JPH0694037B2 - High-temperature treatment method for wastewater - Google Patents

High-temperature treatment method for wastewater

Info

Publication number
JPH0694037B2
JPH0694037B2 JP2329877A JP32987790A JPH0694037B2 JP H0694037 B2 JPH0694037 B2 JP H0694037B2 JP 2329877 A JP2329877 A JP 2329877A JP 32987790 A JP32987790 A JP 32987790A JP H0694037 B2 JPH0694037 B2 JP H0694037B2
Authority
JP
Japan
Prior art keywords
wastewater
glass fiber
temperature
carrier
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2329877A
Other languages
Japanese (ja)
Other versions
JPH04200700A (en
Inventor
芳孝 東郷
昌義 森本
幸作 大郷
真 久米
紀明 永幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Nippon Sheet Glass Co Ltd
Original Assignee
Kajima Corp
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Nippon Sheet Glass Co Ltd filed Critical Kajima Corp
Priority to JP2329877A priority Critical patent/JPH0694037B2/en
Publication of JPH04200700A publication Critical patent/JPH04200700A/en
Publication of JPH0694037B2 publication Critical patent/JPH0694037B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/30Loose or shaped packing elements, e.g. Raschig rings or Berl saddles, for pouring into the apparatus for mass or heat transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/30223Cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】 本発明は廃水の高温処理方法に関し、とくガラス繊維製
担体に保持した高温分解菌により高温で廃水を処理する
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating wastewater at a high temperature, and more particularly to a method for treating a wastewater at a high temperature by a thermolytic microorganism retained on a glass fiber carrier.

【従来の技術】[Prior art]

大動力駆動による曝気を必要とせず、分解生成ガスの回
収による省エネルギーの可能性を有する嫌気性分解菌利
用の廃水処理が注目されている。嫌気性固定床による従
来の廃水処理の場合には、中温度(36-38℃)で活性が
高くなる分解菌(中温菌)を使用し、担体としてはプラ
スチック等を用いている。
Attention has been paid to wastewater treatment using anaerobic degrading bacteria, which does not require aeration by large power drive and has the possibility of energy saving by recovery of decomposition product gas. In the case of conventional wastewater treatment using an anaerobic fixed bed, a degrading bacterium (mesophilic bacterium) having high activity at an intermediate temperature (36-38 ° C) is used, and plastic or the like is used as a carrier.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

他方、比較的高い温度、例えば50-60℃で高い活性を示
す分解菌(高温菌)を用いた場合には、中温菌の場合に
比して活性が2−3倍増えることが知られている。しか
し、高温菌はプラスチック製等の表面が平滑な担体には
付着し難いので、高温菌の使用を試みる場合には多孔質
セラミックスや多孔質ガラス等を高温菌の担体としてき
たが、これらの担体は非常に高価であり高温菌の実用化
の障害になっている。 このため、高温菌が付着し易すくしかも低コストの担体
を作り出し、中温菌による処理法に比し処理性能を2−
3倍向上させしかもコストを低く抑えた廃水処理を実用
化する技術の開発が強く望まれていた。 従って本発明の目的は、低コストの担体による廃水の高
温処理方法を提供するにある。
On the other hand, it is known that when a degrading bacterium (thermophilic bacterium) showing a high activity at a relatively high temperature, for example, 50-60 ° C is used, the activity is increased by 2-3 times as compared with the case of a mesophilic bacterium. There is. However, thermophilic bacteria are difficult to attach to a carrier with a smooth surface such as plastic, so when attempting to use thermophilic bacteria, porous ceramics or porous glass has been used as a carrier for thermophilic bacteria. Is very expensive and hinders the practical application of thermophilic bacteria. For this reason, it is possible to create a carrier that is easily attached with thermophilic bacteria and is low in cost, and has a treatment performance that is 2-fold higher than that of the treatment method using mesophilic bacteria.
There has been a strong demand for the development of a technology for putting wastewater treatment into practical use, which is three times more efficient and whose cost is kept low. It is therefore an object of the present invention to provide a method for treating wastewater at high temperature with a low cost carrier.

【課題を解決するための手段】[Means for Solving the Problems]

本発明者等はさきに平成元年3月7日付け出願の実願平
1-25215号に、中空筒体の多孔質周壁を枠体で支持して
なる微生物用担体を開示した。その後さらに実験研究を
重ねた結果、ガラス繊維の織布又は不織布(以下、繊維
布という。)によりこの中空筒体を形成した場合には、
その中空筒体が廃水の高温処理に適する担体となり得る
ことを見出した。本発明は、この知見に基づいて完成さ
れたものである。 第1図の実施例を参照するに、本発明による廃水の高温
処理方法は、中空筒状のガラス繊維布製の多孔質周壁3
を枠体4で補強したガラス繊維製担体1に嫌気性の高温
分解菌を担持させ、反応槽10内に複数のガラス繊維製担
体1をその中空部が鉛直となる如く積重ね、50℃ないし
60℃の廃水Sを反応槽10内でガラス繊維製担体1上の高
温分解菌に接触させながら循環させてなるものである。 好ましくは、反応槽10内の廃水Sの温度を54℃ないし56
℃とする。本発明者等は上記第1図の方法で、COD除去
率を70%とした時の廃水温度と最大負荷との関係を測定
し第1表の結果を得た。同表から明らかなように、温度
50℃未満では十分な最大負荷が得られず、また温度が60
℃を超えても最大負荷が実用限界以下に低下する。 第2図から第4図までに示すようにガラス繊維布製の多
孔質周壁3を有する中空筒体2を枠体4に保持してガラ
ス繊維製担体1を構成する。 第1図の実施例では廃水Sを下から上向きに流して担体
1に接触させるが、廃水Sの流れの向きはこの実施例の
上向きに限定されない。 中空筒体2の径は小さ過ぎると閉塞のおそれがあり、大
き過ぎると微生物付着表面積が不足するので、多孔質周
壁3の性質を勘案して適当に選択する。本発明者は、多
孔質周壁3が平均直径5−20μm程度のガラス繊維製で
厚さ0.2−4mm、より好ましくは0.2−1mmで、単位重量が
m2あたり200-1000grの織布または不織布を1層または多
層重ねたものである場合、円筒直径を10-100mm、より好
ましくは30-60mmとし、円筒長さを10-1000mm、より好ま
しくは100-600mmとし、長さと直径の比率を0.5-30とす
るのが適切であることを実験的に見出した。しかし、本
発明はこの例に限定されるものではない。 枠体4は用いる場合、中空筒体2を支持してその形状を
保つことができるものであれば足り、その形状及び材質
には特に制限はない。例えば中空筒体2を内側又は外側
から保持する合成樹脂製のらせん状枠体4とすることが
できる。必要に応じ、中空筒体2を接着剤又は溶着によ
って枠体4に固定してもい。
The inventors of the present invention previously filed on March 7, 1989
No. 1-25215 discloses a carrier for microorganisms in which a porous peripheral wall of a hollow cylinder is supported by a frame. As a result of further experimentation after that, when this hollow cylindrical body was formed of a woven or non-woven fabric of glass fiber (hereinafter referred to as a fiber fabric),
It has been found that the hollow cylinder can be a carrier suitable for high temperature treatment of wastewater. The present invention has been completed based on this finding. Referring to the embodiment of FIG. 1, a method for treating wastewater at a high temperature according to the present invention comprises a hollow cylindrical porous peripheral wall 3 made of glass fiber cloth.
An anaerobic high-temperature decomposing bacterium is supported on a glass fiber carrier 1 reinforced with a frame 4, and a plurality of glass fiber carriers 1 are stacked in a reaction tank 10 such that the hollow portions thereof are vertical, and the temperature is 50 ° C or higher.
The waste water S at 60 ° C. is circulated in the reaction tank 10 while contacting the high temperature decomposing bacteria on the glass fiber carrier 1. Preferably, the temperature of the waste water S in the reaction tank 10 is 54 ° C to 56 ° C.
℃. The inventors of the present invention measured the relationship between the wastewater temperature and the maximum load when the COD removal rate was 70% by the method shown in FIG. 1 and obtained the results shown in Table 1. As can be seen from the table, the temperature
If the temperature is less than 50 ° C, sufficient maximum load cannot be obtained, and the temperature is 60
Even if the temperature exceeds ℃, the maximum load drops below the practical limit. As shown in FIGS. 2 to 4, a hollow cylindrical body 2 having a porous peripheral wall 3 made of glass fiber cloth is held in a frame body 4 to form a glass fiber carrier 1. In the embodiment of FIG. 1, the wastewater S is made to flow upward from below to contact the carrier 1, but the direction of flow of the wastewater S is not limited to the upward direction of this embodiment. If the diameter of the hollow cylindrical body 2 is too small, there is a risk of blockage, and if it is too large, the surface area for adhering to the microorganisms is insufficient. Therefore, the hollow cylindrical body 2 is appropriately selected in consideration of the properties of the porous peripheral wall 3. According to the present inventor, the porous peripheral wall 3 is made of glass fiber having an average diameter of about 5 to 20 μm and has a thickness of 0.2-4 mm, more preferably 0.2-1 mm and a unit weight of
In the case of one layer or multiple layers of woven or non-woven fabric of 200-1000 gr per m 2 , the cylinder diameter is 10-100 mm, more preferably 30-60 mm, and the cylinder length is 10-1000 mm, more preferably 100. It has been experimentally found that it is appropriate to set the length to the diameter of -0.5 mm and the ratio of the length to the diameter of 0.5 to 30. However, the present invention is not limited to this example. When the frame body 4 is used, it is sufficient as long as it can support the hollow cylindrical body 2 and maintain its shape, and there is no particular limitation on its shape and material. For example, the spiral frame 4 made of synthetic resin that holds the hollow cylinder 2 from the inside or the outside can be used. If necessary, the hollow cylindrical body 2 may be fixed to the frame body 4 by an adhesive or welding.

【作用】[Action]

ガラス繊維布は内部に数μmないし数百μmの空間を無
数にもっており、この空間に高温菌が容易に入り込むこ
とができる。これにより、高温菌の固定化と増殖が行な
われるので、ガラス繊維布製担体が高温菌を効率よく担
持する。既に指摘したように、このような担持され広い
面積で廃水に接触する高温菌は、中温菌に比して2−3
倍の速さで廃水中の有機物を分解する。 しかも本発明では担体1の材料をガラス繊維とするの
で、従来の多孔質セラミックスや多孔質ガラスのものに
較べ著しく安価である。 こうして、本発明の目的である「低コストの担体による
廃水の高温処理方法の提供」が提供される。
The glass fiber cloth has an infinite number of spaces of several μm to several hundreds of μm inside, and thermophilic bacteria can easily enter into this space. As a result, the thermophilic bacterium is immobilized and proliferated, so that the glass fiber cloth carrier efficiently carries the thermophilic bacterium. As already pointed out, such thermophilic bacteria that are supported and contact wastewater over a large area are 2-3
Decomposes organic matter in wastewater at twice the speed. Moreover, in the present invention, since the material of the carrier 1 is glass fiber, it is significantly cheaper than conventional porous ceramics or porous glass. Thus, the object of the present invention is to "provide a method for treating wastewater at a high temperature with a low-cost carrier".

【実施例】【Example】

本発明方法の実験用装置を第1図に示すように試作し
た。内径80mm、高さ1000mmの反応槽10を用意し、その中
の長さ600mmの4本の担体1を規則的に縦向き並列に充
填した。担体1として、繊維径10μmのガラス繊維をエ
ポキシ樹脂バインダーで結合して厚さ0.6mmの不織布と
し、この不織布を径30mmで長さ600mmの中空円筒2に成
形して多孔質周壁3とし、これをビニル樹脂製の枠体4
に固定したものを用いた。 [実験1] 第1図の反応槽10の底部から食品工場の廃水S(COD23g
/1it)を供給し、反応槽10の上部から処理水Eを流出さ
せ受け槽12に一旦貯えた。処理水Eの一部を循環水ポン
プ14によって反応槽10の底部に戻し、原廃水Sと混合し
て循環処理に供した。分解反応によって生成したメタン
ガスGを、脱流器16で脱流した後、実験系の外へ導い
た。メタンガスGは燃料その他の用途に供することがで
きる。 この実験では廃水Sを上向きに流しながら担体1の高温
菌に接触させたが、廃水Sの流れを下向きにしても差し
支えない。 反応槽10に高温菌を投入し、反応槽温度を54-55℃に保
ち、食品工場の廃水S(COD23g/1it)を第1図に示すよ
うに通して廃水処理実験を行なった。実験の開始から70
日後にCOD容積負荷として63kgCOD/m3・日を得ることが
でき、この時のCOD除去率は約70%で安定していた。第
5図に示すように、負荷をさらに上げるとCOD除去率が
減少した。 [比較例1] 同様な反応槽へ中温菌を投入し、反応槽温度を36-38℃
に保ち、実験例1と同様な廃水Sを通し処理実験した。
実験開始から60日後にCOD容積負荷30kgCOD/m3・日を得
ることができこの時のCOD除去率は約70%で安定してい
た。第6図に示すように、負荷をさらに上げるとCOD除
去率が減少した。 [比較例2] 合成樹脂の成形品であるラヒシリング(径25mm、長さ25
mm)をガラス繊維製担体1の替りに上記反応槽10に不規
則に充填した。高温菌を反応槽10に投入し、反応槽温度
を54-55℃に保ち、実験1と同様な廃水Sを通して処理
実験を行なった。実験開始から110日後にCOD容積負荷が
10kgCOD/m3・日となり、この時のCOD除去率は約70%で
安定していた。第7図に示すように、負荷をさらに上げ
るCOD除去率が減少した。
An experimental apparatus for the method of the present invention was prototyped as shown in FIG. A reaction vessel 10 having an inner diameter of 80 mm and a height of 1000 mm was prepared, and four carriers 1 each having a length of 600 mm were regularly packed in a vertical direction in parallel. As the carrier 1, glass fibers having a fiber diameter of 10 μm are bonded with an epoxy resin binder to form a nonwoven fabric having a thickness of 0.6 mm, and this nonwoven fabric is molded into a hollow cylinder 2 having a diameter of 30 mm and a length of 600 mm to form a porous peripheral wall 3, The vinyl resin frame 4
What was fixed to was used. [Experiment 1] Waste water S (COD23g) from the bottom of the reaction tank 10 in FIG.
(1/1 it) was supplied and treated water E was made to flow out from the upper part of the reaction tank 10 and was temporarily stored in the receiving tank 12. A part of the treated water E was returned to the bottom of the reaction tank 10 by the circulating water pump 14, mixed with the raw waste water S, and subjected to a circulating treatment. The methane gas G produced by the decomposition reaction was discharged by the flow eliminator 16 and then led out of the experimental system. The methane gas G can be used for fuel and other purposes. In this experiment, the wastewater S was brought into contact with the thermophilic bacteria of the carrier 1 while flowing upward, but the flow of the wastewater S may be made downward. A thermophilic bacterium was added to the reaction tank 10, the temperature of the reaction tank was kept at 54 to 55 ° C., and waste water treatment experiment was conducted by passing waste water S (COD23g / 1it) of a food factory as shown in FIG. 70 from the start of the experiment
The COD volume load of 63 kgCOD / m 3 · day could be obtained after a day, and the COD removal rate at this time was stable at about 70%. As shown in Fig. 5, the COD removal rate decreased when the load was further increased. [Comparative Example 1] A mesophilic bacterium was added to a similar reaction tank, and the reaction tank temperature was set to 36 to 38 ° C.
Then, a treatment experiment was conducted by passing the same wastewater S as in Experimental Example 1.
A COD volumetric load of 30 kg COD / m 3 · day was obtained 60 days after the start of the experiment, and the COD removal rate at this time was stable at about 70%. As shown in Fig. 6, the COD removal rate decreased when the load was further increased. [Comparative Example 2] Lahshi ring (diameter 25 mm, length 25), which is a synthetic resin molded product
mm) was irregularly filled in the reaction vessel 10 instead of the glass fiber carrier 1. A thermophilic bacterium was added to the reaction tank 10, the temperature of the reaction tank was kept at 54 to 55 ° C., and a treatment experiment was conducted through the same wastewater S as in Experiment 1. 110 days after the start of the experiment, the COD volume load
The COD removal rate at this time was 10 kgCOD / m 3 · day, and was stable at about 70%. As shown in Fig. 7, the COD removal rate that further increases the load decreased.

【発明の効果】【The invention's effect】

以上詳細に説明した如く本発明による廃水の高温処理方
法は、ガラス繊維製担体を用いて高温菌による廃水処理
を行なうので次の効果を奏する。 (イ)従来の中温菌による処理方法に比し、処理能力が
2−3倍に向上する。 (ロ)ガラス繊維製担体が従来の高温菌担体よりも安価
であるから廃水処理の設備費及び運転費を低減すること
ができる。
As described in detail above, the method for treating wastewater at high temperature according to the present invention has the following effects because the wastewater treatment is carried out by thermophilic bacteria using a glass fiber carrier. (A) The treating capacity is improved by 2-3 times as compared with the conventional treating method using mesophilic bacterium. (B) Since the glass fiber carrier is cheaper than the conventional thermophilic bacterium carrier, the facility cost and operating cost of wastewater treatment can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の説明図、第2図から第4図まではガラ
ス繊維製担体の説明図、第5図から第7図までは実験結
果を示すグラフである。 1……担体、2……中空筒体、3……多孔質周壁、4…
…枠体、10……反応槽、12……受槽、14……循環水ポン
プ、16……脱硫器、S……廃水、E……処理水。
FIG. 1 is an explanatory view of the present invention, FIGS. 2 to 4 are explanatory views of a glass fiber carrier, and FIGS. 5 to 7 are graphs showing experimental results. 1 ... Carrier, 2 ... Hollow cylinder, 3 ... Porous peripheral wall, 4 ...
... Frame, 10 ... Reaction tank, 12 ... Reception tank, 14 ... Circulating water pump, 16 ... Desulfurizer, S ... Waste water, E ... Treatment water.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大郷 幸作 東京都調布市飛田給2丁目19番1号 鹿島 建設株式会社技術研究所内 (72)発明者 久米 真 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内 (72)発明者 永幡 紀明 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内 (56)参考文献 特開 昭54−16849(JP,A) 特開 昭61−15790(JP,A) 特開 昭61−15791(JP,A) 特開 昭61−54290(JP,A) 特開 平2−251298(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kosaku Osato 2-19-1, Tobita-cho, Chofu-shi, Tokyo Kashima Construction Co., Ltd. Technical Research Institute (72) Inventor Makoto Kume 3-chome, Doshomachi, Chuo-ku, Osaka-shi, Osaka No. 11 within Nippon Sheet Glass Co., Ltd. (72) Inventor Noriaki Nagahata 3-5-11 Doshomachi, Chuo-ku, Osaka City, Osaka Prefecture Within Nippon Sheet Glass Co., Ltd. (56) Reference JP-A-54-16849 (JP, A) JP-A-61-15790 (JP, A) JP-A-61-15791 (JP, A) JP-A-61-54290 (JP, A) JP-A-2-251298 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】中空筒状のガラス繊維布製周壁を枠体で補
強したガラス繊維製担体に嫌気性の高温分解菌を担持さ
せ、反応槽内に複数の前記ガラス繊維製担体をその中空
部が鉛直となる如く積重ね、50℃ないし60℃の廃水を前
記反応槽内で前記ガラス繊維製担体上の高温分解菌に接
触させながら循環させてなる廃水の高温処理方法。
1. A glass fiber carrier having a hollow cylindrical glass fiber cloth peripheral wall reinforced with a frame is loaded with anaerobic high-temperature degrading bacteria, and a plurality of the glass fiber carriers are provided in a hollow space in a reaction tank. A high-temperature treatment method for wastewater, which is stacked vertically so that wastewater at 50 ° C to 60 ° C is circulated in the reaction tank while contacting the high-temperature degrading bacteria on the glass fiber carrier.
【請求項2】請求項1記載の処理方法において、前記廃
水の温度を54℃ないし56℃としてなる廃水の高温処理方
法。
2. The treatment method according to claim 1, wherein the temperature of the waste water is 54 ° C. to 56 ° C.
【請求項3】請求項1記載の処理方法において、前記枠
体を合成樹脂製のらせん状枠体としてなる廃水の高温処
理方法。
3. The method for treating waste water at a high temperature according to claim 1, wherein the frame is a spiral frame made of synthetic resin.
JP2329877A 1990-11-30 1990-11-30 High-temperature treatment method for wastewater Expired - Fee Related JPH0694037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2329877A JPH0694037B2 (en) 1990-11-30 1990-11-30 High-temperature treatment method for wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2329877A JPH0694037B2 (en) 1990-11-30 1990-11-30 High-temperature treatment method for wastewater

Publications (2)

Publication Number Publication Date
JPH04200700A JPH04200700A (en) 1992-07-21
JPH0694037B2 true JPH0694037B2 (en) 1994-11-24

Family

ID=18226246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2329877A Expired - Fee Related JPH0694037B2 (en) 1990-11-30 1990-11-30 High-temperature treatment method for wastewater

Country Status (1)

Country Link
JP (1) JPH0694037B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2708087B2 (en) * 1993-09-16 1998-02-04 鹿島建設株式会社 Garbage disposal method
JP4604600B2 (en) * 2003-09-29 2011-01-05 富士電機ホールディングス株式会社 Methane fermentation treatment method and apparatus
DE10350503A1 (en) * 2003-10-29 2005-06-16 Herding Gmbh Filtertechnik Reactor for anaerobic wastewater treatment
CN104310582B (en) * 2014-11-10 2016-03-09 哈尔滨工业大学 A kind of integrated membrane coupled anaerobic bioreactor of effective reduction fouling membrane

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE408165B (en) * 1977-05-09 1979-05-21 El Sayed Refaat M PROCEDURE FOR BIOLOGICAL PURIFICATION OF LIQUID WASTE, WHICH ADDES EXTRA-CELLULATED ENZYMES
JPS6115790A (en) * 1984-06-27 1986-01-23 マケーエフスキー、インジエネルノ‐ストロイチエルヌイ、インスチツート Sewage disposal plant by microbe
JPS6115791A (en) * 1984-07-02 1986-01-23 Orihara Seisakusho:Kk Apparatus for purifying excrements
JPS6154290A (en) * 1984-08-24 1986-03-18 Hitachi Zosen Corp Single-phase fermenting method by immobilized microbe
JPH02251298A (en) * 1989-03-23 1990-10-09 Akua Runesansu Gijutsu Kenkyu Kumiai Methane fermentation apparatus

Also Published As

Publication number Publication date
JPH04200700A (en) 1992-07-21

Similar Documents

Publication Publication Date Title
An et al. Recent patents on immobilized microorganism technology and its engineering application in wastewater treatment
JPS61149085A (en) Material holding microorganism
CN105712478A (en) Double-ball type suspension filler
CN101746881A (en) Honeycomb network pipe bio-carrier
CN106379988A (en) High-efficiency hydrophilic biological stuffing and device applied to sewage treatment
CN101514047A (en) Compound biological membrane sewage treatment process
CN108892249A (en) A kind of air-flotation type floating stuffing original position purifier and process for purifying water
CN103936234A (en) Domestic sewage treatment system utilizing solar energy and treatment method of same
CN210393886U (en) Spherical MBBR filler structure
Lu et al. Enhancing nitrogen removal performance in a bioreactor using immobilized anaerobic ammonium oxidation sludge by polyvinyl alcohol-sodium alginate (PVA-SA)
JPH0694037B2 (en) High-temperature treatment method for wastewater
CN207738524U (en) A kind of high efficiency composition flexibility denitrogenation filler pond
KR101888166B1 (en) Apparatus for biohydrogen production using dynamic biofilm and manufacturing method thereof
Elmitwalli et al. Treatment of domestic sewage at low temperature in a two-anaerobic step system followed by a trickling filter
Feng et al. Performance evaluation of anaerobic fluidized bed reactors using brick beads and porous ceramics as support materials for treating terephthalic acid wastewater
CN208562049U (en) A kind of three-dimensional rural sewage treatment equipment
US9534236B2 (en) Membranes for wastewater-generated energy and gas
JP2007098195A (en) Biologically contact filter and method for treating water
CN109502933A (en) A kind of processing method and system containing polyacrylamide waste water
CN109292965A (en) A kind of new bio filter membrane and its application in filter plant
Li et al. Comparative study of the nitrification characteristics of two different nitrifier immobilization methods
CN208577510U (en) A kind of microkinetic combined film bioreactor
CN209322564U (en) A kind of air-flotation type floating stuffing original position purifier
JPH0375237B2 (en)
CN204111419U (en) Biological bed treatment unit under a kind of 360 degree of rotating waters

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 16

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees