JPH0694063B2 - Casting method and mold for fiber-reinforced metal body - Google Patents

Casting method and mold for fiber-reinforced metal body

Info

Publication number
JPH0694063B2
JPH0694063B2 JP3543886A JP3543886A JPH0694063B2 JP H0694063 B2 JPH0694063 B2 JP H0694063B2 JP 3543886 A JP3543886 A JP 3543886A JP 3543886 A JP3543886 A JP 3543886A JP H0694063 B2 JPH0694063 B2 JP H0694063B2
Authority
JP
Japan
Prior art keywords
fiber
molded body
mold
molten metal
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3543886A
Other languages
Japanese (ja)
Other versions
JPS62197266A (en
Inventor
剛 佐久間
宣明 高取
佳久 山村
昭夫 飛鷹
正博 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP3543886A priority Critical patent/JPH0694063B2/en
Publication of JPS62197266A publication Critical patent/JPS62197266A/en
Publication of JPH0694063B2 publication Critical patent/JPH0694063B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】 A.発明の目的 (1) 産業上の利用分野 本発明は繊維強化金属体の鋳造方法および鋳型に関す
る。
DETAILED DESCRIPTION OF THE INVENTION A. Object of the Invention (1) Field of Industrial Application The present invention relates to a casting method and a mold for a fiber-reinforced metal body.

(2) 従来の技術 従来、この種鋳造方法においては、繊維成形体に対する
溶湯の充填性を良好にするため、繊維成形体を予熱して
鋳型に設置し、その鋳型に注入された溶湯を加圧するこ
とにより繊維成形体に充填している。
(2) Conventional Technology In the conventional casting method, in order to improve the filling property of the molten metal into the fiber molded body, the fiber molded body is preheated and placed in a mold, and the molten metal injected into the mold is added. The fiber molding is filled by pressing.

(3) 発明が解決しようとする問題点 繊維成形体に対する溶湯の充填時、繊維成形体は溶湯の
圧力により圧縮されて収縮するが、この繊維成形体の鋳
造前後の繊維体積率の変化と予熱温度との間には密接な
相関関係がある。
(3) Problems to be Solved by the Invention When the molten metal is filled in the fiber molded body, the fiber molded body is compressed and contracted by the pressure of the molten metal, but the change in the fiber volume ratio before and after casting and the preheating of the fiber molded body. There is a close correlation with temperature.

したがって、前記従来法のように鋳造作業に先立って繊
維成形体を予熱しただけでは、その予熱温度が、繊維成
形体の搬送中および鋳型への設置作業中における放熱な
らびに鋳造作業中における溶湯による加熱によって変化
し、その変化した温度に伴って繊維成形体の繊維体積率
が決められてしまうため、所望の繊維体積率を有する金
属体を安定よく量産することが困難であるという問題が
ある。
Therefore, just by preheating the fiber molded body prior to the casting operation as in the conventional method, the preheating temperature is such that the heat is released during the transportation of the fiber molded body and the installation operation in the mold, and the heating by the molten metal during the casting operation. The fiber volume ratio of the fiber molded body is determined depending on the changed temperature, and thus it is difficult to stably mass-produce a metal body having a desired fiber volume ratio.

本発明は、上記に鑑み、繊維成形体の予熱温度を鋳造中
(即ち少なくとも溶湯のキャビティ注入から繊維成形体
への充填に至るまでは)略不変に保持して、所望の繊維
体積率を有する繊維強化金属体を安定よく量産すること
ができるようにした、前記鋳造方法及びその方法に用い
られる鋳型を提供することを目的とする。
In view of the above, the present invention keeps the preheating temperature of the fiber molded body substantially unchanged during casting (that is, at least from the injection of the molten metal into the filling of the fiber molded body) to obtain a desired fiber volume ratio. An object of the present invention is to provide the casting method and the mold used in the casting method, which enable stable mass production of fiber-reinforced metal bodies.

B.発明の構成 (1) 問題点を解決するための手段 上記目的を達成するために本発明の鋳造方法は、鋳型の
キャビティに溶湯を注入して加圧することにより、その
溶湯を、前記キャビティに設置された繊維成形体に充填
するようにした、繊維強化金属体の鋳造方法において、
前記繊維成形体の予熱温度を略不変に保つための温度制
御手段を有して該繊維成形体をキャビティの所定位置に
保持し得る設置部を備えた鋳型を使用し、少なくとも前
記溶湯の注入から充填に至るまでの間、前記設置部に保
持された繊維成形体の予熱温度を前記温度制御手段によ
り略不変に保つようにしたことを特徴とし、また本発明
の鋳型は、キャビティに注入された溶湯を加圧すること
により該キャビティ内の繊維成形体に充填して繊維強化
金属体を鋳造するために使用される鋳型において、前記
繊維成形体をキャビティの所定位置に保持するための中
子と、その中子に保持された繊維成形体の予熱温度を少
なくとも前記溶湯の注入から充填に至るまでの間略不変
に保つべく該中子に付設された温度制御手段とを備える
ことを特徴とする。
B. Configuration of the Invention (1) Means for Solving the Problems In order to achieve the above-mentioned object, the casting method of the present invention is characterized in that the molten metal is injected into the cavity of the mold and pressurized, thereby causing the molten metal to flow into the cavity. In a method for casting a fiber-reinforced metal body, which is configured to be filled in the fiber molded body installed in,
Using a mold provided with an installation portion capable of holding the fiber molded body at a predetermined position of the cavity having a temperature control means for keeping the preheating temperature of the fiber molded body substantially unchanged, at least from the pouring of the molten metal It is characterized in that the preheating temperature of the fiber molded body held in the installation portion is kept substantially unchanged by the temperature control means until the filling, and the mold of the present invention is injected into the cavity. In a mold used for casting a fiber reinforced metal body by filling the fiber molded body in the cavity by pressurizing the molten metal, a core for holding the fiber molded body in a predetermined position of the cavity, A temperature control means attached to the core so as to keep the preheating temperature of the fiber molded body held in the core substantially unchanged at least from the pouring to the filling of the molten metal.

(2) 作用 繊維成形体の鋳造前後の繊維体積率変化は、たとえ鋳造
前の繊維体積率や鋳造条件が同じ場合でも繊維成形体の
予熱温度の変動に応じて少なからず変動するものであ
る。
(2) Action The change in the fiber volume ratio before and after the casting of the fiber molded product varies considerably depending on the change in the preheating temperature of the fiber molded product even if the fiber volume ratio before casting and the casting conditions are the same.

ところが本発明の上記構成によれば、繊維成形体の予熱
温度が鋳造中(即ち少なくとも溶湯のキャビティ注入か
ら繊維成形体への充填に至るまでは)略不変に保たれる
ので、繊維成形体の鋳造前後の収縮の程度を個々の鋳造
品において略同じにすることができ、これにより所望の
繊維体積率を有する繊維強化金属体が安定よく得られ
る。
However, according to the above configuration of the present invention, the preheating temperature of the fiber molded body is kept substantially unchanged during casting (that is, at least from the injection of the molten metal into the filling of the fiber molded body). The degree of shrinkage before and after casting can be made substantially the same in each cast product, whereby a fiber-reinforced metal body having a desired fiber volume ratio can be stably obtained.

(3) 実施例 第1〜第3図は繊維強化アルミニウム合金製サイアミー
ズ型シリンダブロックSを示し、そのシリンダブロック
Sは、直列に並ぶ複数、図示例は4個のシリンダバレル
11〜14を結合してなるサイアミーズシリンダバレル1
と、そのサイアミーズシリンダバレル1を囲繞する外壁
部2と、外壁部2の下縁に連設されたクランクケース3
とより構成される。各シリンダバレル11〜14におけるシ
リンダボア4回りは円筒状繊維強化金属体としての繊維
強化アルミニウム合金体Mfより構成される。
(3) Examples FIGS. 1 to 3 show a Siamese type cylinder block S made of fiber reinforced aluminum alloy, and the cylinder block S is a plurality of cylinder barrels arranged in series, four cylinder barrels in the illustrated example.
1 1 to 1 4 combines comprising Siamese cylinder barrel 1
And an outer wall portion 2 surrounding the Siamese cylinder barrel 1, and a crankcase 3 connected to the lower edge of the outer wall portion 2.
Composed of and. Around the cylinder bore 4 in each of the cylinder barrels 1 1 to 14 is composed of a fiber-reinforced aluminum alloy body Mf as a cylindrical fiber-reinforced metal body.

サイアミーズシリンダバレル1と外壁部2間に、サイア
ミーズシリンダバレル1の外周が臨む水ジャケット6が
形成される。その水ジャケット6のシリンダヘッド側端
部において、サイアミーズシリンダバレル1と外壁部2
間は複数の補強デッキ部8により部分的に連結され、相
隣る補強デッキ部8間はシリンダヘッド側への連通口7
として機能する。これによりシリンダブロックSはクロ
ーズドデッキ型に構成される。
A water jacket 6 facing the outer circumference of the Siamese cylinder barrel 1 is formed between the Siamese cylinder barrel 1 and the outer wall portion 2. At the cylinder head side end of the water jacket 6, the Siamese cylinder barrel 1 and the outer wall 2
The plurality of reinforcing deck parts 8 are partially connected to each other, and the adjacent reinforcing deck parts 8 have a communication port 7 to the cylinder head side.
Function as. As a result, the cylinder block S is constructed as a closed deck type.

第5〜第8図は、第4図に示すシリンダブロック素材Sm
を鋳造する鋳造装置を示し、その装置は鋳型としての金
型Mを備え、その金型Mは昇降自在な上型9と、その上
型9の下方に配設され、第5,第6図において左右二つ割
の第1および第2側型101,102ならびに第7図において
左右二つ割の第3および第4側型103,104と、各側型101
〜104を摺動自在に載置する下型11とより構成される。
5 to 8 show the cylinder block material Sm shown in FIG.
Fig. 5 shows a casting device for casting a mold, the device including a mold M as a mold, the mold M being arranged to move up and down, and arranged below the upper mold 9. two left and right split the first and second side mold 10 1, 10 2 and 7 the third and fourth side-type two left and right split numeral 103 in, 10 4, each side mold 10 1
It is composed of a lower mold 11 on which ~ 10 4 are slidably mounted.

上型9の下面に、各側型101〜104の上半部と協働してサ
イアミーズシリンダバレル1および外壁部2を成形する
ための第1キャビテイC1を画成する型締め用凹部12が形
成され、その凹部12と嵌合する型締め用凸部13が各側型
101〜104の上面に突設される。
On the lower surface of the upper mold 9, a mold clamping recess defining a first cavity C 1 for molding the Siamese cylinder barrel 1 and the outer wall part 2 in cooperation with the upper half of each side mold 10 1 to 10 4. 12 are formed, and the mold clamping projections 13 that fit into the recesses 12 are formed on each side mold.
It is projected on the upper surface of 10 1 to 10 4 .

第7,第8図に示すように、下型11に溶解炉(図示せず)
よりアルミニウム合金の溶湯を受ける湯溜部14と、その
湯溜部14に連通する給湯シリンダ15と、その給湯シリン
ダ15に摺合されるプランジヤ16と、湯溜部14より2本に
分岐して第1キャビテイC1の長手方向に、且つそれと略
同一長さに亘って延びる一対の湯道17とが設けられる。
また下型11は両湯道17間において上方へ突出する成形ブ
ロック18を有し、その成形ブロック18は各側型101〜104
の下半部と協働してクランクケース3を成形するための
第2キャビテイC2を画成する。そのキャビテイC2の上端
は前記第1キャビテイC1に連通し、また両側の下端は両
湯道17に複数の堰19を介して連通する。
As shown in FIGS. 7 and 8, the lower mold 11 has a melting furnace (not shown).
Further, a hot water reservoir 14 for receiving molten aluminum alloy, a hot water supply cylinder 15 communicating with the hot water reservoir 14, a plunger 16 slidably fitted in the hot water supply cylinder 15, and a hot water reservoir 14 branched into two. A pair of runners 17 extending in the longitudinal direction of the one-cavity C 1 and over substantially the same length as the one-cavity C 1 are provided.
Further, the lower die 11 has a forming block 18 projecting upward between both runners 17, and the forming block 18 has each side die 10 1 to 10 4
Cooperates with the lower half of the lower part to define a second cavity C 2 for forming the crankcase 3. The upper end of the cavity C 2 communicates with the first cavity C 1, and the lower ends on both sides communicate with both runners 17 via a plurality of weirs 19.

成形ブロック18は、所定の間隔で形成された背の高い4
個のかまぼこ形第1成形部181と、相隣る第1成形部181
間および最外側の両第1成形部181の外側に位置する凸
字形第2成形部182とよりなり、各第1成形部181はクラ
ンクピンおよびクランクアーム用回転空間20(第2,第3
図)を成形するために用いられ、第2成形部182はクラ
ンクジャーナルの軸受ホルダ21(第2,第3図)を成形す
るために用いられる。各堰19は各第2成形部182に対応
して設けられており、第2キャビテイC2の容量の大きな
部分に溶湯を早期に注入するようになっている。
The forming block 18 is a tall 4 formed at predetermined intervals.
Individual kamaboko-shaped first forming parts 18 1 and adjacent first forming parts 18 1
It is composed of convex second molding parts 18 2 located outside both the first and second outermost molding parts 18 1 , and each of the first molding parts 18 1 includes a crank pin and a crank arm rotation space 20 (second, Third
The second molding part 18 2 is used for molding the bearing holder 21 (FIGS. 2 and 3) of the crank journal. Each weir 19 is provided corresponding to each second molding portion 18 2 so that the molten metal can be injected into a large capacity portion of the second cavity C 2 at an early stage.

両湯道17の断面積が湯溜部14側より湯道先17aに向けて
段階的に減少するように、湯道17底面は湯溜部14側より
数段の上り階段状に形成されている。各段部17bに連な
る各立上がり部17cは溶湯を各堰19にスムーズに導くこ
とができるように斜めに形成される。
The bottom surface of the runner 17 is formed in a staircase shape of several steps from the side of the hot water reservoir 14 so that the cross-sectional area of both runners 17 gradually decreases from the side of the hot water reservoir 14 toward the runner tip 17a. Each rising portion 17c connected to each step portion 17b is formed obliquely so that the molten metal can be smoothly guided to each weir 19.

このように湯道17の断面積を段階的に減少させると、断
面積の大きな部分では大量の溶湯を遅い速度で堰19を通
じて第2キャビテイC2に注入し、また断面積の小さな部
分では少量の溶湯を速い速度で堰19を通じて第2キャビ
テイC2に注入することができるので、そのキャビテイC2
内に溶湯が湯道17の全長に亘って略均等に注入される。
したがって溶湯がキャビテイC2内で乱流を起こすことが
なく、空気等のガスが溶湯に巻き込まれることを防止し
て巣の発生を回避することができる。また溶湯の注入作
業が効率良く行われるので、鋳造能率を向上させること
ができる。
When the cross-sectional area of the runway 17 is gradually reduced in this way, a large amount of molten metal is injected into the second cavity C 2 through the weir 19 at a slow speed in a large cross-sectional area and a small amount in a small cross-sectional area. it is possible to through weir 19 of the molten metal at a faster rate injected into the second cavity C 2, the cavity C 2
Molten metal is poured into the inside of the runner 17 substantially evenly.
Therefore, the molten metal does not cause a turbulent flow in the cavity C 2 , and it is possible to prevent gas such as air from being caught in the molten metal and avoid the formation of cavities. Further, since the molten metal injection work is efficiently performed, the casting efficiency can be improved.

第5,6図に示すように、各第1成形部181の頂面に後述す
る繊維成形体の下端部が嵌合する位置決め突起22が突設
され、その位置決め突起22の中心に凹部23が形成され
る。また両側に位置する2つの第1成形部181に、位置
決め突起22の両側において第1成形部181を貫通する貫
通孔24が形成され、それら貫通孔24に一対の仮設置ピン
5がそれぞれ摺合される。それら仮設置ピン25は、後述
する水ジャケット用砂中子の仮設置のために用いられ
る。両仮設置ピン25の下端は、成形ブロック18の下方に
配設された取付板26に固定される。その取付板26に2本
の支持ロッド27が挿通され、各支持ロッド27の下部と取
付板26の下面との間にコイルばね28が縮設される。型開
き時には、取付板26は各コイルばね28の弾発力を受けて
各支持ロッド27先端のストッパ27aに当接するまで上昇
し、これにより各仮設置ピン25の先端は第1成形部181
頂面より突出している。各仮設置ピン25の先端面に砂中
子の下縁と係合する凹部25aが形成される。
As shown in FIGS. 5 and 6, a positioning projection 22 to which a lower end of a fiber molded body described later is fitted is provided on the top surface of each first molding portion 18 1 , and a recess 23 is formed at the center of the positioning projection 22. Is formed. Further, through holes 24 penetrating the first molding portion 18 1 are formed on both sides of the positioning protrusion 22 in the two first molding portions 18 1 located on both sides, and a pair of temporary setting pins 5 are respectively formed in the through holes 24. Be slid together. These temporary setting pins 25 are used for temporary setting of a sand core for a water jacket described later. The lower ends of both temporary setting pins 25 are fixed to a mounting plate 26 arranged below the molding block 18. Two support rods 27 are inserted through the mounting plate 26, and a coil spring 28 is contracted between the lower portion of each support rod 27 and the lower surface of the mounting plate 26. When the mold is opened, the mounting plate 26 receives the elastic force of each coil spring 28 and ascends until it comes into contact with the stopper 27a at the tip of each support rod 27, whereby the tip of each temporary installation pin 25 is made into the first molding portion 18 1.
It protrudes from the top surface. A recess 25a that engages with the lower edge of the sand core is formed on the tip surface of each temporary installation pin 25.

また両側に位置する2つの第1成形部181に、両貫通孔2
4間の二等分位置において第1成形部181を貫通する貫通
孔29が形成され、その貫通孔29に下端を取付板26に固定
された作動ピン30が摺合される。型開き時には、作動ピ
ン30の先端は凹部23内に突出し、また型閉め時には後述
する繊維成形体用設置部としてのシリンダボア成形用中
子により押し下げられ、これにより両仮設置ピン25を第
1成形部181頂面より引き込ませるようになっている。
The two through holes 2 are formed in the two first molding portions 18 1 located on both sides.
In bisecting position between 4 first mold portion 18 first through hole 29 that penetrates the is formed, actuating pin 30 which is fixed to the lower end to the mounting plate 26 into the through-hole 29 is engaged slidably. When the mold is opened, the tip of the actuating pin 30 projects into the recess 23, and when the mold is closed, it is pushed down by the cylinder bore molding core that serves as the installation portion for the fiber molded body, which will be described later. Part 18 1 It is designed to be pulled in from the top.

第1および第2側型101,102における第1キャビテイC1
を画成する壁部の中央部分に砂中子を本設置するための
中子受31が2個所宛設けられている。各中子受31は砂中
子の位置決めを行う係合孔31aと、その開口部外周に形
成されて砂中子を挟持する挟持面31bとよりなる。
First cavity C 1 in the first and second side molds 10 1 and 10 2
Two core holders 31 for permanently installing the sand core are provided at the center of the wall defining the core. Each core receiver 31 includes an engagement hole 31a for positioning the sand core, and a sandwiching surface 31b formed on the outer circumference of the opening for sandwiching the sand core.

上型9の型締め用凹部12に、第1キャビテイC1に連通し
て溶湯をオーバフローさせるための複数の第3キャビテ
イC3および連通口7を成形するための第4キャビテイC4
がそれぞれ開口し、また上型9に各第3キャビテイC3
よび第4キャビテイC4に連通するガス抜き孔32,33がそ
れぞれ形成される。
In the mold clamping recess 12 of the upper mold 9, a plurality of third cavities C 3 for communicating with the first cavity C 1 to overflow the molten metal and a fourth cavity C 4 for forming the communication port 7 are formed.
, And gas vent holes 32, 33 communicating with the third cavity C 3 and the fourth cavity C 4 are formed in the upper mold 9.

それらガス抜き孔32,33に閉鎖ピン34,35がそれぞれ遊挿
され、それら閉鎖ピン34,35の上端部は上型9の上方に
配設される取付板36に固定される。
Closing pins 34 and 35 are loosely inserted into the gas vent holes 32 and 33, respectively, and upper ends of the closing pins 34 and 35 are fixed to a mounting plate 36 disposed above the upper die 9.

各ガス抜き孔32,33の、両キャビテイC3,C4に対する連通
端から上方へ所定の長さに亘って延びる小径部32a,33a
は各閉鎖ピン34,35の下端部と嵌合して第3キャビテイC
3および第4キャビテイC4を閉鎖し得るようになってい
る。
Small diameter portions 32a, 33a extending upward from the communicating ends of the respective gas vent holes 32, 33 with respect to the cavities C 3 , C 4 over a predetermined length.
Is fitted with the lower end of each closing pin 34, 35 and the third cavity C
3 and a fourth cavity C 4 and is able to close.

