Authority
JP
Japan
Prior art keywords
temperature
liquid
difference
control
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63306506A
Other languages
Japanese (ja)
Other versions
JPH02154965A (en
Inventor
洋二 松井
修 福永
正幸 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP63306506A priority Critical patent/JPH0694977B2/en
Publication of JPH02154965A publication Critical patent/JPH02154965A/en
Publication of JPH0694977B2 publication Critical patent/JPH0694977B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、工作機械の冷却液等の液体を所定温度に冷却
する液体冷却機の制御装置に関する。
TECHNICAL FIELD The present invention relates to a control device for a liquid cooler that cools a liquid such as a cooling liquid of a machine tool to a predetermined temperature.

〈従来の技術〉 従来、この種の液体冷却機の制御装置として、例えば第
3図に示すようなものが知られている(実開昭61−1727
50号公報)。この制御装置は、冷却すべき液体の温度を
検出する液温検出器21と、上記液体の冷却温度を設定す
るための液温設定器22と、室内温度を検出する室温検出
器23と、室内温度に対する上記液体の温度差を設定する
ための温度差設定器24と、これらからの電気信号に基づ
いて液体冷却機26に制御信号を出力する制御手段25を備
える。
<Prior Art> Conventionally, as a control device for a liquid cooler of this type, for example, one as shown in FIG. 3 is known (Shokai Sho 61-1727).
No. 50). This control device, a liquid temperature detector 21 for detecting the temperature of the liquid to be cooled, a liquid temperature setting device 22 for setting the cooling temperature of the liquid, a room temperature detector 23 for detecting the room temperature, the room A temperature difference setter 24 for setting the temperature difference of the liquid with respect to the temperature, and a control means 25 for outputting a control signal to the liquid cooler 26 based on an electric signal from them.

そして、液温絶対値制御モードの場合、セレクトスイッ
チ27を一定検出信号を出力する抵抗体28側に、セレクト
スイッチ29を液温設定器22側に夫々切り換えて、制御手
段25によって上記液温検出器21の検出信号が表わす液体
の温度と上記液温設定器22に設定された冷却温度との差
を求め、この差をなくすような制御信号を液体冷却機26
に出力する。一方、室温同調制御モードの場合、セレク
トスイッチ27を室温検出器23側に、セレクトスイッチ29
を温度差設定器24側に夫々切り換えて、制御手段25によ
って上記液温検出器21の検出信号が表わす液温から上記
室温検出器23の検出信号が表わす室温と上記温度差設定
器24に設定された温度差を減算して差を求め、この差を
なくすような制御信号を液体冷却機26に出力する。従っ
て、この制御装置で制御される液体冷却機によって冷却
される液体の温度は、前者の制御モードでは液温設定器
22の設定温度に、後者の制御モードでは室温検出器23の
検出温度に温度差設定器24の設定温度を加えた温度に夫
々保持される。
Then, in the liquid temperature absolute value control mode, the select switch 27 is switched to the resistor 28 side that outputs a constant detection signal, and the select switch 29 is switched to the liquid temperature setter 22 side, and the liquid temperature detection is performed by the control means 25. The difference between the temperature of the liquid indicated by the detection signal of the device 21 and the cooling temperature set in the liquid temperature setting device 22 is obtained, and a control signal for eliminating this difference is given to the liquid cooler 26.
Output to. On the other hand, in the room temperature synchronization control mode, select switch 27 is set to the room temperature detector 23 side and select switch 29
To the temperature difference setter 24 side and set by the control means 25 from the liquid temperature represented by the detection signal of the liquid temperature detector 21 to the room temperature represented by the detection signal of the room temperature detector 23 and the temperature difference setter 24. The temperature difference is subtracted to obtain the difference, and a control signal for eliminating this difference is output to the liquid cooler 26. Therefore, in the former control mode, the temperature of the liquid cooled by the liquid cooler controlled by this controller is the liquid temperature setting device.
In the latter control mode, the set temperature of 22 and the detected temperature of the room temperature detector 23 are added to the set temperature of the temperature difference setter 24, respectively.

〈発明が解決しようとする課題〉 ところが、上記従来の液体冷却機の制御装置は、両制御
モードのために必要な回路のうち共通化できるものを可
能な限り1つの制御手段25としてまとめたので、構造を
簡素化,小型化できるという利点がある反面、液温検出
器21,室温検出器23,液温設定器22,温度差設定器24は個
々に設ける必要があり、これらの検出器,設定器から制
御手段25への入力信号の切り換えをハードウェア的なセ
レクトスイッチ27,29のマニュアル操作で行なってい
る。そのため、セレクトスイッチの誤操作などの人為的
ミスや製品精度などの構造上の原因により、制御の確実
性や信頼性に問題が生じる。また、少なくとも2つのセ
レクトスイッチ27,29が必要になって、小型化、低廉化
が妨げられるうえ、制御手段25がアナログ方式のものの
ため、汎用性に欠けるという問題がある。
<Problems to be Solved by the Invention> However, in the above-described conventional controller for a liquid cooler, the circuits that can be shared among the circuits necessary for both control modes are combined as one control means 25 as much as possible. , While having the advantage that the structure can be simplified and downsized, the liquid temperature detector 21, the room temperature detector 23, the liquid temperature setting device 22, the temperature difference setting device 24 must be provided individually, these detectors, The input signal from the setting device to the control means 25 is switched by manually operating the hardware-like select switches 27, 29. Therefore, due to a human error such as an erroneous operation of the select switch or a structural cause such as product accuracy, there arises a problem in reliability and reliability of control. Further, at least two select switches 27 and 29 are required, which hinders size reduction and cost reduction, and lacks versatility because the control means 25 is of an analog type.

そこで、本発明の目的は、制御装置の主要部をディジタ
ル方式のマイクロコンピュータとし、スイッチ等の接点
部分を減らすことによって、部品点数の削減、制御の信
頼性の向上および汎用性の拡大を図ることができる液体
冷却機の制御装置を提供することである。
Therefore, an object of the present invention is to reduce the number of parts, improve the reliability of control, and expand versatility by using a digital microcomputer as a main part of the control device and reducing contact points of switches and the like. It is an object of the present invention to provide a control device for a liquid chiller that can achieve the above.

〈課題を解決するための手段〉 上記目的を達成するため、本発明の液体冷却機の制御装
置は、第1図に例示するように、冷却すべき液体の温度
Toを検出する液温検出器6と、上記液体の冷却温度T1
設定するための液温設定器8と、室内温度Taを検出する
室温検出器7と、室内温度Taに対する上記液体の温度差
T2を設定するための温度差設定器9を有して、上記液体
を所定温度に冷却する液体冷却機3を制御する制御装置
において、上記液温検出器6,液温設定器8,室温検出器7,
温度差設定器9から各入力ポートI1〜I4を経て入力され
る電気信号に基づいて、上記液体の温度Toと上記冷却温
度T1との差To−T1、あるいは上記液体の温度Toから上記
室内温度Taと上記温度差T2との和Ta+T2を減算した差To
−(Ta+T2)をディジタル演算し、この差To−T1,To−T
a−T2をなくすような制御信号を上記液体冷却機3に出
力するマイクロコンピュータ2と、液温絶対値制御モー
ド側に切り換えられたとき、上記マイクロコンピュータ
2に液温検出器6と液温設定器8からの入力ポートI1
I3を選択せしめるとともに、室温同調制御モード側に切
り換えられたとき、上記マイクロコンピュータ2に液温
検出器6,室温検出器7および温度差設定器9からの入力
ポートI1,I2,I4を選択せしめるポート選択手段4を備
えたことを特徴とする。
<Means for Solving the Problems> In order to achieve the above-mentioned object, the controller of the liquid cooling machine according to the present invention, as illustrated in FIG.
Liquid temperature detector 6 for detecting To, liquid temperature setting device 8 for setting the cooling temperature T 1 of the liquid, room temperature detector 7 for detecting the room temperature Ta, temperature of the liquid with respect to the room temperature Ta difference
In a control device which has a temperature difference setting device 9 for setting T 2 , and controls the liquid cooling device 3 for cooling the liquid to a predetermined temperature, the liquid temperature detector 6, the liquid temperature setting device 8, and the room temperature Detector 7,
Based on the electric signal input from the temperature difference setter 9 via each of the input ports I 1 to I 4 , the difference To−T 1 between the temperature To of the liquid and the cooling temperature T 1 or the temperature To of the liquid To. Difference To which is obtained by subtracting the sum Ta + T 2 of the room temperature Ta and the temperature difference T 2 from
- (Ta + T 2) digitally computing a difference To-T 1, To-T
The microcomputer 2 which outputs a control signal for eliminating the a-T 2 to the liquid cooler 3, and the liquid temperature detector 6 and the liquid temperature when the microcomputer 2 is switched to the liquid temperature absolute value control mode side. Input port I 1 from the setter 8,
When I 3 is selected and the mode is switched to the room temperature tuning control mode side, the microcomputer 2 receives the input ports I 1 , I 2 , I from the liquid temperature detector 6, the room temperature detector 7 and the temperature difference setter 9. 4, characterized in that with a port selection unit 4 for selectively causing the.

〈作用〉 まず、液温絶対値制御モード側に切り換えられると、ポ
ート選択手段4は、マイクロコンピュータ2に液温検出
器6と液温設定器8からの入力ポートI1〜I3を選択させ
る。すると、マイクロコンピュータ2は、液温検出器6
からの検出信号が表わす液体の温度Toと液温設定器8に
設定された冷却温度T1との差をディジタル演算し、この
差To−T1をなくすような制御信号を液体冷却機3に出力
する。従って、液体冷却機3で冷却される液体の温度
は、上記冷却温度T1に保持される。
<Operation> First, when switched to the liquid temperature absolute value control mode side, the port selection means 4 causes the microcomputer 2 to select the input ports I 1 to I 3 from the liquid temperature detector 6 and the liquid temperature setting device 8. . Then, the microcomputer 2 causes the liquid temperature detector 6
The difference between the temperature To of the liquid represented by the detection signal from and the cooling temperature T 1 set in the liquid temperature setting device 8 is digitally calculated, and a control signal for eliminating this difference To-T 1 is sent to the liquid cooler 3. Output. Therefore, the temperature of the liquid cooled by the liquid cooler 3 is maintained at the cooling temperature T 1 .

次に、室温同調制御モード側に切り換えられると、ポー
ト選択手段4は、マイクロコンピュータ2に液温検出器
6,室温検出器7および温度差設定器9からの入力ポート
I1,I2,I4を選択させる。すると、マイクロコンピュー
タ2は、液温検出器6からの検出信号が表わす液体の温
度Toから、室温検出器7の検出信号が表わす室内温度Ta
と温度差設定器9に設定された温度差T2の和Ta+T2を減
算した差をディジタル演算し、この差To−Ta−T2をなく
すような制御信号を液体冷却機3に出力する。従って、
液体の温度は、室温Taに上記温度差T2を加えた温度Ta+
T2に保持される。
Next, when the mode is switched to the room temperature tuning control mode, the port selecting means 4 causes the microcomputer 2 to detect the liquid temperature detector.
6, input port from room temperature detector 7 and temperature difference setter 9
Select I 1 , I 2 , and I 4 . Then, the microcomputer 2 determines from the temperature To of the liquid represented by the detection signal from the liquid temperature detector 6 to the room temperature Ta represented by the detection signal of the room temperature detector 7.
And the difference of the sum Ta + T 2 obtained by subtracting the temperature difference T 2 that is set to a temperature difference setting unit 9 to digital operation, and outputs a control signal such as to eliminate the difference To-Ta-T 2 in the liquid chiller 3. Therefore,
The temperature of the liquid is Ta + room temperature Ta plus the above temperature difference T 2.
Held at T 2 .

このように、制御モードの切り換えをマイクロコンピュ
ータ2の入力ポートI1〜I4の選択で行なうので、従来の
アナログ制御装置25に比してスイッチ等の接点部分を減
らすことができ、制御の信頼性を向上させることができ
る。
Since the control mode is switched by selecting the input ports I 1 to I 4 of the microcomputer 2 as described above, the contact portions of switches and the like can be reduced as compared with the conventional analog control device 25, and the control reliability can be improved. It is possible to improve the sex.

〈実施例〉 以下、本発明を図示の実施例により詳細に説明する。<Examples> Hereinafter, the present invention will be described in detail with reference to illustrated examples.

第1図は液体冷却機の制御装置の一例を示す概略ブロッ
ク図であり、この制御装置は、冷却すべき油の温度を設
定,検出等する温度設定・検出部1と、この温度設定・
検出部1から各入力ポートI1〜I5を経て入力される電子
信号に基づいて所定のディジタル演算を行ない、演算結
果を制御信号として出力するマイクロコンピュータ2
と、このマイクロコンピュータ2から出力される上記制
御信号により駆動回路3aを介して冷媒圧縮機3bをオン・
オフ制御して、図示しない工作機械の冷却油を冷却する
油冷却機3と、制御モードが液温絶対値制御か室温同調
制御かによって上記マイクロコンピュータ2をしてその
入力ポートを切換選択せしめるモード切換スイッチ4か
らなる。
FIG. 1 is a schematic block diagram showing an example of a control device for a liquid cooler. This control device has a temperature setting / detection unit 1 for setting and detecting the temperature of oil to be cooled, and this temperature setting / detection unit 1.
A microcomputer 2 that performs a predetermined digital operation based on an electronic signal input from the detection unit 1 via each of the input ports I 1 to I 5 and outputs the operation result as a control signal.
And the control signal output from the microcomputer 2 turns on the refrigerant compressor 3b via the drive circuit 3a.
An oil cooler 3 for turning off and cooling the cooling oil of a machine tool (not shown), and a mode for switching and selecting the input port of the microcomputer 2 depending on whether the control mode is liquid temperature absolute value control or room temperature synchronization control It is composed of a changeover switch 4.

上記温度設定・検出部1は、冷却すべき油の温度を検出
するサーミスタからなる油温検出器6、室内温度を検出
するサーミスタからなる室温検出器7、油の冷却温度を
設定するためのボリュームからなる油温設定器8、室内
温度に対する油の温度差を設定するためのボリュームか
らなる温度差設定器9、上記両設定器8,9の設定値の微
調整を行なうためのボリュームからなる調整器10および
これらの検出器等と上記マイクロコンピュータ2の各入
力ポートI1〜I5間に介設した抵抗/電圧変換回路11,11,
…で構成される。
The temperature setting / detection unit 1 includes an oil temperature detector 6 including a thermistor for detecting the temperature of oil to be cooled, a room temperature detector 7 including a thermistor for detecting an indoor temperature, and a volume for setting an oil cooling temperature. Oil temperature setting device 8 consisting of, a temperature difference setting device 9 consisting of a volume for setting the oil temperature difference with respect to the room temperature, and an adjustment consisting of a volume for finely adjusting the set values of both the setting devices 8 and 9. 10 and their detectors, and the resistance / voltage conversion circuits 11, 11 provided between the input ports I 1 to I 5 of the microcomputer 2 described above.
It consists of ...

上記マイクロコンピュータ2は、入力ポートI1〜I5に入
力されるアナログの各電圧信号をディジタル信号に変換
するA/D変換部12と、RAM,ROMを備えたCPUからなり、上
記A/D変換部12からのディジタル信号に演算を施す制御
部13と、この制御部13からの制御信号を油冷却機3の駆
動回路3aに出力する出力部14からなる。上記制御部13
は、上記モード切換スイッチ4が液温絶対値制御側に切
り換えられたとき、その切換信号によって入力ポート
I1,I3,I5のみを選択し、これら入力ポートを経て入力
される油温検出器6の検出信号が表わす油温Toと油温設
定器8および調整器10に設定された冷却温度T1との差To
−T1を算出し、この差To−T1をなくすような制御信号を
油冷却機3へ出力する。また、上記モード切換スイッチ
4が室温同調制御側に切り換えられたとき、その切換信
号によって入力ポートI1,I2,I4,I5のみを選択し、こ
れらの入力ポートを経て入力される油温検出器6の検出
信号が表わす油温Toから、室温検出器7の検出信号が表
わす室内温度Taと温度差設定器9および調整器10に設定
された温度差T2の和Ta+T2を減算した差To−(Ta+T2
を算出し、この差To−(Ta+T2)をなくすような制御信
号を油冷却機3へ出力するようになっている。
The microcomputer 2 comprises an A / D converter 12 for converting each analog voltage signal input to the input ports I 1 to I 5 into a digital signal, and a CPU equipped with a RAM and a ROM. It is composed of a control unit 13 that operates the digital signal from the conversion unit 12, and an output unit 14 that outputs a control signal from the control unit 13 to the drive circuit 3a of the oil cooler 3. The control unit 13
When the mode changeover switch 4 is changed over to the liquid temperature absolute value control side, the input signal is generated by the changeover signal.
Only I 1 , I 3 , and I 5 are selected, and the oil temperature To indicated by the detection signal of the oil temperature detector 6 input through these input ports and the cooling temperature set in the oil temperature setter 8 and the regulator 10 are selected. Difference from T 1 To
-T 1 is calculated, and a control signal for eliminating this difference To-T 1 is output to the oil cooler 3. Further, when the mode changeover switch 4 is changed over to the room temperature tuning control side, only the input ports I 1 , I 2 , I 4 , I 5 are selected by the changeover signal, and the oil inputted through these input ports is selected. From the oil temperature To represented by the detection signal of the temperature detector 6, the sum Ta + T 2 of the room temperature Ta represented by the detection signal of the room temperature detector 7 and the temperature difference T 2 set in the temperature difference setter 9 and the regulator 10 is subtracted. the difference To- (Ta + T 2)
Is calculated and a control signal for eliminating the difference To− (Ta + T 2 ) is output to the oil cooler 3.

上記構成の油冷却機3の制御装置の動作について、第2
図のフローチャートを参照しつつ次に述べる。
Regarding the operation of the control device of the oil cooler 3 having the above configuration,
The following will be described with reference to the flowchart in the figure.

マイクロコンピュータ2の制御部13は、ステップS1で、
モード切換スイッチ4が油温絶対値制御または室温同調
制御のいずれに切り換わっているかを判断し、前者に切
り換わっていればステップS2に進んで、入力ポートI1
I3,I5を選択し、油温設定器8の設定値VR1と調整器10
の調整値VR3を加算して設定温度T1を求める一方、後者
に切り換わっていればステップS3に進んで、入力ポート
I1,I2,I4,I5を選択し、室温検出器7の検出値と温度
差設定器9の設定値VR2と調整器10の調整値VR3を加算し
てステップS4に進んで、油温検出器6の検出信号が表わ
す油温Toから、ステップS2,S3のいずれかで求めた設定
温度T1,Ta+T2を減算して差To−T1,To−(Ta+T2)を求
め、ステップS5でこの差により冷却圧縮機3bをオンある
いはオフする制御信号を出力部14を介して増幅等の出力
処理を施した後、油冷却機3に出力する。従って、油冷
却機3で冷却される油の温度は、油温絶対値制御モード
では油温設定器8と調整器10による設定温度T1に、室温
同調制御モードでは室温検出器7による室温Taに、温度
差設定器9と調整器10による設定温度T2を加えた温度Ta
+T2に保持される。
The control unit 13 of the microcomputer 2 in step S1
It is judged whether the mode changeover switch 4 is switched to the oil temperature absolute value control or the room temperature synchronized control, and if it is switched to the former, the process proceeds to step S2, where the input port I 1 ,
Select I 3, I 5, regulator 10 and the set value VR 1 oil temperature setter 8
The adjustment value VR 3 of is added to obtain the set temperature T 1 , while if it is switched to the latter, the process proceeds to step S3 and the input port
Select I 1, I 2, I 4 , I 5, proceeds to step S4 by adding the adjustment value VR 3 setting VR 2 and regulator 10 of the detection value and the temperature difference setting unit 9 at room temperature detector 7 Then, the set temperatures T 1 and Ta + T 2 obtained in either step S2 or S3 are subtracted from the oil temperature To represented by the detection signal of the oil temperature detector 6 to obtain the difference To−T 1 and To− (Ta + T 2 ). Then, in step S5, a control signal for turning on or off the cooling compressor 3b based on this difference is subjected to output processing such as amplification via the output unit 14, and then output to the oil cooler 3. Therefore, the temperature of the oil cooled by the oil cooler 3 is set to the set temperature T 1 by the oil temperature setter 8 and the adjuster 10 in the oil temperature absolute value control mode, and the room temperature Ta by the room temperature detector 7 in the room temperature synchronized control mode. To the temperature Ta obtained by adding the temperature T 2 set by the temperature difference setter 9 and the adjuster 10.
It is held at + T 2 .

このように、上記実施例では、油温絶対値制御モードと
室温同調制御モードの切り換えを、モード選択スイッチ
4によるマイクロコンピュータ2の入力ポートI1〜I5
選択で行なうようにしているので、第3図に示した従来
のアナログ制御装置に比較して、セレクトスイッチ等の
接点部分を減らすことができ、これによって制御の信頼
性の向上と部品点数の削減を図ることができるうえ、プ
ログラム等のソフトウェアの変更で種々の液体冷却機に
容易に適用できるという利点がある。また、調整器10を
設けているので、設定値の微調節が容易になる。
As described above, in the above embodiment, the switching between the oil temperature absolute value control mode and the room temperature synchronized control mode is performed by selecting the input ports I 1 to I 5 of the microcomputer 2 by the mode selection switch 4. Compared with the conventional analog control device shown in FIG. 3, the number of contact points such as select switches can be reduced, which can improve the reliability of control and reduce the number of parts, and can be used for programs and the like. There is an advantage that it can be easily applied to various liquid coolers by changing the software. Further, since the adjuster 10 is provided, fine adjustment of the set value becomes easy.

また、第3図に示した従来例の制御手段25をマイクロコ
ンピュータに置き換えた制御装置を(改良従来例)と第
1図で述べた実施例を比較した場合、改良従来例は、本
来的に室温同調型温度調節器であるため、液温絶対値モ
ードで制御するには抵抗体(疑似検知器)28が必ず必要
となる。そのため、この抵抗体28の抵抗値のバラツキに
よって温度制御の精度が悪化するのみならず、液温絶対
値制御モードでは、液温検出器21の検出値(To)と液温
設定器22の設定値(T1)との差(To−T1)から抵抗体28
の抵抗値(Tc)を減じた偏差(To−T1−Tc)をなくすよ
うに液体冷却機が制御されるため、目標温度到達時に設
定温度(T1)と検出液温(To)との間に一定抵抗値(T
c)だけ差が生じて、両者が一致しなくなるという欠点
がある。
Further, when the control device in which the control means 25 of the conventional example shown in FIG. 3 is replaced with a microcomputer (improved conventional example) is compared with the embodiment described in FIG. 1, the improved conventional example is essentially Since it is a room temperature tuning type temperature controller, a resistor (pseudo detector) 28 is always required to control in the liquid temperature absolute value mode. Therefore, not only the accuracy of temperature control deteriorates due to the variation in the resistance value of the resistor 28, but also in the liquid temperature absolute value control mode, the detection value (To) of the liquid temperature detector 21 and the setting of the liquid temperature setting device 22 are set. the value (T 1) the difference between (to-T 1) from the resistor 28
For resistance (Tc) and reduced deviation (To-T 1 -Tc) liquid chiller to eliminate is controlled, set when the target temperature reaches the temperature (T 1) and the detection liquid temperature of (To) Constant resistance value (T
There is a drawback that they do not match because there is a difference only in c).

これに対して、上記抵抗体28を要しない第1図の実施例
では、液温絶対値制御モードにおいて、液温検出器6の
検出値(To)と液温設定器8の設定値(T1)との偏差
(To−T1)のみをディジタル演算し、この偏差をなくす
ように液体冷却機3を制御するので、目標温度到達時に
設定温度(T1)と検出温度(To)が一致しなくなるとい
うことがない。
On the other hand, in the embodiment of FIG. 1 which does not require the resistor 28, in the liquid temperature absolute value control mode, the detected value (To) of the liquid temperature detector 6 and the set value (T) of the liquid temperature setter 8 are set. 1) and the deviation of only (the to-T 1) and digital operation, and controls the liquid chiller 3 so as to eliminate the deviation, set when the target temperature reaches the temperature (T 1) and the detected temperature (to) is one There is no stopping it.

なお、上記実施例では、ポート選択手段をマイクロコン
ピュータ2に外付けされるモード切換スイッチ4とした
が、これをマイクロコンピュータ2の制御部13のROMに
記憶されるプログラム等のいわゆるソフトウェアスイッ
チにすることもできる。また、冷却される液体は、実施
例の工作機械の冷却油に限られない。さらに、本発明が
図示の実施例に限られないのはいうまでもない。
In the above embodiment, the port selection means is the mode changeover switch 4 externally attached to the microcomputer 2, but this is a so-called software switch such as a program stored in the ROM of the control unit 13 of the microcomputer 2. You can also Further, the liquid to be cooled is not limited to the cooling oil of the machine tool of the embodiment. Further, it goes without saying that the present invention is not limited to the illustrated embodiment.

〈発明の効果〉 以上の説明で明らかなように、本発明の液体冷却機の制
御装置は、液温検出器,液温設定器,室温検出器,温度
差設定器を有して液体冷却機を制御するものにおいて、
液温絶対値制御モード側に切り換えられたポート選択手
段によって、マイクロコンピュータに液温検出器と液温
設定器からの入力ポートを選択させ、これらの入力ポー
トを経て入力される電気信号に基づいて、液体温度と冷
却温度との差をディジタル演算し、この差をなくすよう
な制御信号を液体冷却機へ出力させ、あるいは室温同調
制御モード側に切り換えられたポート選択手段によっ
て、マイクロコンピュータに液温検出器,室温検出器お
よび温度差設定器からの入力ポートを選択させ、これら
の入力ポートを経て入力される電気信号に基づいて、液
体温度から室内温度と上記温度差設定器に設定された温
度差の和を減算した差をディジタル演算し、この差をな
くすような制御信号を液体冷却機へ出力させるようにし
ているので、スイッチによって制御モードの切換えを行
なっていた従来のアナログ制御装置に比較して、スイッ
チ等の接点部分を減らすことにより、制御の精度,確実
性,信頼性を向上させ、部品点数と製造コストの削減お
よび小型化を図ることができるうえ、コンピュータプロ
グラムの変更で種々の液体冷却機に容易かつ広汎に適用
することができる。
<Effects of the Invention> As is clear from the above description, the liquid cooling machine control device of the present invention has a liquid temperature detector, a liquid temperature setting device, a room temperature detector, and a temperature difference setting device. In controlling
The port selection means switched to the liquid temperature absolute value control mode causes the microcomputer to select the input port from the liquid temperature detector and the liquid temperature setting device, and based on the electric signal input through these input ports. , The difference between the liquid temperature and the cooling temperature is digitally calculated, a control signal for eliminating this difference is output to the liquid cooler, or the microcomputer selects the liquid temperature by the port selection means switched to the room temperature synchronization control mode side. Select the input ports from the detector, room temperature detector, and temperature difference setter, and based on the electric signals input through these input ports, the temperature from the liquid temperature to the room temperature and the temperature set in the temperature difference setter. The difference is calculated by subtracting the sum of the differences, and a control signal to eliminate this difference is output to the liquid cooler. Compared with the conventional analog control device that switches the control mode by using the switch, the contact parts such as switches are reduced to improve the control accuracy, reliability and reliability, and reduce the number of parts and the manufacturing cost. In addition to the miniaturization, it can be easily and widely applied to various liquid coolers by changing the computer program.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の液体冷却機の制御装置の一実施例を示
す概略ブロック図、第2図は上記実施例の動作を示すフ
ローチャート、第3図は従来の液体冷却機の制御装置を
示すブロック図である。 2…マイクロコンピュータ、3…油冷却機、 4…モード切換スイッチ、6…油温検出器、7…室温検
出器、 8…油温設定器、9…温度差設定器、13…制御部、 I1〜I5…入力ポート。
FIG. 1 is a schematic block diagram showing an embodiment of a liquid cooling machine control apparatus according to the present invention, FIG. 2 is a flow chart showing the operation of the above embodiment, and FIG. 3 is a conventional liquid cooling machine control apparatus. It is a block diagram. 2 ... Microcomputer, 3 ... Oil cooler, 4 ... Mode changeover switch, 6 ... Oil temperature detector, 7 ... Room temperature detector, 8 ... Oil temperature setting device, 9 ... Temperature difference setting device, 13 ... Control part, I 1 to I 5 ... Input port.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】冷却すべき液体の温度(To)を検出する液
温検出器(6)と、上記液体の冷却温度(T1)を設定す
るための液温設定器(8)と、室内温度(Ta)を検出す
る室温検出器(7)と、室内温度(Ta)に対する上記液
体の温度差(T2)を設定するための温度差設定器(9)
を有して、上記液体を所定温度に冷却する液体冷却機
(3)を制御する制御装置において、 上記液温検出器(6),液温設定器(8),室温検出器
(7),温度差設定器(9)から各入力ポート(I1
I4)を経て入力される電気信号に基づいて、上記液体の
温度(To)と上記冷却温度(T1)との差(To−T1)、あ
るいは上記液体の温度(To)から上記室内温度(Ta)と
上記温度差(T2)との和(Ta+T2)を減算した差(To−
(Ta+T2))をディジタル演算し、この差(To−T1,To
−Ta−T2)をなくすような制御信号を上記液体冷却機
(3)に出力するマイクロコンピュータ(2)と、液温
絶対値制御モード側に切り換えられたとき、上記マイク
ロコンピュータ(2)に液温検出器(6)と液温設定器
(8)からの入力ポート(I1,I3)を選択せしめるとと
もに、室温同調制御モード側に切り換えられたとき、上
記マイクロコンピュータ(2)に液温検出器(6),室
温検出器(7)および温度差設定器(9)からの入力ポ
ート(I1,I2,I4)を選択せしめるポート選択手段
(4)を備えたことを特徴とする液体冷却機の制御装
置。
1. A liquid temperature detector (6) for detecting the temperature (To) of a liquid to be cooled, a liquid temperature setting device (8) for setting the cooling temperature (T 1 ) of the liquid, and an indoor chamber. Room temperature detector (7) for detecting temperature (Ta) and temperature difference setter (9) for setting temperature difference (T 2 ) of the liquid with respect to room temperature (Ta)
In the control device for controlling the liquid cooler (3) for cooling the liquid to a predetermined temperature, the liquid temperature detector (6), the liquid temperature setting device (8), the room temperature detector (7), From the temperature difference setter (9) to each input port (I 1 ~
I 4 ), based on the electrical signal input via ( 4 ), the difference (To-T 1 ) between the temperature (To) and the cooling temperature (T 1 ) of the liquid, or the temperature (To) of the liquid, The difference (To−) obtained by subtracting the sum (Ta + T 2 ) of the temperature (Ta) and the temperature difference (T 2 )
(Ta + T 2 )) is digitally calculated and the difference (To−T 1 , To
-Ta-T 2 ) A microcomputer (2) that outputs a control signal to the liquid cooler (3) and a microcomputer (2) that switches to the liquid temperature absolute value control mode side. The input ports (I 1 , I 3 ) from the liquid temperature detector (6) and the liquid temperature setting device (8) are selected, and when the mode is switched to the room temperature tuning control mode, the liquid is stored in the microcomputer (2). It is characterized by comprising port selection means (4) for selecting the input ports (I 1 , I 2 , I 4 ) from the temperature detector (6), the room temperature detector (7) and the temperature difference setting device (9). Control device for liquid chiller.
JP63306506A 1988-12-02 1988-12-02 Liquid cooler controller Expired - Fee Related JPH0694977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63306506A JPH0694977B2 (en) 1988-12-02 1988-12-02 Liquid cooler controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63306506A JPH0694977B2 (en) 1988-12-02 1988-12-02 Liquid cooler controller

Publications (2)

Publication Number Publication Date
JPH02154965A JPH02154965A (en) 1990-06-14
JPH0694977B2 true JPH0694977B2 (en) 1994-11-24

Family

ID=17957846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63306506A Expired - Fee Related JPH0694977B2 (en) 1988-12-02 1988-12-02 Liquid cooler controller

Country Status (1)

Country Link
JP (1) JPH0694977B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5601741A (en) 1994-11-18 1997-02-11 Illinois Tool Works, Inc. Method and apparatus for receiving a universal input voltage in a welding power source

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0236681Y2 (en) * 1985-04-15 1990-10-04

Also Published As

Publication number Publication date
JPH02154965A (en) 1990-06-14

Similar Documents

Publication Publication Date Title
JPH0694977B2 (en) Liquid cooler controller
US5214930A (en) Method for regulating the temperature of a medium by means of a temperature control loop, and a temperature-regulating device for implementing the method
JP2816789B2 (en) Cold water supply device
JP2000075936A (en) Heater controller
JP2652019B2 (en) Refrigeration cycle frequency controller
JPH05150751A (en) Video output circuit of liquid crystal display device
JP3212229B2 (en) Refrigerator pressure control device
JPH01304512A (en) Controller for air conditioner
JPH069002B2 (en) Program controller for multiple sensors
JPH0586538B2 (en)
JPH1158481A (en) Method for controlling temperature in heater for injection molding machine
JPH0510654A (en) Defrosting control device of refrigerator
JPH0648015U (en) Furnace temperature control system
KR0131067B1 (en) Temperature control device for automatic vending machine
JP2543592Y2 (en) Temperature recording device
JP2638876B2 (en) Sensor controller and sensing method
JP2973503B2 (en) Timer using microcomputer
JPH07146729A (en) Device for preventing break down of computer system
JPS62212803A (en) Pid constant determining device
JPH10141734A (en) Cooling/heating switching control device for air conditioner
JPH0789754B2 (en) Air conditioner frequency control method
JPH0313762Y2 (en)
JPH01199218A (en) Sample temperature controller for analyzing device
JPS63182705A (en) Automatic setting device for pid constant
JPH05180552A (en) Refrigerator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees