JPH0693471A - Hot dip zincing lead plating method for steel - Google Patents

Hot dip zincing lead plating method for steel

Info

Publication number
JPH0693471A
JPH0693471A JP19926392A JP19926392A JPH0693471A JP H0693471 A JPH0693471 A JP H0693471A JP 19926392 A JP19926392 A JP 19926392A JP 19926392 A JP19926392 A JP 19926392A JP H0693471 A JPH0693471 A JP H0693471A
Authority
JP
Japan
Prior art keywords
steel
lead
zinc
hot
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19926392A
Other languages
Japanese (ja)
Inventor
Kiyoshi Suzuki
木 澂 鈴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP19926392A priority Critical patent/JPH0693471A/en
Publication of JPH0693471A publication Critical patent/JPH0693471A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To produce steel withstanding corrosion over a long period by forming a tin phosphate chemical film on steel, hot dip zincing it and thermal-spraying a lead alloy contg. a small amt. of antimony on the surface. CONSTITUTION:A primary stage in which the steel is hot dip zinced, a secondary stage in which a tin phosphate chemical film is formed on the surface, a third stage in which the steel is galvanized and a fourth stage in which a lead alloy contg. a small amt. of antimony is thermal-sprayed on the surface of the steel or the foil of the alloy is welded thereon to form a lead alloy layer having a desired thickness are combinedly executed. In this way, an antimony-lead alloy coating surface layer substantially free from pin holes and having high corrosion resistance can be formed into a desired thickness, and, by selecting the thickness, the stable steel withstanding corrosion over a long period, e.g. such as 300 years can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼材の溶融めっき材料
としての亜鉛及び鉛の長所を余すところなく活かし、同
時に短所を相互に補うことにより種々の腐食環境下の鋼
材を300年又はそれ以上の長期にわたって保護防食する
ことを可能とする鋼材の溶融亜鉛−鉛めっき方法に関す
る。
BACKGROUND OF THE INVENTION The present invention makes full use of the advantages of zinc and lead as hot-dip galvanizing materials for steels, and at the same time compensates for each other's disadvantages, thereby making steels under various corrosive environments 300 years or more. The present invention relates to a hot-dip zinc-lead plating method for steel material, which enables protective corrosion protection for a long period of time.

【0002】[0002]

【従来の技術】従来、建築物や構造物に構造材として広
く用いられている鋼材は、錆び易く容易に腐食するの
で、その表面に錆止剤を塗ったり、防錆,防食のための
処置が適用されている。特に、近年、構造材としての鋼
材類は、汚染された大気中,海水中,水中,土中及びセ
メントコンクリ−ト中や海水中における長期耐食性が要
望されていた。例えば、低レベル放射性産業廃棄物処理
用密閉容器の如きは、地下3mの堅固なセメントコンク
リ−ト施設に納め、安全に300年保管しなければならな
い、と定められている。このような場合、鉛による放射
線の遮蔽もさることながら、鋼材にこのような長期安定
性のある防食性を付与することは、これまでの技術では
不可能であった。
2. Description of the Related Art Conventionally, steel materials widely used as structural materials in buildings and structures are prone to rust and easily corrode. Therefore, a rust preventive agent is applied to the surface of the steel material, or measures for rust prevention and corrosion prevention are applied. Has been applied. In particular, in recent years, steel materials as structural materials have been required to have long-term corrosion resistance in polluted air, seawater, water, soil, cement concrete and seawater. For example, it is stipulated that closed containers for low-level radioactive industrial waste treatment must be stored in a solid cement concrete facility 3 m underground and safely stored for 300 years. In such a case, it has been impossible to impart such long-term stable anticorrosive properties to steel materials, as well as shielding of radiation by lead.

【0003】その他にも、海中に構築する鉄筋コンクリ
−トの鉄筋等は、コンクリ−トの寿命以上の耐用年数を
具備するものが要求される。このような厳しい要求に
は、塗膜防食等では全く期待できない。これまで比較的
長期耐用性のある鋼材の防食法としては溶融亜鉛めっき
法が世界的に採用され、この需要を順調に伸ばしてきた
が、亜鉛めっきの弱点は耐薬品性が万全でないことであ
る。鉛や、例えば、少量のアンチモン−鉛のような鉛合
金類は、SO2,SH2,NO2,CO2や海水等に対する
耐食性が優れているので、亜鉛めっき上に鉛又は鉛合金
類を積層めっきして、亜鉛めっきの弱点を改良しようと
する発想は以前からあったが、この積層めっきは酸洗処
理とフラックス処理を施す通常の溶融鉛めっき法では解
決されず、そのため鋼材の溶融亜鉛−鉛めっき法につい
ては、これまで全く手が付けられずに取り残されてき
た。
[0003] In addition, the reinforcing bars of the reinforcing bar concrete constructed in the sea are required to have a service life longer than the life of the concrete. Such severe requirements cannot be expected at all in coating film corrosion protection and the like. The hot dip galvanizing method has been adopted worldwide as a corrosion protection method for steel materials with relatively long-term durability, and this demand has been growing steadily, but the weak point of galvanizing is that the chemical resistance is not perfect. . Lead and, for example, a small amount of antimony - lead alloy, such as lead, since the corrosion resistance is excellent against SO 2, SH 2, NO 2 , CO 2 , seawater or the like, a lead or lead alloys on galvanized The idea of improving the weakness of zinc plating by laminated plating has long been known, but this laminated plating cannot be solved by the conventional hot-dip lead plating method in which pickling treatment and flux treatment are performed, and therefore, hot-dip zinc of steel materials is not solved. -Lead plating has been left untouched until now.

【0004】現在までに工業化されている鋼材の溶融め
っきに用いられている金属は、錫,亜鉛及びアルミニウ
ムの三種類であって、鉛は工業化されていない。これら
三種類の金属の溶融めっきは、共通した次のような前処
理工程,中間処理工程及び後処理工程で行われている。
すなわち、 前処理工程:脱脂−水洗−酸洗−水洗−乾燥 中間処理工程:フラックス処理−乾燥 後処理工程:溶融めっき−湯洗−乾燥−検査
The metals used for hot-dip plating of steel materials that have been industrialized to date are three kinds of tin, zinc and aluminum, and lead has not been industrialized. Hot-dip plating of these three kinds of metals is performed in the following common pre-treatment process, intermediate treatment process and post-treatment process.
That is, pretreatment process: degreasing-water washing-pickling-water washing-drying Intermediate treatment process: flux treatment-drying Post-treatment process: hot dip plating-hot water washing-drying-inspection

【0005】これらの各工程は、いずれの工程を省略す
ることも許されず、また、それぞれの工程中のすべての
処理操作を確実に実施しなければ望ましい溶融金属めっ
きは得られない。特に、このめっき法においては酸洗工
程が問題であって、溶融亜鉛めっき鋼材を塩酸や硫酸で
洗浄すればめっき亜鉛は忽ち溶解,侵食されるので、酸
処理をしないでこの鋼材に鉛めっきをすることができる
前処理法が要望されている。
In each of these steps, it is not allowed to omit any step, and the desired hot metal plating cannot be obtained unless all the processing operations in each step are performed reliably. Particularly, in this plating method, the pickling step is a problem, and if the hot-dip galvanized steel material is washed with hydrochloric acid or sulfuric acid, the galvanized zinc will be dissolved and eroded, so it is necessary to apply lead plating to this steel material without acid treatment. There is a need for a pretreatment method that can be done.

【0006】また、鋼材の溶融金属めっきにおいて、最
も重視されている工程はフラックス処理である。この工
程の仕上りの良否によってめっき製品の品位は決定され
ると云われている。鋼材の溶融亜鉛めっきに、従来一般
に採用されているフラックスとしては、塩化亜鉛を主材
とし、これにアルカリ金属又はアンモニウムの塩化物を
助剤として両者を混合したものが性能的にもコストの面
でも優れているのでもっぱら用いられており、これ以外
のフラックスは殆ど使用されていない。このフラックス
を水溶液にしたものはpHが2以下となり、これに亜鉛
めっき鋼材を浸漬すると亜鉛が急速に侵食される。ま
た、このフラックスを溶融物とした場合にも亜鉛が侵食
されて使用することができない。従って、フラックス処
理工程を必要としない溶融鉛めっき法の開発が長らく望
まれていた。
In hot metal plating of steel materials, the most important process is flux treatment. It is said that the quality of plated products is determined by the quality of the finish of this process. As a flux that has been generally adopted for hot-dip galvanizing of steel materials, zinc chloride is the main material, and a mixture of both is used with an alkali metal or ammonium chloride as an auxiliary agent in terms of performance and cost. However, since it is excellent, it is exclusively used, and almost no other flux is used. An aqueous solution of this flux has a pH of 2 or less, and when a galvanized steel material is dipped in this solution, zinc is rapidly eroded. Also, when this flux is used as a melt, zinc is corroded and cannot be used. Therefore, it has long been desired to develop a hot-dip plating method that does not require a flux treatment step.

【0007】一方、鉛及び鉛合金その他7種類の金属の
大気中での腐食に関して、アメリカ材料試験協会AST
Mが行った測定結果が、次の文献に報告されている。 Report of SubcommitteeVI of ASTM Commi
tteeB-3 on Atomosph-eric Corrosion Tests of N
onferrous Metals and Alloys,Proc.ASTM,44,2
24 (1944)及び Report of SubcommitteeVI of ASTM Commi
tteeB-3 on Atomosp-heric Corrosion Tests of
Nonferrous Metals and Alloys,Proc.ASTM,6
2,216 (1962)
On the other hand, regarding the corrosion of lead and lead alloys and seven other metals in the atmosphere, the American Society for Testing and Materials AST
The measurement results performed by M are reported in the following documents. Report of Subcommittee VI of ASTM Commi
tteeB-3 on Atomosph-eric Corrosion Tests of N
onferrous Metals and Allloys, Proc. ASTM, 44,2
24 (1944) and Report of Subcommittee VI of ASTM Commi
tteeB-3 on Atomosp-heric Corrosion Tests of
Nonferrous Metals and Allys, Proc. ASTM, 6
2,216 (1962)

【0008】その報告においては、鉛(99.9%)と鉛合
金(Pb−1%Sb)を腐食環境の異なるアメリカ各地の
大気中に長期間暴露し、毎年その侵食量を精密に測定し
た結果がまとめられている。測定は、10年又は20年の長
期間にわたってなされ、1年間の腐食厚さが平均値で示
されている。いずれも過酷な腐食性自然環境下での測定
値であって、その異なる各種大気汚染条件下での各様の
腐食値が表示されているが、鉛及び鉛合金に関しては大
きく異なる数値ではなく、鋼材鉛めっき技術の研究の重
要な参考試料として利用し得るものである。発表された
それらの鉛及びアンチモン−鉛合金の腐食に関する測定
値を一部抜粋して、次表1にまとめて示した。
In the report, lead (99.9%) and lead alloy (Pb-1% Sb) were exposed to the atmosphere in various parts of the United States with different corrosive environments for a long period of time, and the results of precise measurement of the amount of erosion were shown every year. It is summarized. The measurements are made over a long period of 10 or 20 years, and the average corrosion thickness for one year is shown. All are measured values under severe corrosive natural environment, and various corrosion values under different atmospheric pollution conditions are displayed, but for lead and lead alloys, it is not a significantly different value, It can be used as an important reference sample for research on steel lead plating technology. Some of the published measurements of corrosion of lead and antimony-lead alloys are excerpted and summarized in Table 1 below.

【0009】[0009]

【表1】 暴 露 し た 場 所 大気の 暴露 平均侵食度(mm/年) 環境 年数 鉛 鉛合金 Altoona (ペンシルバニア州) 工業地 10 0.000721 0.000578 New York (ニュ−ヨ−ク州) 〃 20 0.000451 0.000305 Sandy Hook(ニュ-ジャ-ジ-州) 海岸 20 0.000540 0.000514 Key West (フロリダ州) 〃 10 0.000584 0.000556 La Jolla(カリフォルニヤ州) 〃 20 0.000438 0.000636 State College(ペンシルバニア州) 田園 20 0.000511 0.000349 Phoenix (アリゾナ州) 半乾燥 20 0.000254 0.000295[Table 1] Exposed place Atmospheric exposure Average erosion rate (mm / year) Environmental years Lead Lead alloy Altoona (Pennsylvania) Industrial area 10 0.000721 0.000578 New York (New York) 〃 20 0.000451 0.000305 Sandy Hook (New Jersey) Coast 20 0.000540 0.000514 Key West (Florida) 〃 10 0.000584 0.000556 La Jolla (California) 〃 20 0.000438 0.000636 State College (Pennsylvania) Rural 20 0.000511 0.000349 Phoenix (Arizona) ) Semi-dry 20 0.000254 0.000295

【0010】表中のカリフォルニヤ州のLa JollaのPb-
1%Sbについては、測定値に多少疑問があるのでこれ
を除いて考察すると、表の平均侵食度の最低値と最高値
は、鉛(99.90%の純鉛)では、0.000254mmと0.000721m
mであり、また1%Sb含有鉛合金では、0.000295mmと
0.000578mmとなっている。それぞれの金属の最低と最高
の数値の中間の腐食厚は、純鉛では、0.0004885mmとな
り、またSb含有鉛合金では、0.0003895mmとなる。こ
の事実に基づけば、ピンホ−ルのない密な鉛系金属皮膜
は、その厚さによって鋼材の防食年数を推定することが
できるが、そのような皮膜形成技術はまだ開発されてい
ない。
Pb-of La Jolla, California, in the table
Regarding 1% Sb, there is some doubt about the measured value, so if we consider it excluding this, the minimum and maximum values of the average erosion degree in the table are 0.000254 mm and 0.000721 m for lead (99.90% pure lead).
m, and 0.000295 mm for a lead alloy containing 1% Sb.
It is 0.000578 mm. The corrosion thickness between the minimum and maximum values of each metal is 0.0004885 mm for pure lead and 0.0003895 mm for Sb-containing lead alloy. Based on this fact, the dense lead-based metal coating without pinholes can estimate the corrosion protection years of steel materials by its thickness, but such coating formation technology has not been developed yet.

【0011】[0011]

【発明が解決しようとする課題】従って、本発明の技術
的課題は、溶融亜鉛めっき鋼材の鉛めっき法において、
その鋼材の酸洗処理を行わない前処理法を開発すること
にある。また、本発明の他の課題は、フラックス処理を
必要としない改善された溶融鉛めっき法を提供すること
にある。更に他の課題は、300年以上の耐用年数が保証
される実用性の優れた溶融鉛被覆鋼材を提供することに
ある。
SUMMARY OF THE INVENTION Therefore, the technical object of the present invention is to provide a lead plating method for hot-dip galvanized steel,
The purpose is to develop a pretreatment method that does not perform pickling treatment of the steel material. Another object of the present invention is to provide an improved hot-dip plating method that does not require flux treatment. Still another object is to provide a molten lead-coated steel material which is guaranteed to have a service life of 300 years or more and has excellent practicability.

【0012】[0012]

【課題を解決するための手段】すなわち、本発明は、鋼
材を溶融亜鉛めっきする第1工程;該亜鉛めっきされた
鋼材の表面に燐酸錫化成皮膜を形成させる第2工程;第
2工程で得られた鋼材を溶融鉛めっきする第3工程;及
び該溶融鉛めっきされた鋼材表面に少量のアンチモンを
含有する鉛合金を溶射、又は該合金の箔を融着して所望
厚の鉛合金層を形成させる第4工程:を組み合わせて成
る鋼材の溶融亜鉛−鉛めっき方法を要旨とするものであ
る。
That is, the present invention is obtained in the first step of hot dip galvanizing a steel material; the second step of forming a tin phosphate conversion coating on the surface of the galvanized steel material; and the second step. Third step of hot-dip-plating the obtained steel material; and spraying a lead alloy containing a small amount of antimony on the surface of the hot-dip-plated steel material, or fusing the alloy foil to form a lead alloy layer having a desired thickness. A fourth aspect of the present invention is to provide a method of hot dip zinc-lead plating of steel material, which is formed by combining the fourth step of forming.

【0013】上記の構成より成る本発明の溶融亜鉛−鉛
めっき方法は、問題の前処理工程の酸洗処理と中間処理
工程のフラックス処理とを行わない点が特徴的であり、
鋼材表面への溶融亜鉛−鉛めっきは、上記四つの処理工
程の組合せにより効果的に達成される。更に、溶融亜鉛
めっきした鋼材に溶融鉛めっきに先立って燐酸錫化成皮
膜を形成させることに技術的特徴がある。かかる化成膜
に鉛を溶融めっきするとき、第4工程において、その上
に所望厚さの耐食性の優れた鉛合金層を自由に形成させ
ることができるのであって、過酷な使用環境下にも優れ
た耐食性を有する長期安定性のある鉛合金被覆鋼材が容
易に提供される。
The hot dip zinc-lead plating method of the present invention having the above constitution is characterized in that the pickling treatment in the pretreatment step and the flux treatment in the intermediate treatment step in question are not carried out.
Hot-dip zinc-lead plating on the surface of steel is effectively achieved by a combination of the above four treatment steps. Further, there is a technical feature in forming a tin phosphate conversion coating film on a hot dip galvanized steel material prior to hot dip plating. When lead is hot-dipped on such a chemical film formation, in the fourth step, a lead alloy layer having a desired thickness and excellent in corrosion resistance can be freely formed, and even in a severe environment of use. A lead alloy-coated steel material having excellent corrosion resistance and long-term stability is easily provided.

【0014】第1工程における溶融亜鉛めっきは、一般
公知の方法により行われる。めっきされた亜鉛の厚さは
100μm以上にすることが好ましい。鋼材を溶融亜鉛めっ
きすれば、亜鉛は電気化学的に鉄に対して卑に働くため
に、鋼材を犠牲防食する特性がある。そのために、鋼材
の表面にたとえ少量でも亜鉛が存在する限り鋼材は腐食
から保護される。このような理由から、第1工程におい
て形成させる亜鉛めっき厚は、100μm以上とすることが
望ましい。
The hot dip galvanizing in the first step is performed by a generally known method. The thickness of plated zinc is
It is preferably 100 μm or more. When hot-dip galvanizing a steel material, zinc electrochemically acts as a base for iron, so that it has a property of sacrificing corrosion protection of the steel material. As a result, the steel is protected from corrosion as long as zinc, even in small amounts, is present on the surface of the steel. For this reason, it is desirable that the zinc plating thickness formed in the first step is 100 μm or more.

【0015】第1工程において溶融亜鉛めっきされた鋼
材は、その上に燐酸錫化成皮膜を形成させる第2工程に
供される。溶融亜鉛めっきされた鋼材に燐酸錫化成皮膜
を形成させる方法は、まず鋼材表面の亜鉛皮膜に燐酸亜
鉛皮膜を化成し、その表層に化成された燐酸亜鉛を錫と
置換させて燐酸錫化成皮膜を形成させる方法が一般に採
用されている。燐酸亜鉛化成皮膜の形成は、第一燐酸亜
鉛の水溶液に溶融亜鉛めっき鋼材を浸漬することによっ
て容易に行われる。第一燐酸亜鉛の水溶液は、次式
(1)のように加水分解する。
The hot-dip galvanized steel material in the first step is subjected to a second step of forming a tin phosphate conversion coating thereon. To form a tin phosphate conversion coating on hot-dip galvanized steel, first form a zinc phosphate coating on the zinc coating on the surface of the steel, and replace the zinc phosphate formed on the surface with tin to form a tin phosphate conversion coating. The method of forming is generally adopted. The formation of the zinc phosphate conversion coating is easily performed by immersing the hot dip galvanized steel material in an aqueous solution of zinc monophosphate. The aqueous solution of zinc monophosphate is hydrolyzed as in the following formula (1).

【化1】 [Chemical 1]

【0016】この平衡状態にある水溶液中に表面を清浄
にした溶融亜鉛めっき鋼材を浸漬又は鋼材に液をスプレ
−すると、次式(2)のような反応が起こる。 2H3PO4+ Zn= Zn(H2PO4)2+ H2 (2) この反応で、水素の泡を発生しながら亜鉛が燐酸と結合
し溶解するために、燐酸は徐々に消耗されるので液のp
Hは次第に上昇する。従って、(1)式の解離は、左か
ら右に進行し、水に不溶の第三燐酸亜鉛がめっき亜鉛の
表面に析出し、これが成長してめっき亜鉛の表面が第三
燐酸亜鉛で全面的に覆われた時点で一応燐酸亜鉛の化成
反応は停止する。
When a hot-dip galvanized steel material whose surface has been cleaned is immersed in or sprayed with the solution in the aqueous solution in this equilibrium state, a reaction represented by the following formula (2) occurs. 2H 3 PO 4 + Zn = Zn (H 2 PO 4 ) 2 + H 2 (2) In this reaction, zinc bonds with phosphoric acid and dissolves while hydrogen bubbles are generated, and phosphoric acid is gradually consumed. So the liquid p
H gradually rises. Therefore, the dissociation of the formula (1) proceeds from left to right, and water-insoluble zinc triphosphate is deposited on the surface of the galvanized zinc, which grows and the surface of the galvanized zinc is completely covered with the zinc triphosphate. Once covered with, the chemical conversion reaction of zinc phosphate stops.

【0017】このようにして第三燐酸亜鉛の化成皮膜で
覆われた鋼材は、室温から約70℃の間の温度の第二塩化
錫の水溶液に1秒ないし5分間浸漬すると、第三燐酸亜
鉛の亜鉛が第二塩化錫の錫と下式(3)のように置換反
応して、5〜10μmの厚さの第三燐酸亜鉛化成皮膜の上
部表面は3〜5μm程度の厚さの燐酸錫化成皮膜に置換
される。 Zn3(PO4)2+3SnCl2= Sn3(PO4)2+ 3ZnCl2 (3)
The steel material coated with the conversion coating of zinc triphosphate in this way is immersed in an aqueous solution of tin stannic chloride at a temperature between room temperature and about 70 ° C. for 1 second to 5 minutes, and then zinc triphosphate is added. The zinc of stannic chloride undergoes a substitution reaction as shown in the following formula (3), and the upper surface of the tertiary zinc phosphate conversion coating having a thickness of 5 to 10 μm is tin phosphate having a thickness of about 3 to 5 μm. It is replaced by a chemical conversion film. Zn 3 (PO 4 ) 2 + 3SnCl 2 = Sn 3 (PO 4 ) 2 + 3ZnCl 2 (3)

【0018】このように燐酸亜鉛皮膜の上面が燐酸錫皮
膜で置換された2層構造皮膜は、他の一般の燐酸塩皮膜
と区別されエンジュリオン(Endurion)皮膜と称される
ピンホ−ル皆無の皮膜である。このエンジュリオン化成
皮膜と一般の燐酸亜鉛化成皮膜とを塩水噴霧試験(JI
S Z 2371)で比較すると、前者は24時間に耐えられる
のに対し後者の耐久はせいぜい2時間であって、本発明
の方法に係るエンジュリオン化成皮膜の防食性は著しく
優れている。更に、前者を油処理すれば60時間にも耐え
られるという報告もある。
The two-layer structure film in which the upper surface of the zinc phosphate film is replaced with the tin phosphate film in this way is distinguished from other general phosphate films, and has no pinhole called an endurion film. It is a film. This endurion chemical conversion coating and a general zinc phosphate chemical conversion coating were subjected to a salt spray test (JI
In comparison with S Z 2371), the former can withstand 24 hours, whereas the latter has a durability of at most 2 hours, and the corrosion resistance of the endurion chemical conversion coating film according to the method of the present invention is remarkably excellent. Furthermore, it is reported that oil treatment of the former can withstand up to 60 hours.

【0019】このように第2工程において燐酸錫化成皮
膜が形成された鋼材は、水洗,乾燥して第3の溶融鉛め
っき工程に供される。溶融鉛めっきは、鉛を350〜370℃
に加熱溶融した浴中に上記第2工程で得られた鋼材を約
1〜2分間、浮上しないように押し込み浸漬して引き上
げることにより行われる。表面に、通常1回の浸漬で20
〜30μm(225〜338g/m2)程度の厚さの鉛めっき膜
が形成されるが、2回以上浸漬しても実質的にこれ以上
の厚付けはできない。
The steel material on which the tin phosphate chemical conversion film has been formed in the second step is washed with water and dried, and then subjected to the third hot lead plating step. Hot lead plating is 350-370 ℃ for lead
The steel material obtained in the second step is pressed and dipped in the heated and melted bath for about 1 to 2 minutes so as not to float and then pulled up. 20 in one dipping on the surface
A lead plating film having a thickness of about 30 μm (225 to 338 g / m 2 ) is formed, but even if it is dipped twice or more, the thickness cannot be further increased.

【0020】続く第4工程においては、第3工程で得ら
れた鉛めっき膜上に少量のアンチモンを含有する鉛合金
層が形成される。その層形成は、金属溶射法又は所定厚
の合金の箔を融着する方法によって行われる。金属溶射
法は、不規則な形状をした鋼材、例えば、型鋼,パイ
プ,鋼失板等に好都合に用いられ、箔の融着法は、規則
的な形状、例えば、屋根材薄鋼板ストリップあるいはド
ラム鋼板ストリップなどの平板状のものに好適に適用さ
れる。いずれの方法においても、下地の鉛層を非溶融状
態に保持した状態で、その上に溶融状のSb−Pb合金
を融着形成させるのであるから、Sb−Pb合金は、鉛
の融点より少なくとも数度以上低い、好ましくは、10℃
以上低い融点を有し且つ鉛より防食性の高いものが用い
られる。
In the subsequent fourth step, a lead alloy layer containing a small amount of antimony is formed on the lead plating film obtained in the third step. The layer formation is performed by a metal spraying method or a method of fusing an alloy foil having a predetermined thickness. The metal spraying method is conveniently used for irregularly shaped steel materials, such as shaped steel, pipes, steel slabs, etc., and the foil fusion method is for regular shapes, such as roofing sheet steel strips or drums. It is preferably applied to flat plates such as steel plate strips. In either method, a molten Sb-Pb alloy is fusion-bonded and formed on the underlying lead layer in a non-molten state, so that the Sb-Pb alloy is at least as high as the melting point of lead. Lower than a few degrees, preferably 10 ° C
A material having a lower melting point and higher corrosion resistance than lead is used.

【0021】本発明の第4工程に用いられる少量のアン
チモン含有鉛合金は、適度に低められた融点と高められ
た防食性を有することが重要であって、0.5%〜数重量
%程度の少量アンチモンを含有するものが実用上好適に
用いられる。金属鉛の融点は327℃であって、これに対
し、例えば、1重量%のアンチモンを含有する鉛合金は
315〜320℃程度であるから、その温度差を利用して合金
を鉛めっき膜上に合金層を効果的に融着形成させること
ができる。本発明方法に用いられる鉛合金は、そのよう
な相対的に少量のアンチモンを含有し、優れた防食性を
示す合金類を包含するものであって、好ましいアンチモ
ン含有量は1〜2重量%であり、特に好ましくは、約1
重量%である。
It is important that the small amount of the antimony-containing lead alloy used in the fourth step of the present invention has an appropriately lowered melting point and enhanced anticorrosion property, and a small amount of 0.5% to several% by weight. Those containing antimony are preferably used in practice. The melting point of metallic lead is 327 ° C, whereas, for example, a lead alloy containing 1% by weight of antimony is
Since the temperature is about 315 to 320 ° C., the alloy layer can be effectively fused and formed on the lead plating film by utilizing the temperature difference. The lead alloy used in the method of the present invention includes such alloys containing a relatively small amount of antimony and exhibiting excellent anticorrosion property, and the preferable antimony content is 1 to 2% by weight. Yes, particularly preferably about 1
% By weight.

【0022】第3工程で得られた長尺の鉛めっき平板状
鋼板に、予め製造した所定厚さの鉛合金箔を融着する場
合には、その鉛めっき平板状鋼板を適当な温度に加熱し
ながら流し、その表面に鉛合金箔を重ねて高周波で溶融
温度をコントロ−ルして融着させることにより、例えば
80m/分の速度で強固に密着した鉛合金表層を形成させ
ることができる。このような融着被覆法は連続ラインシ
ステムに限られる。少量のアンチモン含有鉛合金は、純
鉛より優れた耐食性と高い硬度を有し、そのような合金
類を表層に有する鋼材は、腐食性環境において顕著に改
善された腐食防止性を示すと共に、傷つき難い実用的に
極めて望ましい構造材である。
When the lead alloy foil having a predetermined thickness produced in advance is fused to the long lead-plated flat steel sheet obtained in the third step, the lead-plated flat steel sheet is heated to an appropriate temperature. While flowing, while superimposing a lead alloy foil on the surface and controlling the melting temperature with high frequency to cause fusion, for example,
It is possible to form a tightly adhered lead alloy surface layer at a speed of 80 m / min. Such fusion coating methods are limited to continuous line systems. Small amounts of antimony-containing lead alloys have better corrosion resistance and higher hardness than pure lead, and steels with such alloys on the surface show significantly improved corrosion protection in corrosive environments, as well as scratch resistance. It is a difficult and practically highly desirable structural material.

【0023】[0023]

【作用】本発明の方法によれば、鉄鋼材の表面にピンホ
−ルのない緻密な溶融亜鉛−鉛めっき層が効果的に形成
される。従って、本発明の方法で得られる溶融亜鉛−鉛
めっき鋼材は、汚染された過酷な条件下でも優れた耐食
性を示し、極めて長期間にわたって構造材として安定に
機能する。
According to the method of the present invention, a dense hot-dip zinc-lead plating layer without pinholes is effectively formed on the surface of a steel material. Therefore, the hot dip galvanized steel material obtained by the method of the present invention exhibits excellent corrosion resistance even under contaminated and severe conditions, and stably functions as a structural material for an extremely long period of time.

【0024】[0024]

【実施例】次に、本発明を実施例により、更に詳細に説
明する。なお、実施例においては実際の鋼材に換えて、
厚さ1.6mmの市販の熱圧延鋼板を長さ150mm×幅50mmの長
方形の片に切断し、その細長い150mmの一方の端部中央
に約1mmの貫通孔を穿け、これに針金を通して懸垂でき
るように構成させ、めっき用鋼材試験片とした。浸漬、
乾燥等の操作では、この針金を利用した。
EXAMPLES Next, the present invention will be described in more detail by way of examples. In the examples, instead of the actual steel material,
Commercially available hot rolled steel sheet with a thickness of 1.6 mm is cut into a rectangular piece with a length of 150 mm and a width of 50 mm, and a through hole of about 1 mm is made at the center of one end of the elongated 150 mm so that a wire can be hung from it. To be a steel test piece for plating. Soaking,
This wire was used for operations such as drying.

【0025】実施例 1 第1工程;溶融亜鉛めっきに先立って、試験片を試験用
電気加熱炉に入れ、約1000℃に30分加熱し焼きならし
た。放置冷却後、これを脱脂,酸洗して約450℃に加熱
した亜鉛の溶融浴に数秒間浸漬し、引き上げて試験片の
表面に亜鉛のめっき皮膜を形成させた。その亜鉛の附着
量は、756g/m2(片面)で、平均皮膜厚は105μmで
あった。得られた亜鉛めっき試料を珪酸ナトリウム10%
と界面活性剤(日本パ−カライジング社製の商品名Fe-
4360)0.5%を含んだ水溶液を60〜70℃の温度に加熱し
て、この中に亜鉛めっき鋼板を15分間浸漬した後、取り
出し水洗,乾燥して脱脂処理を行いデシケ−タ−中に保
管した。
Example 1 First Step: Prior to hot dip galvanizing, the test piece was placed in an electric heating furnace for testing and heated to about 1000 ° C. for 30 minutes to normalize it. After being left standing to cool, this was degreased, pickled, immersed in a molten zinc bath heated to about 450 ° C. for several seconds, and pulled up to form a zinc plating film on the surface of the test piece. The amount of zinc attached was 756 g / m 2 (one side), and the average film thickness was 105 μm. The obtained zinc-plated sample is 10% sodium silicate
And a surfactant (trade name Fe- manufactured by Nippon Park Rising Co., Ltd.
4360) An aqueous solution containing 0.5% is heated to a temperature of 60 to 70 ° C, the galvanized steel sheet is immersed in this for 15 minutes, then taken out, washed with water, dried, degreased and stored in a desiccator. did.

【0026】第2工程;第1工程で脱脂処理を行った
後、デシケ−タ−に保存した溶融亜鉛めっき鋼板を、1
%チタンコロイド液に約1分間浸漬して表面処理を行
い、取り出し乾燥した。次に、1リットル中に、酸化亜
鉛:110g,炭酸ニッケル:151g,ふっ化水素:13g,
ふっ化珪素酸:245g,オルト燐酸:443g及びボ−メ42
度の硝酸:104gを含む燐酸亜鉛化成処理原液を調製
し、その70gを水1リットルに溶解したものを処理液と
して用いた。この燐酸亜鉛化成処理液に上記表面処理鋼
板を約2分間浸漬し、取り出して水洗,乾燥し、これを
更に15%塩化第二錫水溶液に約2分間浸漬し、水洗,乾
燥して燐酸錫化成皮膜を形成させた。
Second step: After performing the degreasing treatment in the first step, the hot-dip galvanized steel sheet stored in a desiccator is
% Titanium colloid solution for about 1 minute for surface treatment, and then taken out and dried. Next, in 1 liter, zinc oxide: 110 g, nickel carbonate: 151 g, hydrogen fluoride: 13 g,
Fluorosilicic acid: 245 g, orthophosphoric acid: 443 g and Bome 42
A nitric acid phosphate chemical treatment stock solution containing 104 g of nitric acid was prepared, and 70 g of the stock solution was dissolved in 1 liter of water and used as a treatment solution. The surface-treated steel sheet is dipped in this zinc phosphate conversion treatment solution for about 2 minutes, taken out, washed with water and dried, further immersed in a 15% stannic chloride aqueous solution for about 2 minutes, washed with water and dried to form tin phosphate conversion treatment. A film was formed.

【0027】第3工程;第2工程において得られた燐酸
錫化成皮膜形成鋼板を、フラックス処理することなく、
鉛を約360℃に加熱溶融した鉛浴にそのまま入れ、浮上
しないように全体を押し沈めて約1分間浸漬状態を保持
した後、引き揚げ、全面に鉛めっき層を有する鋼板を得
た。形成された鉛めっき膜の厚さは、膜厚計の測定では
平均26.4μm(附着量305g/m2)であった。
Third step: The tin phosphate conversion coating film-formed steel sheet obtained in the second step is treated without flux treatment.
Lead was put into a lead bath heated and melted at about 360 ° C. as it was, and the whole was pushed down so as not to float, and kept in the immersed state for about 1 minute, and then lifted up to obtain a steel sheet having a lead plating layer on the entire surface. The thickness of the formed lead-plated film was 26.4 μm on average (adhesion amount: 305 g / m 2 ) as measured by a film thickness meter.

【0028】第4工程:第3工程で得られた鉛めっき鋼
板に、金属表面技術協会ライニング部会制定のブラスト
標準片によりブラストを掛けて、表面粗度をSAB3度
程度の粗面にした。次いで、電気溶線式溶射機に、直径
1.3mmの1%アンチモン含有鉛合金線を装着し、ブラス
ト鉛めっき面に溶射して、設計厚の合金層を形成させ
た。この鉛層の上に形成された合金層は、溶着条件を選
択することにより、各種厚さのめっき層を形成させるこ
とができる。本発明の方法においては、特に必要ではな
いが、溶射により形成された鋼板試料を290〜310℃の温
度に加熱して溶射面に発生したかも知れないピンホ−ル
の封孔処理を行った。
Fourth step: The lead-plated steel sheet obtained in the third step was blasted with a blast standard piece established by the Metal Surface Technology Association Lining Subcommittee to obtain a surface roughness of SAB of about 3 degrees. Then, in the electric wire spraying machine, the diameter
A lead alloy wire containing 1.3% of 1% antimony was attached and sprayed on the blasted lead plating surface to form an alloy layer having a designed thickness. The alloy layer formed on this lead layer can be formed into a plating layer of various thicknesses by selecting welding conditions. In the method of the present invention, although not particularly necessary, a steel plate sample formed by thermal spraying was heated to a temperature of 290 to 310 ° C. to seal the pinholes which may have been generated on the thermal sprayed surface.

【0029】本発明の方法におけるこの第4工程は、そ
の前段の第1工程での溶融亜鉛めっき,その上に第2工
程での燐酸錫化成膜の形成,及び第3工程で更にその上
に溶融鉛めっき層を形成させた組合せ積層処理によっ
て、腐食性の強い大気環境に優れた抵抗性を有する少量
アンチモン含有鉛合金の層を自由な厚さに密着形成させ
ることができたのであって、長期の腐食性環境下にも強
固且つ安定なな溶融亜鉛−鉛めっき層を有する鋼材が提
供された。
This fourth step in the method of the present invention comprises hot-dip galvanizing in the first step of the preceding step, formation of a tin phosphide tin film in the second step, and further in the third step. It was possible to form a layer of a small amount of lead alloy containing antimony, which has excellent resistance to highly corrosive atmospheric environments, in close contact with a free thickness by the combined laminating process in which the hot-dip plated layer was formed on A steel material having a hot-dip zinc-lead plating layer that is strong and stable even under a long-term corrosive environment is provided.

【0030】このようにして、例えば、0.117mmの(0.00
03985×300mm)厚さの合金表層を形成させるならば、単
純計算で約300年の防食耐用年数が保証された鋼材を提
供することができるのであり、鉛合金の厚さを選択する
ことによって、耐用年数の自由な選択が可能となったの
である。従って、本発明の方法の工業的あるいは実用的
価値は、従来解決されなかった事実を考慮すれば絶大で
ある。
In this way, for example, 0.117 mm (0.00
(03985 × 300 mm) If you form an alloy surface layer with a thickness, it is possible to provide a steel material with a guaranteed corrosion resistant service life of about 300 years by simple calculation, and by selecting the thickness of the lead alloy, It became possible to freely select the service life. Therefore, the industrial or practical value of the method of the present invention is enormous in view of the fact that it has not been solved in the past.

【0031】本発明の方法によって鋼材表面に形成され
た溶融亜鉛−鉛めっき層は、亜鉛と鉛のそれぞれの優れ
た特性がお互いの欠点を好都合に補うものであり、極め
て安定な防食性を示すものである。その相互補完性は、
亜鉛と鉛のそれぞれが有する特失をいくつかの比較項目
について対比した下掲表2にまとめられる。
The hot-dip zinc-lead plating layer formed on the surface of the steel material by the method of the present invention has excellent characteristics of zinc and lead, which complement each other's disadvantages, and exhibits extremely stable corrosion resistance. It is a thing. The mutual complementarity is
The special losses of zinc and lead are summarized in Table 2 below, which compares some comparative items.

【0032】[0032]

【表2】 比 較 項 目 亜 鉛 鉄−亜鉛,鉄−鉛の固溶体化 ◎ × 湿気共存時の耐塩素イオン性 × ○ 〃 耐SO2性 × ◎ 〃 耐NO2性 × △ 酸 性 雨 耐 性 △ ◎ 耐酸性(硝酸,酢酸を除く) × ○ 鉄に対する犠牲防食性 ◎ × 耐 ピ ン ホ − ル 性 ◎ × 厚 付 け め っ き 性 ◎ × 白 さ び 発 生 傾 向 × ◎ なお、表中の評価記号は次の通りである。 ◎:優 ○:良 △:劣 ×:極めて劣Table 2 compares Item zinc lead iron - zinc, iron - lead solid solution ◎ × moisture coexistence at the salt-containing ionic × ○ 〃 resistance SO 2 resistance × ◎ 〃 resistance NO 2 resistance × △ acid rain Resistance ◎ ◎ Acid resistance (excluding nitric acid and acetic acid) × ○ Sacrificial corrosion resistance against iron ◎ × Pin resistance ◎ × Thick solderability ◎ × White rust tendency × × ◎ The evaluation symbols in the table are as follows. ◎: Excellent ○: Good △: Inferior ×: Extremely poor

【0033】耐食性の優れた鉛合金層を自由な層厚で形
成させることができる本発明の方法に成る鋼材は、屋外
におけるメンテナンスフリ−300年の防食特性の有効利
用を考慮すれば、極めて広い技術分野での利用性が期待
できる。例えば、低レベル放射性廃棄物収納用ドラム
缶,硫酸その他の特定薬品用ドラム缶,臨海地帯で使用
される耐塩粒性屋根用鋼板,耐塩粒性高圧送電鉄塔,化
学プラント(使用温度280℃以下;塗装不要),荷役機械
(塗装不要),大容量原油槽(塗装不要),ガ−ドレ−
ル(塗装不要)等に使用できる。
The steel material according to the method of the present invention capable of forming a lead alloy layer having excellent corrosion resistance with a free layer thickness is extremely wide in view of effective utilization of the anticorrosion property of 300 years of outdoor maintenance. Expected to be useful in the technical field. For example, drums for storing low-level radioactive waste, drums for sulfuric acid and other specified chemicals, salt-resistant roof steel plates used in coastal areas, salt-resistant high-voltage transmission towers, chemical plants (working temperature 280 ° C or less; no painting required) ), Cargo handling machine (no painting required), large capacity crude oil tank (no painting required), gadley
It can be used as a tool (no painting required).

【0034】また、海中で使用されるセメントコンクリ
−ト用鉄筋,シ−トパイル,魚礁,金具類,砂漠地帯で
使用される海水用埋設鋼管,海水の淡水化プラント(塗
装不要),原油圧送管,遠距離圧送可能なパイプインパ
イプ式の海水系又は硫黄系温泉の長距離圧送用埋設鋼
管,ポンプ,継手,バルブ類,埋設ガス鋼管,内面を樹
脂ライニングした埋設用水道鋼管,鋼製煙突(使用温度
280℃以下;塗装不要),火力発電所の熱交換器,海上鉄
橋(塗装不要),300年塗替不要の内陸部鉄橋,タワ
−,耐塩性船舶用鋼板や鋼材(塗装不要),耐塩性プレ
ストレスコンクリ−トの鋼絃及びシ−ス等に使用でき
る。
In addition, cement reinforcing steel rebars, sheet piles, fish reefs, metal fittings, seawater buried steel pipes used in desert areas, seawater desalination plants (no painting required), and original hydraulic pipes , Pipe-in-pipe type long-distance seawater- or sulfur-based hot springs for long-distance pressure-feeding underground steel pipes, pumps, joints, valves, buried gas steel pipes, resin-lined underground water pipes for steel pipes, and steel chimneys ( Operating temperature
280 ℃ or less; no painting required), heat exchangers for thermal power plants, sea iron bridges (no painting required), 300 years inland iron bridges that do not require repainting, towers, salt resistant steel plates and steel materials for ships (no painting required), salt resistance It can be used for steel strings and sheaths of prestressed concrete.

【0035】[0035]

【発明の効果】本発明の新規方法によれば、従来、困難
とされていた鋼材に耐食性の優れたアンチモン−鉛合金
のピンホ−ルの実質的に存在しない被覆表層を所望の厚
さに形成させることができ、亜鉛と鉛のそれぞれの優れ
た特性を兼備する極めて望ましい鋼材が提供される。多
少厚手の鉛合金層を形成すれば、300年、あるいはそれ
以上の長期にわたって腐食から保護される安定な鋼材を
容易に製造することができるので、広い技術分野にわた
って利用し得るものであり、高い工業的価値を有する。
According to the novel method of the present invention, a coating surface layer having substantially no antimony-lead alloy pinhole excellent in corrosion resistance is formed to a desired thickness on a steel material which has been conventionally considered difficult. A highly desirable steel material that combines the excellent properties of zinc and lead. By forming a slightly thicker lead alloy layer, it is possible to easily produce stable steel materials that are protected from corrosion for a long period of 300 years or more, which is applicable to a wide range of technical fields. Has industrial value.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鋼材を溶融亜鉛めっきする第1工程;該亜
鉛めっきされた鋼材の表面に燐酸錫化成皮膜を形成させ
る第2工程;第2工程で得られた鋼材を溶融鉛めっきす
る第3工程;及び該溶融鉛めっきされた鋼材表面に少量
のアンチモンを含有する鉛合金を溶射、又は該合金の箔
を融着して所望厚の鉛合金層を形成させる第4工程:を
組み合わせることを特徴とする鋼材の溶融亜鉛−鉛めっ
き方法。
1. A first step of hot dip galvanizing a steel material; a second step of forming a tin phosphate conversion coating on the surface of the galvanized steel material; a third step of hot dip plating the steel material obtained in the second step. And a fourth step of spraying a lead alloy containing a small amount of antimony on the surface of the hot-dip plated steel material, or fusing a foil of the alloy to form a lead alloy layer having a desired thickness. A method for hot dip zinc-lead plating of a characteristic steel material.
JP19926392A 1992-07-02 1992-07-02 Hot dip zincing lead plating method for steel Pending JPH0693471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19926392A JPH0693471A (en) 1992-07-02 1992-07-02 Hot dip zincing lead plating method for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19926392A JPH0693471A (en) 1992-07-02 1992-07-02 Hot dip zincing lead plating method for steel

Publications (1)

Publication Number Publication Date
JPH0693471A true JPH0693471A (en) 1994-04-05

Family

ID=16404887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19926392A Pending JPH0693471A (en) 1992-07-02 1992-07-02 Hot dip zincing lead plating method for steel

Country Status (1)

Country Link
JP (1) JPH0693471A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017008390A (en) * 2015-06-24 2017-01-12 新日鐵住金株式会社 Plated steel of high corrosion resistance, and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017008390A (en) * 2015-06-24 2017-01-12 新日鐵住金株式会社 Plated steel of high corrosion resistance, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Porter Corrosion resistance of zinc and zinc alloys
US6143364A (en) Hot dip plating method and apparatus
Zhang Corrosion of zinc and zinc alloys
Hörnström et al. Paint adhesion and corrosion performance of chromium-free pretreatments of 55% Al-Zn-coated steel
JP4319158B2 (en) High chromium steel with excellent coating adhesion and corrosion resistance under coating
JPH0693471A (en) Hot dip zincing lead plating method for steel
Wetzel Batch hot dip galvanized coatings
Elewa et al. Protective impact of molten zinc coating sheets in contaminated environment-review
Langill et al. Zinc materials for use in concrete
Freeman Analysis and Prevention of Corrosion-Related Failures
JP3895900B2 (en) High corrosion resistance composite electroplated steel sheet and method for producing the same
Yeomans Coated steel reinforcement for corrosion protection in concrete
JP3494134B2 (en) Hot-dip plating method
Shastry Corrosion of Metallic Coated Steels
Salman Investigation the corrosion behavior of composite coatings on carbon steel
CN220247187U (en) Novel anti-corrosion building steel structure
Kimberley Control of corrosion with zinc coatings
Toklu et al. Investigation on effects of steel surface properties on galvanization behavior
JPH11158657A (en) Surface-treated steel excellent in corrosion resistance
Langill Batch Process Hot Dip Galvanizing
STEEL New Surface Protection Processes and their Application in Structural Steelwork, in Particular in Préfabrication
Toseland Zinc coatings
Turnpenny Inhibitive Pigments for Use on Zinc and Zinc-Alloy Coated Steel
Langill Corrosion protection
JPH07310160A (en) Hot-dip zn-al plated steel with thick coating weight excellent in corrosion resistance, pitting corrosion resistance and plating adhesion