上型9の頂面と取付板36間に油圧シリンダ39が介装さ
れ、その油圧シリンダ39の作動により取付板36を昇降し
て各閉鎖ピン34,35により各小径部32a,33aを開閉するよ
うになっている。40は取付板36の案内ロッドである。
A hydraulic cylinder 39 is interposed between the top surface of the upper die 9 and the mounting plate 36, and the mounting plate 36 is moved up and down by the operation of the hydraulic cylinder 39 to open and close the small diameter portions 32a, 33a by the closing pins 34, 35. It is like this. 40 is a guide rod for the mounting plate 36.

上型9の型締め用凹部12天面に、各シリンダバレル11
14に対応して軸線を上、下方向に向けて配設したシリン
ダボア成形用円柱状中子41が突設され、各中子41の下端
面に第1成形部181頂面の凹部23に嵌合し得る凸部41aが
設けられる。
On the top surface of the mold clamping recess 12 of the upper mold 9, each cylinder barrel 1 1 ~
1 4 on an axis corresponding to the cylinder bores molding cylindrical core 41 which is disposed toward the downward direction is projected, the first shaping unit 18 1 the top surface of the recess 23 in the lower end surface of each core 41 Is provided with a convex portion 41a that can be fitted to the.

第5,第5A図に明示するように中子41の中心部にヒータH
が埋設され、またヒータHの周囲に複数の冷却水路Wcが
形成される。これらヒータHおよび冷却水路Wcにより繊
維成形体の予熱温度を略不変に保つ温度制御手段が構成
される。
As shown in FIGS. 5 and 5A, the heater H is provided at the center of the core 41.
Is buried, and a plurality of cooling water passages Wc are formed around the heater H. The heater H and the cooling water passage Wc constitute temperature control means for keeping the preheating temperature of the fiber molded body substantially unchanged.

第9,第10図は水ジャケット用砂中子59を示し、その砂中
子59は、シリンダブロックSの4本のシリンダバレル11
〜14に対応して4本の円筒部601〜604を備えると共にそ
れらの相隣るもの相互の重合する周壁を欠如させた中子
本体61と、水ジャケットをシリンダヘッドの水ジャケッ
トに連通する連通口7および補強デッキ部8を形成すべ
く、中子本体61の上端面に突設された複数の突起62と、
中子本体61の中間に位置する2本の円筒部602,603の両
外側面にそれぞれ突設された幅木63とより構成される。
各幅木63は中子本体61と一体の大径部63aと、その端面
に突設される小径部63bとより形成される。
FIGS. 9 and 10 show a sand core 59 for a water jacket, which sand core 59 has four cylinder barrels 1 of the cylinder block S 1.
Core body 61 having four cylindrical portions 60 1 to 60 4 corresponding to ~ 1 4 and lacking peripheral walls where adjacent ones overlap each other, and a water jacket as a water jacket of a cylinder head. A plurality of projections 62 projecting from the upper end surface of the core body 61 to form the communication port 7 and the reinforcing deck portion 8 that communicate with each other;
It is composed of two skirts 63 projecting from both outer side surfaces of the two cylindrical parts 60 2 and 60 3 located in the middle of the core body 61.
Each skirting board 63 is formed of a large-diameter portion 63a integral with the core body 61 and a small-diameter portion 63b projecting from the end surface thereof.

第11図は、中子41に装着されて繊維強化アルミニウム合
金体Mfを得べく、炭素繊維とアルミナ繊維との混合繊維
より成形された円筒状繊維成形体Fを示し、その寸法は
外径89mm、内径78mm、高さ152mmである。またかさ密度
は0.3〜1.2g/cm3、したがって繊維体積率は8〜35%で
ある。繊維成形体Fは、平均直径18μm、平均長さ0.8m
mの炭素繊維(短繊維)と、平均直径3〜4μm、平均
長さ0.5mmのアルミナ繊維(短繊維)とを1対3の割合
で混合し、その混合繊維にシリカゾルをバインダとして
加え、吸引付着成形法を適用して成形されたものであ
る。この場合、シリカゲルの代りにアルミナゾル単体、
またはシリカゾルとアルミナゾルの混合物を用いること
が可能である。
FIG. 11 shows a cylindrical fiber molded body F molded from a mixed fiber of carbon fiber and alumina fiber in order to obtain the fiber reinforced aluminum alloy body Mf mounted on the core 41, and its size is 89 mm in outer diameter. The inner diameter is 78 mm and the height is 152 mm. The bulk density is 0.3 to 1.2 g / cm 3 , and the fiber volume ratio is 8 to 35%. The fiber molding F has an average diameter of 18 μm and an average length of 0.8 m.
m carbon fibers (short fibers) and alumina fibers (short fibers) having an average diameter of 3 to 4 μm and an average length of 0.5 mm were mixed at a ratio of 1: 3, and silica sol was added as a binder to the mixed fibers, and suction was performed. It is molded by applying the adhesion molding method. In this case, instead of silica gel, alumina sol simple substance,
Alternatively, a mixture of silica sol and alumina sol can be used.

前記吸引付着成形法とは、前記混合繊維とシリカゾルの
混合物を入れた槽中に、両端面を密封した通気性を有す
る円筒型を立設し、その円筒型の内部に吸引作用を施し
て前記混合物を円筒型外周面に吸着させる手法をいう。
The suction adhesion molding method, in a tank containing a mixture of the mixed fiber and silica sol, standing up a breathable cylindrical mold with both end surfaces sealed, and applying a suction action to the inside of the cylindrical mold, It means a method of adsorbing the mixture on the outer peripheral surface of the cylinder.

前記手法により成形された繊維成形体Fは、離型後乾燥
および焼成工程を経て使用に供される。
The fibrous molded body F molded by the above-mentioned method is used after undergoing a drying and firing process after release.

第12図は繊維成形体Fの予熱温度と収縮率との関係を、
また第13図は繊維成形体Fの予熱温度と鋳造前後の繊維
体積率変化との関係をそれぞれ示し、両図中、線aは鋳
造前の繊維体積率が8%の繊維成形体に、また線bは鋳
造前の繊維体積率が15%の繊維成形体に、さらに線cは
鋳造前の繊維体積率が35%の繊維成形体にそれぞれ該当
する。これらグラフからも明らかなように、繊維成形体
Fの鋳造前後の収縮率や繊維体積率変化は、たとえ鋳造
前の繊維体積率や鋳造条件が同じ場合でも繊維成形体F
の予熱温度の変動に応じて少なからず変動するものであ
るが、前記温度制御手段を用いて繊維成形体Fの予熱温
度を鋳造中(即ち少なくとも溶湯のキャビティ注入から
繊維成形体Fへの充填に至るまで)略不変に保つように
すれば、繊維成形体Fの鋳造前後の収縮の程度を個々の
鋳造品において略同じにすることができるため、所望の
繊維体積率を有する繊維強化アルミニウム合金体Mfを安
定よく量産することができる。しかもその略不変に保つ
べき上記予熱温度を50〜300℃の範囲で選定すれば、繊
維成形体Fに対する溶湯の充填性も適度に高められて鋳
造品質の優秀な繊維強化アルミニウム合金体Mfを得るこ
とができる。
FIG. 12 shows the relationship between the preheating temperature of the fiber molded body F and the shrinkage ratio,
FIG. 13 shows the relationship between the preheating temperature of the fiber molded body F and the change in the fiber volume ratio before and after casting. In both figures, the line a indicates the fiber molded body with a fiber volume ratio before casting of 8%, The line b corresponds to a fiber molded body having a fiber volume ratio before casting of 15%, and the line c corresponds to a fiber molded body having a fiber volume ratio before casting of 35%. As is clear from these graphs, the change in the shrinkage ratio and the fiber volume ratio before and after casting of the fiber molded body F is even if the fiber volume ratio before casting and the casting conditions are the same.
The temperature control means is used to vary the preheating temperature of the fiber molded body F to some extent, but the temperature control means is used to control the preheated temperature of the fiber molded body F (that is, at least from the injection of the molten metal cavity into the fiber molded body F). By keeping them substantially unchanged, the degree of shrinkage of the fiber molded body F before and after casting can be made substantially the same in each cast product, so that a fiber-reinforced aluminum alloy body having a desired fiber volume ratio can be obtained. Mf can be mass-produced stably. Moreover, if the preheating temperature which should be kept substantially unchanged is selected in the range of 50 to 300 ° C., the filling property of the molten metal with respect to the fiber molded body F is appropriately enhanced, and the fiber reinforced aluminum alloy body Mf having excellent casting quality is obtained. be able to.

なお、繊維成形体Fの予熱温度が300℃を上回ると、繊
維成形体Fに対する溶湯の充填性は良好となるが、繊維
成形体Fの収縮率が低下し、その収縮率が繊維成形体F
全体に亘って不均一となる傾向があり、その結果繊維成
形体Fの低密度部分に溶湯が優先的に充填されるため繊
維成形体Fが部分的に破損するおそれがある。
When the preheating temperature of the fiber molded body F is higher than 300 ° C., the filling property of the molten metal with respect to the fiber molded body F is good, but the shrinkage rate of the fiber molded body F is lowered, and the shrinkage rate is reduced.
There is a tendency to become non-uniform over the whole, and as a result, the low density portion of the fiber molded body F is preferentially filled with the molten metal, so that the fiber molded body F may be partially damaged.

また前記予熱温度が50℃を下回ると、繊維成形体Fによ
り溶湯が冷やされるため、その充填性が悪化し、その結
果繊維成形体Fが大幅に圧縮されてその収縮率が増加
し、中子41側に高密度部分を発生してそこに溶湯が充填
されなくなる。
Further, when the preheating temperature is lower than 50 ° C., the molten metal is cooled by the fiber molded body F, so that the filling property thereof is deteriorated, and as a result, the fiber molded body F is significantly compressed and its shrinkage rate is increased. A high density part is generated on the 41 side and the molten metal is not filled there.

次に前記繊維成形体Fを用いた前記鋳造装置によるシリ
ンダブロック素材Smの鋳造作業について説明する。
Next, a casting operation of the cylinder block material Sm by the casting apparatus using the fiber molded body F will be described.

先ず第5図に示すように上型9を上昇させ、また相対向
する両側壁101,102;103,104を互いに離間するように移
動させて型開きを行う。上型9上の油圧シリンダ39を作
動させて取付板36を介し各閉鎖ピン34,35を上昇させ、
第3,第4キャビテイC3,C4に連通する小径部32a,33aの各
上部開口を開く。さらに給湯シリンダ15内のプランジヤ
16を下降させる。
First, as shown in FIG. 5, the upper mold 9 is raised, and the opposite side walls 10 1 , 10 2 ; 10 3 , 10 4 are moved so as to be separated from each other to open the mold. The hydraulic cylinder 39 on the upper die 9 is operated to raise the closing pins 34, 35 via the mounting plate 36,
Third, the small-diameter portion 32a which communicates with the fourth cavity C 3, C 4, open each upper opening of 33a. Furthermore, the plunger in the hot water supply cylinder 15
Lower 16

略300℃に予熱された各繊維成形体Fを各中子41に装着
し、繊維成形体Fの上端開口を上型9の凹部12天面に当
接する。
Each fiber molding F preheated to approximately 300 ° C. is mounted on each core 41, and the upper end opening of the fiber molding F is brought into contact with the top surface of the recess 12 of the upper mold 9.

またヒータHおよび冷却水路Wcの冷却水により中子41を
介して繊維成形体Fをその予熱温度である略300℃に保
つ。このヒータH等による繊維成形体Fの予熱温度保持
は、鋳造中、したがって繊維成形体Fに充填された溶湯
が凝固を開始するまで継続される。
Further, the fiber molded body F is maintained at its preheating temperature of approximately 300 ° C. through the core 41 by the heater H and the cooling water in the cooling water passage Wc. The holding of the preheated temperature of the fiber molded body F by the heater H or the like is continued during casting, that is, until the molten metal filled in the fiber molded body F starts to solidify.

第5,第10図に示すように砂中子59における両側の円筒部
601,604下縁を、下型11における両側の第1成形部181
頂面に突出する各仮設置ピン25の凹部25aに係合させて
砂中子59の仮設置を行う。
As shown in Figs. 5 and 10, the cylindrical parts on both sides of the sand core 59
The lower edges of 60 1 and 60 4 are engaged with the recesses 25a of the temporary setting pins 25 projecting to the top surfaces of the first molding portions 18 1 on both sides of the lower mold 11 to temporarily install the sand core 59.

第6図に示すように、両側壁101,102をそれらが互いに
接近する方向に所定距離移動させ、各中子受31と各幅木
63とを係合して砂中子59の本設置を行う。即ち、各中子
受31の係合孔31aに砂中子59における各幅木63の小径部6
3bを嵌合して砂中子59を位置決めし、また各大径部63a
のシリンダバレル配列方向と平行な端面を各中子受31の
挟持面31bに衝合して砂中子59をそれら挟持面31bにより
挟持するものである。また他の両側壁103,104も同様に
移動させる。
As shown in FIG. 6, both side walls 10 1 and 10 2 are moved by a predetermined distance in the direction in which they approach each other, and each core support 31 and each skirting board is moved.
The sand core 59 is permanently installed by engaging with 63. That is, the small diameter portion 6 of each skirting board 63 in the sand core 59 is inserted into the engagement hole 31a of each core support 31.
3b is fitted to position sand core 59, and each large diameter part 63a
The end faces parallel to the cylinder barrel arrangement direction of the above are abutted against the sandwiching faces 31b of each core receiver 31 to sandwich the sand core 59 by these sandwiching faces 31b. The other side walls 10 3 and 10 4 are also moved in the same manner.

次いで上型9を下降させ、各繊維成形体Fを砂中子59の
各円筒部601〜604内に挿入して各繊維成形体Fの下端部
を位置決め突起22に嵌合し、また中子41の凸部41aを第
1成形部181頂面の凹部23に嵌合する。この凹凸嵌合に
より作動ピン30が押し下げられるので各仮設置ピン25が
下降して第1成形部181頂面より引込む。また砂中子59
の各突起62が各第4キャビテイC4に遊挿され、さらに上
型9の型締め用凹部12が各側型101〜104の型締め用凸部
13に嵌合して型締めが行われる。
Next, the upper die 9 is lowered, each fiber molded body F is inserted into each cylindrical portion 60 1 to 60 4 of the sand core 59, and the lower end portion of each fiber molded body F is fitted to the positioning projection 22. The convex portion 41a of the core 41 is fitted into the concave portion 23 on the top surface of the first molding portion 18 1 . Since the operating pin 30 is pushed down by this concave-convex fitting, each temporary setting pin 25 descends and is retracted from the top surface of the first molding portion 18 1 . See again Sunako 59
Each projection 62 is loosely inserted in each fourth cavity C 4, and the mold clamping concave portion 12 of the upper mold 9 is further provided with the mold clamping convex portion of each side mold 10 1 to 10 4.
It is fitted to 13 and the mold is clamped.

下型11の湯溜部14に溶解炉より730℃のアルミニウム合
金(JIS ADC12)よりなる溶湯を供給し、プランジヤ16
を0.08〜0.3m/secの速度で上昇させ、第14図に示すよう
に圧力p1を以て溶湯を両湯道17より堰19を通じて第2キ
ャビテイC2の両下部よりそのキャビテイC2および第1キ
ャビテイC1に注入する。両キャビテイC1,C2内の空気等
のガスは、溶湯により押し上げられて第3,第4キャビテ
イC3,C4に連通するガス抜き孔32,33を経て上型9の上方
へ抜ける。
A molten metal composed of an aluminum alloy (JIS ADC12) at 730 ° C was supplied from the melting furnace to the hot water reservoir 14 of the lower mold 11, and the plunger 16
At a speed of 0.08 to 0.3 m / sec, and as shown in FIG. 14, the molten metal with pressure p 1 is passed from both runways 17 through weirs 19 from both lower parts of second cavity C 2 to its cavities C 2 and 1 Inject into cavity C 1 . Gases such as air in both cavities C 1 and C 2 are pushed up by the molten metal and escape above the upper mold 9 through the gas vent holes 32 and 33 communicating with the third and fourth cavities C 3 and C 4 .

この場合、両湯道17の断面積が前述のように湯道先17a
に向けて段階的に減少するように、湯道底面が湯溜部14
側より数段の上り階段状に形成されているので、プラン
ジヤ16の上昇により溶湯は両湯道17より各堰19を通じて
第2キャビテイC2に、その両下部よりその全長に亘って
略均等に注入される。
In this case, the cross-sectional area of both runways 17 is the runway tip 17a as described above.
The bottom of the runner is
Since it is formed in a step-like shape with several steps from the side, the molten metal is evenly distributed from both runways 17 through each weir 19 to the second cavity C 2 due to the rise of the plunger 16 and from both lower parts thereof to the entire length thereof. Injected.

また、ガス抜き孔32,33の小径部32a,33aの開口が狭くな
っているので、第1,第2キャビテイC1,C2内に溶湯を注
入する際、該キャビテイC1,C2内に背圧が発生し、その
背圧は湯面全体に均等に作用する。その結果、湯面は波
立ちを抑制されて略水平に上昇し、これにより溶湯への
ガスの巻込みが防止され、またガス抜きも効率良く行わ
れるので巣の発生が回避される。前記背圧に起因して、
第1,第2キャビテイC1,C2内における溶湯の注入圧は、
第14図に示すように大気圧を上回る圧力p1、例えば2〜
5kg/cm2になる。
Further, since the openings of the small diameter portions 32a, 33a of the gas vent holes 32, 33 are narrow, when pouring the molten metal into the first and second cavities C 1 , C 2, the inside of the cavities C 1 , C 2 A back pressure is generated in the back surface, and the back pressure acts evenly on the entire surface of the molten metal. As a result, the surface of the molten metal is suppressed from waviness and rises substantially horizontally, which prevents gas from being entrained in the molten metal and efficiently degass the molten metal, thus avoiding the formation of cavities. Due to the back pressure,
The injection pressure of the molten metal in the first and second cavities C 1 and C 2 is
As shown in FIG. 14, pressure p 1 above atmospheric pressure, for example 2 to
It becomes 5 kg / cm 2 .

さらに繊維成形体Fが前記温度に予熱されているので、
繊維成形体F周りの溶湯の保温が行われ、これにより繊
維成形体Fに対する溶湯の凝着が回避される。
Further, since the fiber molded body F is preheated to the above temperature,
The molten metal around the fiber molded body F is kept warm, so that the molten metal is prevented from adhering to the fiber molded body F.

第3,第4キャビテイC3,C4に溶湯が完全に注入された時
点で、上型9上の油圧シリンダ39を作動させて取付板36
を下降させ、閉鎖ピン34,35によって両キャビテイC3,C4
に連通する小径部32a,33aを閉鎖する。
When the molten metal is completely poured into the third and fourth cavities C 3 and C 4 , the hydraulic cylinder 39 on the upper die 9 is operated to attach the mounting plate 36.
And lower the cavities C 3 and C 4 with the closing pins 34 and 35.
The small diameter portions 32a, 33a communicating with the are closed.

その後プランジャ16を0.14〜0.18m/secの速度で上昇さ
せて溶湯を、前記圧力p1を上回る高圧力p2下、即ち400k
g/cm2の圧力下に所定時間保持して繊維強化アルミニウ
ム合金体Mfを得、またこの高圧下で溶湯を完全に凝固さ
せてアルミニウム合金の組織を緻密化し、その強度の向
上を図る。この溶湯の圧力上昇過程において溶湯の圧力
5〜20kg/cm2で溶湯が繊維成形体Fに充填される。この
ように溶湯の充填圧力が低いので、充填中に繊維成形体
Fが溶湯により破壊されることはない。
After that, the plunger 16 is raised at a speed of 0.14 to 0.18 m / sec to bring the molten metal under a high pressure p 2 above the pressure p 1, that is, 400 k.
The fiber-reinforced aluminum alloy body Mf is obtained by maintaining it under a pressure of g / cm 2 for a predetermined time, and the molten metal is completely solidified under this high pressure to densify the structure of the aluminum alloy and improve its strength. In the process of increasing the pressure of the molten metal, the molten metal is filled in the fiber molded body F at the molten metal pressure of 5 to 20 kg / cm 2 . Since the filling pressure of the molten metal is low as described above, the fiber molded body F is not destroyed by the molten metal during filling.

この場合砂中子59は、それの各幅木63を介して両側型10
1,102により正確な位置に挟持されているので、第1キ
ャビテイC1内への溶湯の注入時およびそのキャビテイC1
内の溶湯の加圧時において砂中子59が浮き上がったりす
ることがない。また各幅木63の大径部63aの端面が両側
型101,102における中子受31の挟持面31bに衝合している
ので、砂中子59が脹らみ傾向になると、その変形力は各
挟持面31bにより支承され、これにより砂中子59の変形
が防止されて各シリンダボア4回りの肉厚が均一なサイ
アミーズシリンダバレル1が得られる。
In this case the sand core 59 is a double-sided mold 10 via each of its skirting boards 63.
Since it is sandwiched by 1 and 10 2 in an accurate position, it can be used when pouring the molten metal into the first cavity C 1 and when the cavity C 1
The sand core 59 does not float up when the molten metal inside is pressurized. Further, since the end surface of the large diameter portion 63a of each skirting board 63 abuts against the sandwiching surface 31b of the core receiver 31 in the double-sided molds 10 1 and 10 2 , when the sand core 59 tends to swell, The deforming force is supported by each sandwiching surface 31b, whereby the sand core 59 is prevented from being deformed, and the Siamese cylinder barrel 1 having a uniform thickness around each cylinder bore 4 is obtained.

溶湯が凝固を完了した後、型開きを行うと第4図に示す
シリンダブロック素材Smが得られる。
When the mold is opened after the molten metal is solidified, the cylinder block material Sm shown in FIG. 4 is obtained.

前記シリンダブロック素材Smに研削加工を施して各第4
キャビテイC4と砂中子59の各突起62との協働により成形
された各突出部64を除去すると、突起62により連通口7
が、また相隣る連通口7間に補強デッキ部8がそれぞれ
形成され、また砂抜きを行うことにより水ジャケット6
が得られ、さらに各シリンダボア4の内周面に真円加工
を施し、さらにまたその他の所定の加工を施すと第1〜
第3図に示すシリンダブロックSが得られる。
Grinding the cylinder block material Sm to make each
When the protrusions 64 formed by the cooperation of the cavity C 4 and the protrusions 62 of the sand core 59 are removed, the protrusions 62 allow the communication port 7 to move.
However, the reinforcing deck portions 8 are formed between the communication ports 7 adjacent to each other, and the water jacket 6 is formed by sand removal.
When the inner peripheral surface of each cylinder bore 4 is subjected to perfect circle processing, and further other predetermined processing is performed,
The cylinder block S shown in FIG. 3 is obtained.

前記繊維強化アルミニウム合金体Mfにおける繊維成形体
Fの繊維体積率変化は鋳造前に対して1.1〜2.0倍であ
り、その繊維体積率は9〜45%である。
The change in the fiber volume ratio of the fiber compact F in the fiber-reinforced aluminum alloy body Mf is 1.1 to 2.0 times that before casting, and the fiber volume ratio is 9 to 45%.

第13図に基づいて、繊維成形体Fの予熱温度を50〜300
℃の範囲で適宜選定し、その予熱温度を前記ヒータH等
の温度制御手段を用いて鋳造中略不変に保つようにすれ
ば、前述の如く所望の繊維体積率を有する繊維強化アル
ミニウム合金体Mfを安定よく量産することができる。
Based on FIG. 13, the preheating temperature of the fiber molding F is set to 50 to 300.
By appropriately selecting the temperature in the range of ° C and keeping the preheating temperature substantially unchanged during casting by using the temperature control means such as the heater H, the fiber reinforced aluminum alloy body Mf having the desired fiber volume ratio as described above is obtained. Stable mass production is possible.

尚、本発明は金属部材全体を繊維強化する場合にも当然
に適用される。また繊維成形体Fは一種類の強化繊維よ
り成形してもよい。さらにマトリックスとしては前記ア
ルミニウム合金の外に鋳鉄、銅、マグネシウム合金等が
用いられる。
The present invention is naturally applied to the case where the entire metal member is fiber-reinforced. Further, the fiber molded body F may be molded from one type of reinforcing fiber. Further, as the matrix, cast iron, copper, magnesium alloy or the like is used in addition to the aluminum alloy.

C.発明の効果 鋳型のキャビティを注入して加圧することにより、その
溶湯を、キャビティに設置された予熱状態の繊維成形体
に充填するようにした、繊維強化金属体の鋳造方法にお
いて、繊維成形体の鋳造前後の繊維体積率変化は、たと
え鋳造前の繊維体積率や鋳造条件が同じ場合でも繊維成
形体の予熱温度の変動に応じて少なからず変動するもの
であるが、本発明によれば、繊維成形体の予熱温度が鋳
造中(即ち少なくとも溶湯のキャビティ注入から繊維成
形体への充填に至るまでは)略不変に保たれるようにし
たので、繊維成形体の鋳造前後の収縮の程度を個々の鋳
造品において略同じにすることができ、従って所望の繊
維体積率を有する繊維強化金属体を安定よく量産するこ
とができる。
C. Effects of the Invention In a method for casting a fiber-reinforced metal body, the molten metal is filled into a preheated fiber molding body by pouring and pressurizing the cavity of the mold. The change in the fiber volume ratio before and after casting of the body is not a little different depending on the change in the preheating temperature of the fiber molded body even if the fiber volume ratio before casting and the casting conditions are the same, but according to the present invention, Since the preheating temperature of the fiber molded body is kept substantially unchanged during casting (that is, at least from the injection of the molten metal cavity to the filling of the fiber molded body), the degree of shrinkage of the fiber molded body before and after casting Can be made substantially the same in each cast product, and therefore, a fiber-reinforced metal body having a desired fiber volume ratio can be stably mass-produced.

【図面の簡単な説明】[Brief description of drawings]

第1乃至第3図はサイアミーズ型シリンダブロックを示
し、第1図は上方から見た斜視図、第2図は第1図II−
II線断面図、第2A図は第2図II a−II a線断面図、第3
図は下方から見た斜視図、第4図はサイアミーズ型シリ
ンダブロック素材を上方から見た斜視図、第5図は鋳造
装置の型開き時の縦断正面図、第5A図は第5図V a−V a
線断面図、第6図は鋳造装置の型閉め時の縦断正面図、
第7図は第6図VII−VII線断面図、第8図は第7図VIII
−VIII線断面図、第9図は砂中子を上方から見た斜視
図、第10図は第9図X−X線断面図、第11図は繊維成形
体の斜視図、第12図は繊維成形体の予熱温度と収縮率と
の関係を示すグラフ、第13図は繊維成形体の予熱温度と
鋳造前後の繊維体積率変化との関係を示すグラフ、第14
図は溶湯の圧力と時間の関係を示すグラフである。 F……繊維成形体、M……鋳型としての金型、Mf……繊
維強化金属体としての繊維強化アルミニウム合金体、H,
Wc……温度制御手段を構成するヒータ、冷却水路、41…
…設置部としての中子
1 to 3 show a Siamese type cylinder block, FIG. 1 is a perspective view seen from above, and FIG. 2 is FIG. 1 II-
II line sectional view, FIG. 2A is FIG. 2 IIa-IIa line sectional view, 3
Fig. 4 is a perspective view from below, Fig. 4 is a perspective view from above of the Siamese type cylinder block material, Fig. 5 is a vertical sectional front view of the casting apparatus when the mold is opened, and Fig. 5A is Fig. 5 V a. −V a
A line sectional view, FIG. 6 is a vertical sectional front view when the mold of the casting apparatus is closed,
FIG. 7 is a sectional view taken along line VII-VII of FIG. 6, and FIG. 8 is FIG. 7 VIII.
-VIII line sectional view, FIG. 9 is a perspective view of the sand core seen from above, FIG. 10 is a sectional view taken along line XX of FIG. 9, FIG. 11 is a perspective view of a fiber molding, and FIG. 12 is Graph showing the relationship between the preheating temperature of the fiber molded body and the shrinkage, FIG. 13 is a graph showing the relationship between the preheating temperature of the fiber molded body and the change in the fiber volume ratio before and after casting, 14th
The figure is a graph showing the relationship between the pressure of molten metal and time. F ... Fiber molded body, M ... Mold as mold, Mf ... Fiber reinforced aluminum alloy body as fiber reinforced metal body, H,
Wc ...... heater, cooling water channel, 41, ...
… Core as an installation department

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】鋳型(M)のキャビティ(C1〜C4)に溶湯
を注入して加圧することにより、その溶湯を、前記キャ
ビティ(C1〜C4)に設置された予熱状態の繊維成形体
(F)に充填するようにした、繊維強化金属体の鋳造方
法において、 前記繊維成形体(F)の予熱温度を略不変に保つための
温度制御手段(H,Wc)を有して該繊維成形体(F)をキ
ャビティ(C1〜C4)の所定位置に保持し得る設置部(4
1)を備えた鋳型(M)を使用し、少なくとも前記溶湯
の注入から充填に至るまでの間、前記設置部(41)に保
持された繊維成形体(F)の予熱温度を前記温度制御手
段(H,Wc)により略不変に保つようにしたことを特徴と
する、繊維強化金属体の鋳造方法。
By 1. A pressurizing by injecting molten metal into the cavity (C 1 -C 4) of the mold (M), the molten metal, fiber preheat state installed in the cavity (C 1 -C 4) A method for casting a fiber-reinforced metal body, which comprises filling a molded body (F) with temperature control means (H, Wc) for keeping the preheating temperature of the fiber molded body (F) substantially unchanged. An installation part (4) capable of holding the fiber molded body (F) at a predetermined position of the cavities (C 1 to C 4 ).
Using the mold (M) provided with 1), the preheating temperature of the fiber molded body (F) held in the installation section (41) is controlled by the temperature control means at least during the period from the pouring of the molten metal to the filling thereof. A method for casting a fiber-reinforced metal body, characterized in that it is kept substantially unchanged by (H, Wc).
【請求項2】キャビティ(C1〜C4)に注入された溶湯を
加圧することにより該キャビティ(C1〜C4)内の繊維成
形体(F)に充填して繊維強化金属体(Mf)を鋳造する
ために使用される鋳型において、 前記繊維成形体(F)をキャビティ(C1〜C4)の所定位
置に保持するための中子(41)と、その中子(41)に保
持された繊維成形体(F)の予熱温度を少なくとも前記
溶湯の注入から充填に至るまでの間略不変に保つべく該
中子(41)に付設された温度制御手段(H,Wc)とを備え
ることを特徴とする、鋳型。
Wherein the cavity (C 1 ~C 4) was filled with injected melt into the cavity by pressurizing (C 1 ~C 4) fiber molded body in (F) to the fiber-reinforced metal body (Mf ) In a mold used for casting a core (41) for holding the fiber molding (F) in a predetermined position of the cavity (C 1 to C 4 ), and a core (41) A temperature control means (H, Wc) attached to the core (41) so as to keep the preheating temperature of the held fiber molded body (F) substantially unchanged at least from the time of pouring the molten metal until the time of filling. A mold, comprising:
JP3543886A 1986-02-20 1986-02-20 Casting method and mold for fiber-reinforced metal body Expired - Fee Related JPH0694063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3543886A JPH0694063B2 (en) 1986-02-20 1986-02-20 Casting method and mold for fiber-reinforced metal body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3543886A JPH0694063B2 (en) 1986-02-20 1986-02-20 Casting method and mold for fiber-reinforced metal body

Publications (2)

Publication Number Publication Date
JPS62197266A JPS62197266A (en) 1987-08-31
JPH0694063B2 true JPH0694063B2 (en) 1994-11-24

Family

ID=12441852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3543886A Expired - Fee Related JPH0694063B2 (en) 1986-02-20 1986-02-20 Casting method and mold for fiber-reinforced metal body

Country Status (1)

Country Link
JP (1) JPH0694063B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0979697A1 (en) * 1998-08-11 2000-02-16 Fata Aluminium Division of Fata Group S.p.A. A process and system for manufacturing cast articles provided with inserts
CN103990778A (en) * 2013-02-19 2014-08-20 永克达工业股份有限公司 Brake thread head forming mode and device

Also Published As

Publication number Publication date
JPS62197266A (en) 1987-08-31

Similar Documents

Publication Publication Date Title
CA1055675A (en) Method and sealing element for sealingly connecting a mould to a metal supply pipe of a low-pressure casting apparatus
JP2000084655A (en) Method for closing flow inlet after non-gravitational casting with non-ferrous alloy of green sand mold in continuous casting plant
US5836373A (en) String mould plant including arrangement for preventing shrinkage voids in metal castings
US4766944A (en) Process for casting fiber-reinforced metal body
US4738298A (en) Process for casting cylinder block blanks made of light alloy
JPH0694063B2 (en) Casting method and mold for fiber-reinforced metal body
GB2035165A (en) Casting in gas permeable moulds
JPH0635042B2 (en) Casting method for fiber-reinforced metal body
KR19990051756A (en) Aluminum wheel casting machine
JPH0635041B2 (en) Manufacturing method of fiber reinforced cylinder block
JPH0665431B2 (en) Casting method for fiber-reinforced metal member
JPH0636981B2 (en) Casting method for fiber reinforced cylinder block material
JPH0783926B2 (en) Casting method
JPH0755367B2 (en) Casting method for fiber reinforced cylinder block material
JPH04747B2 (en)
JPH0636982B2 (en) Casting method for fiber reinforced cylinder block material
JPH0788804B2 (en) Manufacturing method of fiber reinforced cylinder block
JPH0652059B2 (en) Fiber reinforced cylinder block and method of manufacturing the same
JPH04746B2 (en)
JPH0616934B2 (en) Casting method for fiber reinforced cylinder block material
JPH0616933B2 (en) Casting method for fiber reinforced cylinder block material
JPH04748B2 (en)
JPS626764A (en) Casting method for fiber reinforced cylinder block stock
KR950012420B1 (en) Making method of frm (fiber reconciliation metal)
JPH0261871B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees