JPH0693522B2 - Method for manufacturing gallium phosphide green light emitting device - Google Patents

Method for manufacturing gallium phosphide green light emitting device

Info

Publication number
JPH0693522B2
JPH0693522B2 JP22582985A JP22582985A JPH0693522B2 JP H0693522 B2 JPH0693522 B2 JP H0693522B2 JP 22582985 A JP22582985 A JP 22582985A JP 22582985 A JP22582985 A JP 22582985A JP H0693522 B2 JPH0693522 B2 JP H0693522B2
Authority
JP
Japan
Prior art keywords
layer
light emitting
emitting device
gallium phosphide
green light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22582985A
Other languages
Japanese (ja)
Other versions
JPS6285480A (en
Inventor
秋夫 中村
紀夫 大滝
敏文 伊藤
雄輝 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP22582985A priority Critical patent/JPH0693522B2/en
Publication of JPS6285480A publication Critical patent/JPS6285480A/en
Publication of JPH0693522B2 publication Critical patent/JPH0693522B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はリン化ガリウム緑色発光素子の製造方法に関す
るもので、特にはn型リン化ガリウム層を二層構造と
し、基板側n型リン化ガリウム層の正味ドナー濃度を制
御することにより高輝度の発光素子を得る方法に係るも
のである。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a gallium phosphide green light-emitting device, and particularly to an n-type gallium phosphide layer having a two-layer structure and a substrate-side n-type phosphide. The present invention relates to a method for obtaining a light emitting device with high brightness by controlling the net donor concentration of a gallium layer.

(従来の技術) 近年半導体発光素子は種々の電光表示装置に巾広く利用
され、普及率も極めて大きい。この発光素子にはリン化
ガリウム(GaP)あるいはリン化砒化ガリウム(GaAsP)
などの化合物半導体結晶が用いられ、前者は緑色から赤
色発光素子の、後者は黄色から赤色発光素子の素材とし
て使用される。
(Prior Art) In recent years, semiconductor light emitting devices have been widely used in various electroluminescent display devices, and have a very high penetration rate. This light emitting device has gallium phosphide (GaP) or gallium arsenide phosphide (GaAsP)
The compound semiconductor crystal is used as the material, the former is used as a material for a green to red light emitting element, and the latter is used as a material for a yellow to red light emitting element.

しかして緑色発光素子は、n型GaP基板上に液相成長法
によってn型、p型GaP層を順次形成し、n型GaP層のpn
接合近傍に発光中心となる窒素をドープして得た素材か
らつくられる。このGaP緑色発光素子の発光領域は前述
のようにn型GaP層におけるpn接合近傍の部分であっ
て、発光最適条件は発光中心濃度(NT)が結晶性に影響
しない範囲でできるだけ高いこと、およびn型GaP層の
ドナー濃度(ND)が電子の注入効率ならびにライフタイ
ムの向上という見地からできる限り低いことである。通
常NTは2×1016原子/cm3、NDは1〜2×1016原子/cm3
が最適とされている。
Therefore, in the green light emitting device, the n-type and p-type GaP layers are sequentially formed on the n-type GaP substrate by the liquid phase epitaxy method, and the
It is made of a material obtained by doping nitrogen, which becomes the emission center, in the vicinity of the junction. As described above, the light emitting region of this GaP green light emitting element is a portion in the vicinity of the pn junction in the n-type GaP layer, and the optimum light emitting condition is as high as possible within the range where the emission center concentration ( NT ) does not affect the crystallinity. The donor concentration (N D ) of the n-type GaP layer and the n-type GaP layer is as low as possible from the viewpoint of improving electron injection efficiency and lifetime. Usually N T is 2 × 10 16 atoms / cm 3 and N D is 1-2 × 10 16 atoms / cm 3.
Is considered optimal.

他方、このn型GaP層を二層構造とし、各層の正味ドナ
ー濃度および厚みをコントロールし、第1n層と第2n層の
階段状ドナー分布構造により基板からの結晶欠陥を除去
すると共に、第2n層における結晶性を向上させた発光素
子が知られている(特公昭60−19675号公報参照)。
On the other hand, this n-type GaP layer has a two-layer structure, the net donor concentration and thickness of each layer are controlled, and crystal defects from the substrate are removed by the step-like donor distribution structure of the first n layer and the second n layer, and A light emitting device having improved crystallinity in a layer is known (see Japanese Patent Publication No. Sho 60-19675).

(発明が解決しようとする問題点) しかしながら前記公知の発光素子においては,第1n層の
成長は水素の雰囲気下において行われるため、石英反応
管の表面が水素により還元されて溶液中に多くのSiが混
入され、この際正味ドナー濃度(ND1)は1×1017原子
/cm3以上になる。このように高濃度になるとテラス様
の異常成長を起し易くなるばかりでなく、次いで行われ
る第2n層の形成における窒素ドープのためのNH3供給量
が過剰になり、この結果Si3N4の成長量が増加し、これ
に起因する異常成長が発生して好ましくないという欠点
がある。
(Problems to be Solved by the Invention) However, in the known light-emitting device, the growth of the first n-th layer is performed in an atmosphere of hydrogen, so that the surface of the quartz reaction tube is reduced by hydrogen, and a large amount of it is added to the solution. Si is mixed in, and the net donor concentration (N D1 ) becomes 1 × 10 17 atoms / cm 3 or more. At such a high concentration, not only terrace-like abnormal growth is likely to occur, but also the NH 3 supply amount for nitrogen doping in the subsequent formation of the second n layer becomes excessive, resulting in Si 3 N 4 However, there is a disadvantage in that the amount of growth of the is increased and abnormal growth occurs due to this, which is not preferable.

(問題点を解決するための手段) 本発明は上述の如き欠点を除去したリン化ガリウム緑色
発光素子の製造方法に関するもので、これはn型リン化
ガリウム基板上に、ドーパント濃度を制御して基板側か
ら高正味ドナー濃度を有するn1層及び同低正味ドナー濃
度を有するn2層の2層からなるn型及びp型リン化ガリ
ウム層を順次液相成長させる緑色発光素子の製造方法に
おいて、該n1層の形成を、ArとH220〜80容量%の混合ガ
ス雰囲気下で、H2ガスの分圧比を調整して該層の正味ド
ナー濃度を2〜10×1016原子/cm3のレベルに制御し、
ついでアンモニアガスを含んだ雰囲気で、n2層の形成と
窒素ドープを行うことを特徴とするリン化ガリウム緑色
発光素子の製造方法を要旨とする。
(Means for Solving the Problems) The present invention relates to a method for manufacturing a gallium phosphide green light emitting device in which the above-mentioned drawbacks are eliminated. This is to control a dopant concentration on an n-type gallium phosphide substrate. A method for manufacturing a green light-emitting device, in which n-type and p-type gallium phosphide layers composed of two layers, an n 1 layer having a high net donor concentration and an n 2 layer having the same low net donor concentration, are sequentially grown in liquid phase from the substrate side. The formation of the n 1 layer is performed under a mixed gas atmosphere of Ar and H 2 of 20 to 80% by volume to adjust the partial pressure ratio of H 2 gas to adjust the net donor concentration of the layer to 2 to 10 × 10 16 atoms / control to the level of cm 3
Then, the gist is a method for producing a gallium phosphide green light-emitting device, which is characterized by forming an n 2 layer and performing nitrogen doping in an atmosphere containing ammonia gas.

以下本発明をさらに詳細に説明する。The present invention will be described in more detail below.

本発明者らは最適なn2層を得るための前段階として、n1
層をどのように形成させればよいかについて種々研究の
結果、n1層のドーパントとして石英容器内の反応雰囲気
から導入されるSiを利用するのが好ましいということ、
およびこのn1層のドナー濃度を最適値に制御するには、
反応雰囲気ガスをArとH2の混合ガスとし、その組成(分
圧比)を変化させて還元力を適当な値にするのがよいと
いうことを確認した。
The present inventors have as a previous step to obtain an optimal n 2 layers, n 1
As a result of various studies on how to form the layer, it is preferable to use Si introduced from the reaction atmosphere in the quartz container as a dopant for the n 1 layer,
And to control the donor concentration of this n 1 layer to an optimum value,
It was confirmed that it is preferable to use a mixed gas of Ar and H 2 as the reaction atmosphere gas and change its composition (partial pressure ratio) to set the reducing power to an appropriate value.

つぎに、n1層のドーパントとして上述のように反応雰囲
気から導入されるSiを利用する理由についてさらに詳述
する。
Next, the reason why Si introduced from the reaction atmosphere as described above is used as the dopant of the n 1 layer will be described in more detail.

ドーパントには、その分配係数の温度依存性の違いか
ら、Teのように成長が進むに従ってドナー濃度が大きく
上昇するタイプと、S、Siのように成長が進んでもあま
り変化しないタイプがある。したがってTeを主たるドー
パントとして使用する場合は、n1層の初期濃度を1×10
16原子/cm3以下にしなくてはならないが、少しでも反
応系にp型不純物が存在すると、しばしば、p型反転領
域がn1層の形成初期に生じやすいので、Teを主たるn1
のドーパントとして用いるのは好ましくない。しかしSi
をTeなどと組合せて用いるならば、n2層形成時に窒素を
ドープするためNH3を流入させたとき、SiはSi3N4を形成
して結晶に取り込まれないようになるので、n2層のドナ
ー濃度を低い濃度にすることができ、Teなどのドーパン
トレベルをたとえば基板の段階で適当に制御しておけ
ば、n2層の正味ドナーレベルを窒素ドープと同時に所期
の値たとえば1〜2×1016原子/cm3に選択することが
できる。
Due to the difference in the temperature dependence of the distribution coefficient of the dopants, there are two types, such as Te, in which the donor concentration greatly increases as the growth proceeds, and S and Si, which do not change much even when the growth proceeds. Therefore, when Te is used as the main dopant, the initial concentration of the n 1 layer should be 1 × 10
It must be 16 atom / cm 3 or less, but if there are p-type impurities into the reaction system at all, often the p-type inversion region is likely to occur in the formation initial n 1 layer, the primary n 1 Layers Te It is not preferable to use it as a dopant. But Si
If the use in combination with such Te, when allowed to flow into NH 3 for doping nitrogen when n 2 layer formation, since Si is as not incorporated into the crystal to form a Si 3 N 4, n 2 The donor concentration of the layer can be low, and the net donor level of the n 2 layer can be at the desired value, eg, 1 at the same time as the nitrogen doping, if the dopant level, such as Te, is controlled appropriately, eg at the substrate stage. It can be selected to be 2 × 10 16 atoms / cm 3 .

このSiは故意にドープすることも可能であるが、反応系
が還元雰囲気である場合には、故意にドープしなくても
石英反応管などが還元されて融液中に供給され、反応雰
囲気の還元力すなわちArとH2の混合ガス中のH2ガスの濃
度のコントロールのみでn1層の適正なSi濃度を選択する
ことが可能である。
This Si can be intentionally doped, but when the reaction system is in a reducing atmosphere, the quartz reaction tube is reduced and supplied into the melt without intentionally doping, and the reaction atmosphere An appropriate Si concentration in the n 1 layer can be selected only by controlling the reducing power, that is, the concentration of H 2 gas in the mixed gas of Ar and H 2 .

本発明者らは、n1層の形成にAr、H2混合ガスを用い、こ
の分圧比を変化させて還元力を調べた結果、第2図に示
すような結果を得た。これから判るように、H2100%の
場合には前述のように正味ドナー濃度(ND1)は1×10
17原子/cm3以上になるが、テラス様の異常成長やSi3N4
の生成量が多くなり、これに起因する異常成長が起るの
で好ましくない。他方Ar100%の場合には正味ドナー濃
度は1016原子/cm3台となるが、このように低濃度にな
ると単に順方向電圧降下を増大させるばかりでなく、し
ばしば、n1層形成の初期にp型反転領域を形成しやすく
なって好ましくない。これらの結果から、本発明ではH2
とArの分圧比を10〜90%好ましくは20〜80%とすること
によって、最適なn1層を得ることができた。
The inventors of the present invention used a mixed gas of Ar and H 2 for forming the n 1 layer and investigated the reducing power by changing the partial pressure ratio, and as a result, the results shown in FIG. 2 were obtained. As can be seen, when H 2 is 100%, the net donor concentration (N D1 ) is 1 × 10 as described above.
17 atoms / cm 3 or more, but terrace-like abnormal growth and Si 3 N 4
Is increased, and abnormal growth due to this increases, which is not preferable. On the other hand, in the case of Ar100%, the net donor concentration is in the order of 10 16 atoms / cm 3 , but such a low concentration not only increases the forward voltage drop, but often at the initial stage of n 1 layer formation. It is not preferable because the p-type inversion region is easily formed. From these results, in the present invention, H 2
The optimum n 1 layer could be obtained by adjusting the partial pressure ratio of Ar and Ar to 10 to 90%, preferably 20 to 80%.

次に、n2層の正味ドナー濃度は1〜2×1016原子/cm3
程度が最適値であるが、このようなドナー濃度とするた
めには、n1層は2〜10×1016原子/cm3とする必要があ
る。n1層のドナー濃度がこの値より低いと順方向の電圧
降下が大きくなり、発光素子としての特性上好ましくな
く、一方1017原子/cm3以上になると、n2層の正味ドナ
ー濃度の適正値(1〜2×1016原子/cm3)を得ること
が難しくなる。
Then, the net donor concentration of the n 2 layer is 1-2 × 10 16 atoms / cm 3
The degree is the optimum value, but in order to obtain such a donor concentration, the n 1 layer needs to be 2 to 10 × 10 16 atoms / cm 3 . If the donor concentration of the n 1 layer is lower than this value, the forward voltage drop becomes large, which is not preferable in terms of characteristics as a light emitting device. On the other hand, if it is 10 17 atoms / cm 3 or more, the net donor concentration of the n 2 layer is appropriate. It becomes difficult to obtain the value (1 to 2 × 10 16 atoms / cm 3 ).

本発明では前記の如くH2、Arの分圧比を制御することに
より、上述の如きn1層の正味ドナー濃度範囲を容易にコ
ントロールできる。
In the present invention, the net donor concentration range of the n 1 layer as described above can be easily controlled by controlling the partial pressure ratio of H 2 and Ar as described above.

なお、本発明では前記n1層のドナー濃度を前記の値とす
るために、基板のTeまたはSのドーパントレベルをおよ
そ1〜2×1017原子/cm3とし、基板の正味総ドナー濃
度を1〜3×1017原子/cm3とするのがよい。ここにお
ける他のドーパントは主として反応管より由来するSiで
あり、その濃度は約1×1017原子/cm3である。このよ
うにn1層の正味ドナー濃度を低い値にコントロールする
のは、基板の熱劣化層を除去するためn1層形成前に基板
の一部を溶融(メルトバック)する工程の際に、基板に
含まれているn型不純物による反応溶液の汚染を回避す
るためである。
In the present invention, in order to set the donor concentration of the n 1 layer to the above value, the Te or S dopant level of the substrate is set to about 1 to 2 × 10 17 atoms / cm 3, and the net total donor concentration of the substrate is It is preferable to set it at 1 to 3 × 10 17 atoms / cm 3 . The other dopant here is mainly Si originating from the reaction tube, and its concentration is about 1 × 10 17 atoms / cm 3 . In this way, controlling the net donor concentration of the n 1 layer to a low value is performed in the step of melting a part of the substrate (melt back) before forming the n 1 layer in order to remove the heat deterioration layer of the substrate. This is to prevent the reaction solution from being contaminated by the n-type impurities contained in the substrate.

つぎに図面を参照し本発明の実施例を説明する。Next, an embodiment of the present invention will be described with reference to the drawings.

第1図(a)に示すように、ボート本体1に凹部2が形
成されていて、左右に摺動する溶液溜3が前記ボート本
体1上に載置されて本発明を行う液相成長装置が構成さ
れる。この装置は、反応時に石英反応管中に入れられ
る。緑色発光素子を成長させるときは、前記凹部2に、
n型GaP基板4を載置し、前記溶液溜3の中にGa溶液5
を入れる。この装置を反応管に入れ、雰囲気ガスとして
H2、Arの混合ガスを2l/minの割合で流し、加熱して所定
温度たとえば970℃に達したら、溶液溜3を凹部2上に
摺動させ、基板4上に溶液6を、たとえば厚さ2mmに均
一に満たした後、第1図(b)に示すように、溶液溜3
をボート本体1上を摺動させて元の位置に戻す。次に反
応管内を1000℃まで昇温して30分間保持し、基板の一部
を溶融する。次いで、960℃まで徐々に冷却すると、石
英反応管とH2が反応して遊離したSiが主たるドーパント
となり、平坦なドナー分布のn1層が基板上に成長する。
この際H2とArの雰囲気ガスは、H2の分圧比が20%を保つ
よう維持する。n1層が成長したところで、窒素をドープ
するために5%のAr希釈NH3ガスを50cc/minの割合で流
し、60分間保持した後、再び徐々に冷却すると、窒素を
ドープされたn2層が成長する。基板の一部を溶融したと
きに導入されるドーパントはSまたはTeであり、正味総
ドナー濃度(ND2)は2×1016原子/cm3まで低下する。
そしてこの中に共存するシリコン濃度も0.5〜1.5×1016
原子/cm3にまで低下する。900℃になったら再び降温を
止め、60分間保持し、Znの蒸気を送り、溶液を高濃度の
p型にして再び冷却を初め、p層を成長させる。このと
きの主たるドーパントはZnである。600℃になったらAr
のみを流し、他は止めて室温まで冷却し結晶を取り出
す。
As shown in FIG. 1 (a), a boat body 1 is formed with a recess 2 and a solution reservoir 3 that slides left and right is placed on the boat body 1 to carry out the present invention. Is configured. This device is placed in a quartz reaction tube during the reaction. When growing a green light emitting device, in the concave portion 2,
The n-type GaP substrate 4 is placed, and the Ga solution 5 is placed in the solution reservoir 3.
Put in. Put this device in the reaction tube,
When a mixed gas of H 2 and Ar is flown at a rate of 2 l / min and heated to reach a predetermined temperature, for example, 970 ° C., the solution reservoir 3 is slid over the concave portion 2 and the solution 6 is deposited on the substrate 4, for example, to a thickness of After uniformly filling it to a depth of 2 mm, as shown in FIG.
Is slid on the boat body 1 and returned to its original position. Next, the inside of the reaction tube is heated to 1000 ° C. and kept for 30 minutes to melt a part of the substrate. Then, when gradually cooled to 960 ° C., Si released as a result of the reaction between the quartz reaction tube and H 2 becomes the main dopant, and the n 1 layer having a flat donor distribution grows on the substrate.
At this time, the atmosphere gas of H 2 and Ar is maintained so that the partial pressure ratio of H 2 is maintained at 20%. where n 1 layer is grown, nitrogen flushed with 5% Ar dilution NH 3 gas to dope at a rate of 50 cc / min, was maintained for 60 minutes, again slowly cooled, n 2 which nitrogen was doped The layers grow. The dopant introduced when melting a portion of the substrate is S or Te and the net total donor concentration (N D2 ) drops to 2 × 10 16 atoms / cm 3 .
And the silicon concentration coexisting in this is also 0.5 to 1.5 × 10 16
It drops to atoms / cm 3 . When the temperature reaches 900 ° C., the temperature reduction is stopped again, the temperature is maintained for 60 minutes, Zn vapor is sent to make the solution a high-concentration p-type, and cooling is started again to grow a p-layer. The main dopant at this time is Zn. Ar at 600 ℃
Pour only the mixture, stop the others, cool to room temperature and take out the crystals.

このようにしてn1、n2層およびp型GaP層を成長させた
結晶の一部を劈開して、劈開面をR・C液でエッチング
し成長層の厚さを測定した。n1層、n2層、p型GaP層と
もに約20μmであり、またこれを約100倍に角度研磨し
て、ショットキ法により不純物濃度を測定した結果を第
3図(a)、(b)、(c)に示す。縦軸は不純物濃度
を、横軸は各層の厚みを示し、(a)は好ましい実施例
で、参考のために好ましくない実施例としてH2100%、A
r100%の場合をそれぞれ(b)、(c)に併記した。第
4図は、従来法による発光素子の輝度を1としたとき
の、各実施例の相対輝度である(n1層のドーパントはT
e)。
A part of the crystal in which the n 1 and n 2 layers and the p-type GaP layer were grown in this way was cleaved, and the cleaved surface was etched with an R / C solution to measure the thickness of the growth layer. The n 1 layer, the n 2 layer, and the p-type GaP layer each have a thickness of about 20 μm, and the results of measuring the impurity concentration by the Schottky method after polishing this by 100 times angle polishing are shown in FIGS. 3 (a) and 3 (b). , (C). The vertical axis represents the impurity concentration and the horizontal axis represents the thickness of each layer. (A) is a preferred embodiment. As a reference, the preferred embodiment is H 2 100%, A
The case of r100% is also shown in (b) and (c). FIG. 4 shows the relative luminance of each example when the luminance of the light emitting device according to the conventional method is set to 1 (the dopant of the n 1 layer is T
e).

(発明の効果) 本発明によれば、n型GaP層における異常成長が避けら
れるため結晶欠陥の発生がなく、高輝度の発光素子を効
率良く得ることができる。
(Effects of the Invention) According to the present invention, abnormal growth in the n-type GaP layer can be avoided, so that crystal defects do not occur, and a high-luminance light emitting device can be efficiently obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)は本発明を行う装置の昇温時の断面図を、
第1図(b)は降温時の断面図を、第2図はAr、H2の組
成を変化させたときのn1層のドナー濃度の変化図を、第
3図(a)は本発明によりつくった好ましい緑色発光素
子の各層の不純物濃度図を、(b)、(c)は好ましく
ない場合の濃度図を、第4図は本発明の発光素子と従来
法によるものとの輝度比較図を示す。 1…ボート本体、 2…凹部、 3…溶液溜、 4…基板、 5…溶液、 6…溶液。
FIG. 1 (a) is a sectional view of the apparatus for carrying out the present invention when the temperature is raised,
FIG. 1 (b) is a cross-sectional view when the temperature is lowered, FIG. 2 is a change diagram of the donor concentration of the n 1 layer when the composition of Ar and H 2 is changed, and FIG. 3 (a) is the present invention. FIG. 4 (b) and FIG. 4 (c) are impurity concentration diagrams of the respective layers of the preferred green light emitting device, which are shown in FIG. 4, and FIG. 4 is a luminance comparison diagram of the light emitting device of the present invention and the conventional method. Indicates. 1 ... Boat main body, 2 ... Recessed portion, 3 ... Solution reservoir, 4 ... Substrate, 5 ... Solution, 6 ... Solution.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田村 雄輝 群馬県安中市磯部2丁目13番1号 信越半 導体株式会社磯部工場内 (56)参考文献 特開 昭59−214276(JP,A) 特公 昭60−19675(JP,B2) ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Yuuki Tamura 2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu Semiconductor Co., Ltd. Isobe factory (56) Reference JP-A-59-214276 (JP, A) Japanese Patent Sho 60-19675 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】n型リン化ガリウム基板上に、ドーパント
濃度を制御して基板側から高正味ドナー濃度を有するn1
層及び同低正味ドナー濃度を有するn2層の2層からなる
n型及びp型リン化ガリウム層を順次液相成長させる緑
色発光素子の製造方法において、該n1層の形成を、Arと
H220〜80容量%の混合ガス雰囲気下で、H2ガスの分圧比
を調整して該層の正味ドナー濃度を2〜10×1016原子/
cm3のレベルに制御し、ついでアンモニアガスを含んだ
雰囲気で、n2層の形成と窒素ドープを行うことを特徴と
するリン化ガリウム緑色発光素子の製造方法。
1. A n-type gallium phosphide substrate, n 1 which controls the dopant concentration having a high net donor concentration from the substrate side
Layer and an n 2 layer having the same low net donor concentration, in a method for manufacturing a green light emitting device in which n-type and p-type gallium phosphide layers are sequentially grown in liquid phase, the formation of the n 1 layer is referred to as Ar.
H 2 20 to 80% by volume under a mixed gas atmosphere, H 2 by adjusting the partial pressure ratio of gas said layer net donor concentration of 2 to 10 × 10 16 atoms /
A method for producing a gallium phosphide green light emitting device, which comprises controlling the level to cm 3 and then forming an n 2 layer and nitrogen doping in an atmosphere containing ammonia gas.
JP22582985A 1985-10-09 1985-10-09 Method for manufacturing gallium phosphide green light emitting device Expired - Lifetime JPH0693522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22582985A JPH0693522B2 (en) 1985-10-09 1985-10-09 Method for manufacturing gallium phosphide green light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22582985A JPH0693522B2 (en) 1985-10-09 1985-10-09 Method for manufacturing gallium phosphide green light emitting device

Publications (2)

Publication Number Publication Date
JPS6285480A JPS6285480A (en) 1987-04-18
JPH0693522B2 true JPH0693522B2 (en) 1994-11-16

Family

ID=16835456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22582985A Expired - Lifetime JPH0693522B2 (en) 1985-10-09 1985-10-09 Method for manufacturing gallium phosphide green light emitting device

Country Status (1)

Country Link
JP (1) JPH0693522B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2800954B2 (en) * 1991-07-29 1998-09-21 信越半導体 株式会社 Compound semiconductor single crystal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59214277A (en) * 1983-05-20 1984-12-04 Showa Denko Kk Gallium phosphide pure green light-emitting element
JPS59214276A (en) * 1983-05-20 1984-12-04 Showa Denko Kk Manufacture of gallium phosphide green light-emitting element
JPS6019675A (en) * 1983-07-12 1985-01-31 三菱電機株式会社 Starter for winding drum type elevator

Also Published As

Publication number Publication date
JPS6285480A (en) 1987-04-18

Similar Documents

Publication Publication Date Title
EP0102734B1 (en) Pure green light emitting diodes and method of manufacturing the same
US6110757A (en) Method of forming epitaxial wafer for light-emitting device including an active layer having a two-phase structure
US4526632A (en) Method of fabricating a semiconductor pn junction
US6144044A (en) Gallium phosphide green light-emitting device
US5442201A (en) Semiconductor light emitting device with nitrogen doping
JP3143040B2 (en) Epitaxial wafer and method for manufacturing the same
JPH07326792A (en) Manufacture of light emitting diode
US5986288A (en) Epitaxial wafer for a light-emitting diode and a light-emitting diode
JPH0693522B2 (en) Method for manufacturing gallium phosphide green light emitting device
JP2004533725A (en) Semiconductor layer growth method
KR100210758B1 (en) Epitaxial wafer and process for producing the same
JP3633806B2 (en) Epitaxial wafer and light-emitting diode manufactured using the same
JP3104218B2 (en) Method for growing nitrogen-doped GaP epitaxial layer
JPS6136395B2 (en)
JPH04328878A (en) Manufacture of light emitting diode epitaxial wafer
US4300960A (en) Method of making a light emitting diode
JPH04328823A (en) Manufacture of epitaxial wafer for light emitting diode
JPS63143810A (en) Vapor growth of compound semiconductor
JPS584833B2 (en) Method for manufacturing G↓aA↓s light emitting diode
JPH1197740A (en) Epitaxial wafer for gap light emitting diode and gap light emitting diode
JPH0712093B2 (en) Light emitting semiconductor device substrate and manufacturing method thereof
JPH03161981A (en) Manufacture of semiconductor device and ii-vi compound semiconductor crystal layer
JPH10173218A (en) Epitaxial wafer for gap pure green light emitting diode
JPS6136396B2 (en)
JPH0214317B2 (en)