JPH0690567A - Energy-combined high output inverter - Google Patents

Energy-combined high output inverter

Info

Publication number
JPH0690567A
JPH0690567A JP4280424A JP28042492A JPH0690567A JP H0690567 A JPH0690567 A JP H0690567A JP 4280424 A JP4280424 A JP 4280424A JP 28042492 A JP28042492 A JP 28042492A JP H0690567 A JPH0690567 A JP H0690567A
Authority
JP
Japan
Prior art keywords
voltage
output
small power
energy
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4280424A
Other languages
Japanese (ja)
Inventor
Yoshimichi Nakamura
良道 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UINZU KK
Winz Corp
Original Assignee
UINZU KK
Winz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UINZU KK, Winz Corp filed Critical UINZU KK
Priority to JP4280424A priority Critical patent/JPH0690567A/en
Publication of JPH0690567A publication Critical patent/JPH0690567A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To generate any output voltage easily by combination of energy by inputting low dc voltage and by connecting a plurality of small power units which are controlled by PWM in series. CONSTITUTION:A plurality of small power units 3a-3c which constitute an energy-combined module 1 are supplied with low dc voltage from a low voltage DC supply 10. Switching circuits 5a-5c which are controlled by PWM are connected to a primary side of higher frequency transformers 6a-6c respectively. To a secondary side of the high frequency transformer, rectifiers 7a-7c and filters 8a-8c are connected. Bypass diodes 9a-9c are parallelly connected to the output side of those filters 8a-8c and the bypass diodes are connected in series to each other. Therefore, the outputs of the serially connected small power units 3a-3c are combined to generate a semi-circle continuous rectified wave form. As for an AC voltage generating switching module 2, switching elements, two at a time, are operated by a switching pulse alternately and thereby a sine wave is generated by converting the polarity.

Description

【発明の詳細な説明】 [0001][産業上の利用分野]本発明は、低い直流
電圧を電源とする複数の小電力ユニットの出力を合成し
て高出力の交流出力を得ることができるDC/ACイン
バーターに関し、各種電気機器の電源装置として広く利
用できるものである。 [0002][従来の技術]従来のDC/ACインバー
ターは、1個の高周波トランスを使用して昇圧する方式
であるから、大きなエネルギーを得るためには、入力の
直流電圧を低くすると、出力を高くするため高周波トラ
ンスの1次側に大電流を流さなくてはならない。例え
ば、1次側の入力の直流電圧を12Vとし、2次側に1
00V、2,4Aの電流を流すには、周知の通り、(1
次側)12V×1=(2次側)100V×2,4Aであ
り、1次側に20Aの電流(I)を流さなくてはならな
い。 [0003]1次側に大電流を流すと、高周波トランス
にも大電流が流れ、コアが磁気飽和を起こしやすい。従
って、大きなエネルギーを伝達するためには、当然、大
きな、重いトランスが必要となる。逆に入力の直流電圧
を高くするとバッテリーの数が増加することになる。 [0004][発明が解決しようとする課題]従来のイ
ンバーターでは、高出力を得る場合、低い直流電圧を入
力に使用することは難しく、1次側に大電流を流すこと
になるが、この場合の使用に適合する大電流を制御でき
るField Effect Transistor
(以下、FETと略称する)やInsulated G
ate Bipolar Transistor(以
下、IGBTと略称する)が少なく、大電流の流れる1
次側を高周波制御することは困難である。また、逆に入
力の直流電圧を高くすると、バッテリーの数が増えるの
で重量が著しく増加し、製品コストが高くなる問題が生
じる。 [0005][課題を解決するための手段]本発明は、
小電力ユニットを組み合わせ、各出力を合成して高出力
を生成することにより、従来の問題点を解決するDC/
ACインバーターである。即ち、エネルギー合成モジュ
ールとAC電圧生成スイッチングモジュールにより構成
し、エネルギー合成モジュールは、低い直流電圧が印加
されパルス巾変調波(以下、PWMと略称する)で制御
される複数の小電力ユニッとを直列接続して各小電力ユ
ニットの出力電圧を高電圧出力に合成し、その合成出力
を、スイッチングパルス印加され2個ずつ作動する4個
のスイッチング素子を有するAC電圧生成スイッチング
モジュールに入力し、極性変換して高出力正弦波電圧を
生成することを特徴とし、各小電力ユニットは、低い直
流電圧とPWMが印加されるスイッチング回路を高周波
トランスの1次側に接続し、2次側に整流器及びフイル
ターを接続すると共に、出力側にバイパスダイオードを
並列接続したエネルギー合成型高出力インバーターであ
る。 [0006][作用]図1及び図3に示す回路構成図
と、図2に示す波形図により作用を説明する。エネルギ
ー合成モジュール1を構成する複数の小電力ユニット3
a,3b,3c・・は、各高周波トランス6a,6b,
6c・・の1次側に接続されたスイッチング回路5a,
5b,5c・・に、低電圧直流とPWM1,PWM2,
PWM3・・がそれぞれ印加されると、各高周波トラン
ス6a,6b,6c・・の2次側接続された整流器7
a,7b,7c・・とフイルター8a,8b,8c・・
により、半円連続状の整流波形を得る。各小電力ユニッ
ト3a,3b,3c・・は直列接続されるので、その出
力V1,V2,V3・・は合成され、小電力ユニットを
n個接続すればn倍(図示は3倍)の電圧Vを取り出す
ことができる。この高電圧DC出力はAC電圧生成スイ
ッチングモジュール2に印加される。 [0007]エネルギー合成モジュール1からAC電圧
生成スイッチングモジュール2に入った高電圧直流は、
2個ずつ作動する4個のスイッチング素子4a,4b,
4c,4dに入力される。4個のスイッチング素子は、
図2に示す矩形波のスイッチングパルスで2個ずつ交互
に時間差を有して入力され、交互に極性が反転して出力
は交流となり、図2に示す最終出力の正弦波を生成す
る。 [0008]この際、各小電力ユニット3a,3b,3
c・・の出力側にはバイパスダイオード9a,9b,9
c・・がそれぞれ並列接続されているから、小電力ユニ
ットの中のいずれかが休止している場合、休止している
小電力ユニットは出力側に接続されているバイパスダイ
オードを通じて電流が流れる。例えば、PWM2がOF
Fで、小電力ユニット3bが休止している場合の合成出
力は、V=V1+V3(V0=0)となり、休止してい
る小電力ユニットが全体の作用に影響を与えることはな
い。 [0009][実施例]図1及び図3に示す実施例によ
り説明する。本発明は、低い直流電圧が印加され、PW
Mで制御される複数の小電力ユニット3a,3b,3c
・・で構成されたエネルギー合成モジュール1と、4個
のスイッチング素子4a,4b,4c・・で構成された
AC電圧生成スイッチングモジュール2により構成され
る。 [0010]エネルギー合成モジュール1を構成する複
数の小電力ユニット3a,3b,3c・・は、それぞれ
低電圧Dc電源10により低い直流電圧が印加され、か
つ、PWMで制御されるスイッチング回路5a,5b,
5c・・を、各高周波トランス6a,6b,6c・・の
1次側に接続する。各高周波トランスのを2次側には、
整流器7a,7b,7c・・及びフイルター8a,8
b,8c・・をそれぞれ接続し、各フイルターの出力側
にバイパスダイオード9a,9b,9c・・をそれぞれ
並列接続し、各バイパスダイオードは直列接続される。
従って、直列接続される各小電力ユニット3a,3b,
3c・・の出力は合成され、図2に示すように半円連続
状の整流波形に生成される。例えば、1つの小電力ユニ
ットの出力が200Wとすると、800W出力のインバ
ーターにするためには小電力ユニットを4つ直列接続
し、600W出力ならば3つ接続することになる。合成
された直流高電圧は、AC電圧生成スイッチングモジュ
ール2に入力される。 [0011]AC電圧生成スイッチングモジュール2
は、図2に示すスイッチングパルスで制御され2個ずつ
作動する4個のスイッチング素子4a,4b,4c,4
dにより構成し、半円連続状の整流波形入力を極性変換
して最終出力の正弦波を生成する。 [0012][発明の効果]本発明は、低い直流電圧を
入力とし、PWMで制御する小電力ユニットを複数直列
に接続し、各小電力ユニットは1つのモジュールとして
完全に閉じているため、組み合わせにより任意の出力電
圧を簡単に生成することができる。また、各小電力ユニ
ットには大電流が流れないので制御が容易となり、小さ
な高周波トランスで対応することができる。
Description: [0001] [Industrial field of application] The present invention relates to a DC capable of obtaining a high output AC output by combining the outputs of a plurality of small power units using a low DC voltage as a power supply. The / AC inverter can be widely used as a power supply device for various electric devices. [0002] [Prior Art] Since the conventional DC / AC inverter is a method of stepping up by using one high-frequency transformer, in order to obtain a large amount of energy, if the DC voltage of the input is lowered, the output is reduced. In order to make it high, a large current must be passed through the primary side of the high frequency transformer. For example, assuming that the input DC voltage on the primary side is 12 V,
As is well known, (1
Secondary side) 12V × 1 = (secondary side) 100V × 2,4A, and a current (I) of 20A must flow to the primary side. [0003] When a large current flows through the primary side, a large current also flows through the high frequency transformer, and the core is likely to undergo magnetic saturation. Therefore, a large and heavy transformer is naturally required to transfer a large amount of energy. Conversely, increasing the input DC voltage will increase the number of batteries. [0004] [Problems to be solved by the invention] In the conventional inverter, when a high output is obtained, it is difficult to use a low DC voltage as an input, and a large current is caused to flow in the primary side. Field Effect Transistor that can control large current suitable for use with
(Hereinafter abbreviated as FET) and Insulated G
ate Bipolar Transistor (hereinafter abbreviated as IGBT) is small, and a large current flows 1
It is difficult to control the secondary side at high frequency. On the other hand, if the input DC voltage is increased, the number of batteries increases, resulting in a significant increase in weight and an increase in product cost. [0005] [Means for Solving the Problems]
By combining small power units and combining each output to generate a high output, DC /
It is an AC inverter. That is, it is composed of an energy synthesis module and an AC voltage generation switching module, and the energy synthesis module serially connects a plurality of small power units to which a low DC voltage is applied and which is controlled by a pulse width modulation wave (hereinafter abbreviated as PWM). Connect and combine the output voltage of each small power unit into a high voltage output, and input the combined output to an AC voltage generation switching module that has four switching elements that are activated by switching pulses and that operates two by two, and performs polarity conversion. Each of the small power units has a switching circuit to which a low DC voltage and PWM are applied connected to the primary side of a high frequency transformer, and a rectifier and a filter on the secondary side. Energy combiner type high output inverter with a bypass diode connected in parallel on the output side. A coater. [0006] [Operation] The operation will be described with reference to the circuit configuration diagrams shown in FIGS. 1 and 3 and the waveform diagram shown in FIG. A plurality of small power units 3 constituting the energy combining module 1
a, 3b, 3c ... Are high frequency transformers 6a, 6b,
6c ... Switching circuit 5a connected to the primary side of
5b, 5c ..., Low voltage DC and PWM1, PWM2
When PWM3 ... Is respectively applied, the rectifier 7 connected to the secondary side of each high-frequency transformer 6a, 6b, 6c.
a, 7b, 7c ... And filters 8a, 8b, 8c ...
As a result, a semicircular continuous rectified waveform is obtained. Since the small power units 3a, 3b, 3c ... Are connected in series, their outputs V1, V2, V3 ... Are combined, and if n small power units are connected, the voltage is n times (three times in the figure) the voltage. V can be taken out. This high voltage DC output is applied to the AC voltage generation switching module 2. [0007] The high voltage direct current that has entered the AC voltage generation switching module 2 from the energy combining module 1 is
Four switching elements 4a, 4b, which operate two by two,
It is input to 4c and 4d. The four switching elements are
Two rectangular-wave switching pulses shown in FIG. 2 are input alternately with a time difference, the polarities are alternately inverted and the output becomes alternating current, and the final output sine wave shown in FIG. 2 is generated. [0008] At this time, each small power unit 3a, 3b, 3
Bypass diodes 9a, 9b, 9 are provided on the output side of c ...
Since c ... Are respectively connected in parallel, when any of the small power units is inactive, the inactive small power unit carries current through the bypass diode connected to the output side. For example, PWM2 is OF
At F, the combined output when the small power unit 3b is inactive is V = V1 + V3 (V0 = 0), and the inactive small power unit does not affect the overall operation. [0009] [Example] An example shown in FIGS. 1 and 3 will be described. According to the present invention, a low DC voltage is applied to the PW
Multiple small power units 3a, 3b, 3c controlled by M
.. and an AC voltage generation switching module 2 composed of four switching elements 4a, 4b, 4c. [0010] Each of the plurality of small power units 3a, 3b, 3c, ... Constituting the energy combining module 1 is applied with a low DC voltage by the low voltage Dc power source 10 and is controlled by PWM. ,
5c ... Is connected to the primary side of each high-frequency transformer 6a, 6b, 6c. On the secondary side of each high frequency transformer,
Rectifiers 7a, 7b, 7c ... And filters 8a, 8
., and bypass diodes 9a, 9b, 9c .. are connected in parallel on the output side of each filter, and the bypass diodes are connected in series.
Therefore, the small power units 3a, 3b, which are connected in series,
The outputs of 3c ... Are combined and generated into a semicircular continuous rectified waveform as shown in FIG. For example, assuming that the output of one small power unit is 200 W, four small power units are connected in series in order to make an inverter of 800 W output, and if the output is 600 W, three are connected. The combined DC high voltage is input to the AC voltage generation switching module 2. [0011] AC voltage generation switching module 2
Are four switching elements 4a, 4b, 4c, 4 controlled by the switching pulse shown in FIG.
The rectified waveform input having a semicircular continuous shape is subjected to polarity conversion to generate a final output sine wave. [0012] [Effect of the invention] The present invention combines a plurality of small power units controlled by PWM with a low DC voltage as an input, and each small power unit is completely closed as one module. Thus, an arbitrary output voltage can be easily generated. In addition, since a large current does not flow in each small power unit, control is facilitated and a small high frequency transformer can be used.

【図面の簡単な説明】 [図1]本発明の実施例の全体回路構成図である。 [図2]図1に示す回路構成図における各点の波形図で
ある。 [図3]本発明に係るエネルギー合成モジュールの実施
例の回路構成図である。 [符号の説明] 1 エネルギー合成モジュール 2 AC電圧生成スイッチングモジュール 3a,3b,3c 小電力ユニット 4a,4b,4c,4d スイッチング素子 5a,5b,5c, スイッチング回路 6a,6b,6c 高周波トランス 7a,7b,7c 整流器 8a,8b,8c フイルター 9a,9b,9c バイパスダイオード 10 低電圧DC電源
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall circuit configuration diagram of an embodiment of the present invention. 2 is a waveform chart of each point in the circuit configuration diagram shown in FIG. FIG. 3 is a circuit configuration diagram of an embodiment of the energy synthesis module according to the present invention. [Explanation of Codes] 1 energy synthesis module 2 AC voltage generation switching modules 3a, 3b, 3c small power units 4a, 4b, 4c, 4d switching elements 5a, 5b, 5c, switching circuits 6a, 6b, 6c high frequency transformers 7a, 7b , 7c Rectifiers 8a, 8b, 8c Filters 9a, 9b, 9c Bypass diode 10 Low voltage DC power supply

Claims (1)

【特許請求の範囲】 [請求項1] エネルギー合成モジュールとAC電圧生
成スイッチングモジュールにより構成し、エネルギー合
成モジュールは、低い直流電圧が印加されPWMで制御
される複数の小電力ユニットを直列接続して各小電力ユ
ニットの出力電圧を高電圧出力に合成し、その合成出力
を、スイッチングパルスが印加され2個ずつ作動する4
個のスイッチング素子を有するAC電圧生成スイッチン
グモジュールに入力し、極性変換して高出力正弦波電圧
を生成することを特徴とするエネルギー合成型高出力イ
ンバーター。 [請求項2] 請求項1の各小電力ユニットは、低い直
流電圧とPWMが印加されるスイッチング回路を高周波
トランスの1次側に接続し、2次側に整流器及びフイル
ターを接続すると共に、出力側にバイパスダイオードを
並列接続したことを特徴とする請求項1のエネルギー合
成型高出力インバーター。
Claims [Claim 1] An energy synthesis module and an AC voltage generation switching module are provided, and the energy synthesis module has a plurality of small power units connected in series, to which a low DC voltage is applied and controlled by PWM. The output voltage of each small power unit is combined with the high voltage output, and the combined output is activated by the switching pulse applied to each two 4
An energy-combining high-output inverter characterized by inputting to an AC voltage generation switching module having a number of switching elements and converting the polarity to generate a high-output sine wave voltage. [Claim 2] In each small power unit of claim 1, a switching circuit to which a low DC voltage and PWM are applied is connected to the primary side of the high-frequency transformer, and a rectifier and a filter are connected to the secondary side of the high-frequency transformer. The energy synthesizing high output inverter according to claim 1, wherein a bypass diode is connected in parallel to the side.
JP4280424A 1992-09-07 1992-09-07 Energy-combined high output inverter Pending JPH0690567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4280424A JPH0690567A (en) 1992-09-07 1992-09-07 Energy-combined high output inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4280424A JPH0690567A (en) 1992-09-07 1992-09-07 Energy-combined high output inverter

Publications (1)

Publication Number Publication Date
JPH0690567A true JPH0690567A (en) 1994-03-29

Family

ID=17624861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4280424A Pending JPH0690567A (en) 1992-09-07 1992-09-07 Energy-combined high output inverter

Country Status (1)

Country Link
JP (1) JPH0690567A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004274893A (en) * 2003-03-10 2004-09-30 Sharp Corp Inverter arrangement
WO2005091483A1 (en) * 2004-03-18 2005-09-29 Mitsui & Co., Ltd. Dc-dc converter
JP2007172841A (en) * 2005-12-19 2007-07-05 Kawamura Electric Inc Fuel cell power supply system
KR20110107817A (en) * 2009-01-20 2011-10-04 로베르트 보쉬 게엠베하 Series connection of on-off controllers for power transmission in battery systems
US8599578B2 (en) 2008-06-20 2013-12-03 Akademia Gorniczo-Hutnicza Im. Stanislawa Staszica Multi-resonance power supply with an integral quality factor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004274893A (en) * 2003-03-10 2004-09-30 Sharp Corp Inverter arrangement
WO2005091483A1 (en) * 2004-03-18 2005-09-29 Mitsui & Co., Ltd. Dc-dc converter
US7333348B2 (en) 2004-03-18 2008-02-19 Mitsui & Co., Ltd. DC-DC converter
JP2007172841A (en) * 2005-12-19 2007-07-05 Kawamura Electric Inc Fuel cell power supply system
US8599578B2 (en) 2008-06-20 2013-12-03 Akademia Gorniczo-Hutnicza Im. Stanislawa Staszica Multi-resonance power supply with an integral quality factor
KR20110107817A (en) * 2009-01-20 2011-10-04 로베르트 보쉬 게엠베하 Series connection of on-off controllers for power transmission in battery systems
JP2012516126A (en) * 2009-01-20 2012-07-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Series circuit of on-off controllers for transferring energy in battery systems
US8810070B2 (en) 2009-01-20 2014-08-19 Robert Bosch Gmbh Series connection of on-off controllers for power transmission in battery systems

Similar Documents

Publication Publication Date Title
Ludois et al. Hierarchical control of bridge-of-bridge multilevel power converters
US9979321B2 (en) N-sine wave inverter
JP2012257451A (en) Photovoltaic power conversion apparatus
JP3185846B2 (en) Power converter
Hamidi et al. An asymmetrical multilevel inverter with optimum number of components based on new basic structure for photovoltaic renewable energy system
US9214864B2 (en) Switch mode power supply with switchable output voltage polarity
Nathan et al. The 27-level multilevel inverter for solar PV applications
JPH0690567A (en) Energy-combined high output inverter
Malathy et al. A new single phase multilevel inverter topology with reduced number of switches
Anbarasan et al. A new three-phase multilevel DC-link inverter topology with reduced switch count for photovoltaic applications
Ahmed et al. A new single-phase asymmetrical cascaded multilevel DC-link inverter
Krein et al. High-frequency link inverter based on multiple-carrier PWM
Prasetiyo et al. Design and implementation of inverter single phase nine-level using pic18f4550
Revathi A modified design of multilevel inverter using sinusoidal pulse width modulation
Anbarasan et al. A new three phase reduced switch multilevel dc-link inverter for medium voltage applications
Priyadashi et al. Harmonics mitigation of single-phase modified source switched multilevel inverter topology using ohsw-pwm technique
Angara et al. Novel design of cascaded multilevel inverter with reduced number of components
Mahto et al. A New Symmetrical Source-Based DC/AC Converter with Experimental Verification
Hosseini et al. New cascaded multilevel inverter topology with reduced number of switches and sources
Islam et al. AC sine wave generation by using SPWM inverter
Anila et al. Multi level inverter with reduced number of switches for drives
Muzzammel et al. Detailed harmonic analysis for pulse width modulation based ac to ac matrix converter
Dhayalini et al. Design of multilevel inverter using Nearest Level Control Technique with reduced power switches
Nugroho A three-level common-emitter current source inverter with reduced device count
Kumar et al. Selective harmonic elimination for PWM AC/AC voltage converter using real coded genetic algorithm