JPH0690175A - Digital music signal compressing method - Google Patents

Digital music signal compressing method

Info

Publication number
JPH0690175A
JPH0690175A JP4240644A JP24064492A JPH0690175A JP H0690175 A JPH0690175 A JP H0690175A JP 4240644 A JP4240644 A JP 4240644A JP 24064492 A JP24064492 A JP 24064492A JP H0690175 A JPH0690175 A JP H0690175A
Authority
JP
Japan
Prior art keywords
signal
time
circuit
equation
expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4240644A
Other languages
Japanese (ja)
Inventor
Hideji Nishida
秀治 西田
Shozo Sugishita
正蔵 杉下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4240644A priority Critical patent/JPH0690175A/en
Priority to US08/045,426 priority patent/US5511095A/en
Publication of JPH0690175A publication Critical patent/JPH0690175A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce circuit scale and to improve musical sound compression by linearly predicting a sampling value yn of recorded information at the time (n) based on a specific expression. CONSTITUTION:The digital sampling value of the recorded information at the time (n) is linearly predicted based on an expression I. this expression I, yn-1 is the predictive value of the time n-1, yn-2 is the predictive value of the time n-2, and a1, a2 and a3 are arbitrary normal numbers. A differential circuit 11 calculates difference dn between musical signals Xn and Yn inputted from a signal repair circuit 2, and it is encoded by a shift register 12 and a judge circuit 13. At such a time, the initial value of quantizing width DELTAn can be any arbitrary number excepting '0' and the quantizing width DELTA can be updated by using a judge circuit 16, multiplier 17 and coefficient memory 18. Thus, the decibel of the music signal at the low level of a high frequency component is increased, the circuit scale is reduced, and the musical sound compression is improved corresponding to the width DELTAn.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は例えばポータブルコンパ
クトディスク(以下CDという)プレーヤーの音飛び対
策として用いられるようなデジタル楽音信号圧縮方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for compressing a digital musical tone signal, which is used as a measure for skipping sound in a portable compact disc (hereinafter referred to as CD) player.

【0002】[0002]

【従来の技術】従来からポータブルCDプレーヤーの音
飛び対策として、再生信号をバッファメモリに一度記憶
して音飛びを修復し、信号の連続性を保持しながら再生
する方式がある。この場合、バッファメモリに記憶され
ている楽音信号を再生する時間内に音飛びの検知、音飛
びの箇所の検知、繋ぎ個所の頭出し、及び音飛びの修復
処理を行わなければならず、処理を間に合わせるために
楽音信号の圧縮を行わなければならない。このような圧
縮時の音飛び防止再生モードは通常再生モードとは別に
設けられるので、ある程度の音質劣化は許容される。
2. Description of the Related Art Conventionally, as a measure for skipping sound in a portable CD player, there is a method in which a reproduction signal is once stored in a buffer memory to recover the skipping sound, and the signal is reproduced while maintaining the continuity of the signal. In this case, detection of sound skips, detection of sound skips, cueing of connection points, and repair of sound skips must be performed within the time for reproducing the tone signal stored in the buffer memory. The music signal must be compressed in order to make the delay. Since such a skip sound reproduction mode during compression is provided separately from the normal reproduction mode, a certain degree of sound quality deterioration is allowed.

【0003】ところで前記CDに記録されている楽音信
号は1チャンネル(ch)当たり44.1kHzでサン
プリングされた16ビットパルスコードモジュレーショ
ン(PCM)データであり、その転送レートは705.
6kbps/chとなる。そして楽音信号の圧縮信号に
はこれまでソニー社のATRAC方式(140kbps
/ch)やフィリップス社のPASC方式(192kb
ps/ch)などが提唱されており、これらの方式は楽
音信号をいくつかの帯域に分割して各々の帯域に聴感特
性を利用したビット割当を行うことにより、高品質な再
生音が得られていた。
The tone signal recorded on the CD is 16-bit pulse code modulation (PCM) data sampled at 44.1 kHz per channel (ch), and its transfer rate is 705.
It will be 6 kbps / ch. And for compressed signals of tone signals, Sony's ATRAC method (140 kbps)
/ Ch) or Philips PASC system (192 kb
ps / ch) has been proposed, and in these methods, a high-quality reproduced sound can be obtained by dividing a musical tone signal into several bands and allocating bits to each band using the auditory characteristics. Was there.

【0004】上記の方式以外にもATC(適応変換符号
化)方式やADPCM(適応差分符号化)方式等が楽音
信号の符号化方式として一般に知られている。特に後者
のADPCM方式は最も簡単な符号化方式であり、一定
(5ビット)以上の情報量を割り当てれば通常の音楽ソ
ースの再生であれば原音と遜色ないということが判って
いる。
In addition to the above-mentioned systems, ATC (adaptive conversion coding) system, ADPCM (adaptive differential coding) system and the like are generally known as musical tone signal coding systems. In particular, the latter ADPCM method is the simplest encoding method, and it has been known that if a certain amount of information (5 bits) or more is assigned, reproduction of a normal music source is comparable to the original sound.

【0005】図3に従来のADPCM方式の符号化回路
における量子化幅更新についての楽音信号圧縮装置を示
したものである。同図において11は入力される16ビ
ットのデジタル楽音信号xn と、予測信号yn との差d
n を求める差分回路、12、13は係る信号を符号化し
て信号Ln を作るシフトレジスタ及び判定回路、14は
この信号Ln を量子化して信号qn を作るシフトレジス
タ、15はこの信号q n に基づいて予測信号yn+1 を求
める加算器、16は前記信号Ln について場合分けを行
う判定回路、17は係数メモリ18に記憶されている係
数を用いて乗算により量子化幅の更新を行う乗算器であ
る。
FIG. 3 shows a conventional ADPCM encoding circuit.
A tone signal compression apparatus for updating the quantization width in
It was done. In the figure, 11 is 16 bits to be input.
Digital tone signal xn And the predicted signal yn Difference d
n A differential circuit for obtaining the
Signal Ln Shift register and decision circuit for making
This signal Ln To quantize the signal qn Shift register to make
, 15 is this signal q n Predicted signal y based onn + 1 Seeking
Adder 16 is the signal Ln About case classification
The decision circuit 17 is a function stored in the coefficient memory 18.
It is a multiplier that updates the quantization width by multiplication using a number.
It

【0006】上記図3において予測手法は1次差分予測
であり、次の数2で表される。
In FIG. 3, the prediction method is the first-order difference prediction, which is expressed by the following equation 2.

【0007】[0007]

【数2】 [Equation 2]

【0008】[0008]

【発明が解決しようとする課題】しかしながら上記数2
に示されるような従来の1次差分予測の手法では、ある
一定の情報量を量子化に割り当てたとしても、演算精度
等の回路上の制限により量子化雑音が大きくなるという
欠点があり、特に低周波成分のレベルの大きい楽音に対
して量子化雑音が目立つという状態が生じていた。
However, the above equation 2
In the conventional first-order difference prediction method as shown in FIG. 1, even if a certain amount of information is assigned to the quantization, there is a drawback that the quantization noise becomes large due to a circuit limitation such as calculation accuracy. There has been a situation where quantization noise is conspicuous for a musical sound having a large level of low frequency components.

【0009】本発明はこのような従来技術の問題点に鑑
みてなされたものであり、回路規模を縮小して良好な楽
音信号の圧縮を実現することを目的とする。
The present invention has been made in view of the above problems of the prior art, and it is an object of the present invention to reduce the circuit scale and realize good compression of a musical tone signal.

【0010】[0010]

【課題を解決するための手段】本発明は、記録情報を適
応差分符号化方式にて符号化することによって圧縮する
方法であって、この適応差分符号化方式における信号予
測過程に際し、時刻nのときの記録情報のデジタルサン
プリング値yn の予測を時刻n−1の予測値y n-1 及び
時刻n−2の予測値yn-2 を用いて次式に基づいて直線
予測を行うものである。
SUMMARY OF THE INVENTION The present invention is suitable for applying recorded information.
Compress by encoding with the differential encoding method
A method for signal prediction in this adaptive differential encoding method.
During the measurement process, a digital sample of the recorded information at time n
Pulling value yn The prediction value y at time n-1 n-1 as well as
Predicted value y at time n-2n-2 A straight line based on
It is a prediction.

【0011】[0011]

【数3】 [Equation 3]

【0012】尚数3において、特に等間隔サンプリング
の場合は、a1 =2、a2 =−1である。
In Equation 3, a 1 = 2 and a 2 = −1, especially in the case of equal interval sampling.

【0013】[0013]

【作用】楽音信号、特にCDのサンプリング周波数は4
4.1kHzと高く、このような場合隣同志のサンプル
間の相関性は非常に大きくなる。上記数3のようにAD
PCM(適応差分符号化方式)における予測手法として
直線予測を用いることにより、CD等のデジタル楽音信
号の圧縮において、ハードウェアの規模を小さくし、た
とえ回路の演算精度を落としても、良好な復号化音質が
得られるようになる。
Function: The tone signal, especially the sampling frequency of CD is 4
It is as high as 4.1 kHz, and in such a case, the correlation between adjacent samples becomes very large. AD as shown in Equation 3 above
By using linear prediction as a prediction method in PCM (adaptive differential encoding method), a good decoding is possible even if the scale of hardware is reduced and the calculation accuracy of the circuit is reduced in the compression of a digital tone signal such as a CD. Better sound quality can be obtained.

【0014】[0014]

【実施例】以下本発明のデジタル楽音信号圧縮方法をC
Dの音飛び防止装置に適用した実施例について図面に沿
って詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A digital tone signal compression method of the present invention will be described below with reference to C.
An embodiment applied to the sound skip prevention device D will be described in detail with reference to the drawings.

【0015】まず図1はCD音飛び防止装置の構成図を
示す。同図において1はCD、2は該CD1に記録され
た楽音信号、アドレス、トラック番号、インデックス等
の情報を持ったサブコードを2倍速(サンプリング周波
数88.2kHz/ch)で読み出す光ピックアップ、
3はこの光ピックアップ2で読み取られた信号に音飛び
がなければ楽音信号のみを2倍速でそのまま通過(スル
ー)させる信号修復回路、4は前記信号修復回路3を経
た信号(16ビットの楽音信号)を2倍速で符号化し5
ビットの符号化信号を作る符号化器、5はこの符号化器
4によって符号化された信号を2倍速で一時的に記憶す
る1MのRAMで構成されたバッファメモリ、6は前記
バッファメモリ5より通常速度(44.1kHz/c
h)で送られてくる符号化信号を復号化する復号化器、
7は前記復号化器6のデジタル信号をアナログ信号に変
換するD/A変換器、8は前記D/A変換器7のアナロ
グ出力から所定の周波数をカット(カットオフ周波数を
20kHz)するローパスフィルタ、9は前記ローパス
フィルタ8の出力により再生音を出力するスピーカーで
ある。また10はシステム制御回路であり、図中破線で
囲まれた範囲にある各構成要素を制御する。
FIG. 1 is a block diagram of a CD sound skip prevention device. In the figure, 1 is a CD, 2 is an optical pickup for reading a subcode having information such as a musical tone signal, an address, a track number, and an index recorded on the CD 1 at a double speed (sampling frequency 88.2 kHz / ch),
Reference numeral 3 is a signal restoration circuit that allows only the musical tone signal to pass through at a double speed as it is if there is no skip in the signal read by the optical pickup 2. Reference numeral 4 is a signal passed through the signal restoration circuit 3 (16-bit musical tone signal). ) Is encoded at double speed and 5
An encoder for producing a bit-encoded signal, 5 is a buffer memory composed of a 1M RAM for temporarily storing the signal encoded by the encoder 4 at double speed, and 6 is a buffer memory 5 Normal speed (44.1 kHz / c
a decoder for decoding the coded signal sent in h),
Reference numeral 7 is a D / A converter for converting the digital signal of the decoder 6 into an analog signal, and 8 is a low-pass filter for cutting a predetermined frequency from the analog output of the D / A converter 7 (cutoff frequency is 20 kHz). , 9 are speakers for outputting reproduced sound by the output of the low-pass filter 8. Reference numeral 10 denotes a system control circuit, which controls each component within the range surrounded by the broken line in the figure.

【0016】以上の構成を有する装置において、前記バ
ッファメモリ5がメモリフルの状態になると前記制御回
路10が動作し、光ピックアップ2からの信号読みだし
を停止させる。このとき前記制御回路10は前記信号修
復回路に最後に取り込まれた信号のサブコードによって
次に読み出すべき信号を識別し、前記バッファメモリ5
の記憶領域が空き次第、信号の読み込みを再開するので
信号の連続性は保持される。
In the apparatus having the above construction, when the buffer memory 5 is in a memory full state, the control circuit 10 operates to stop the signal reading from the optical pickup 2. At this time, the control circuit 10 identifies the signal to be read next based on the subcode of the signal last fetched by the signal restoration circuit, and the buffer memory 5
As soon as the storage area is empty, signal reading is resumed, so that signal continuity is maintained.

【0017】さらに上記構成によれば前記バッファメモ
リ5に最大2.3秒のステレオ楽音信号を一時的に記憶
させることができるのでもし光ピックアップ2からの読
み取りに音飛びが生じても、前記バッファメモリ5に符
号化信号が残っていれば連続再生が可能であり、前記
2.3秒の時間的余裕の範囲で、前記制御回路10及び
信号修復回路3によって音飛びの検知、音飛びの箇所の
検知、繋ぎ箇所の頭出し、音飛びの修復が行える。
Further, according to the above-mentioned structure, a stereo musical tone signal of 2.3 seconds at maximum can be temporarily stored in the buffer memory 5, so that even if skipping occurs in reading from the optical pickup 2, Continuous reproduction is possible if the coded signal remains in the buffer memory 5, and within the range of the time margin of 2.3 seconds, the control circuit 10 and the signal restoration circuit 3 detect skipping and skipping. It can detect the location, find the connection point, and repair the skipped sound.

【0018】ところで本発明のデジタル楽音信号圧縮方
法は前記符号化器4及び復号化器6に適用される。以下
符号化器4及び復号化器6の概要を説明する。
The digital tone signal compression method of the present invention is applied to the encoder 4 and the decoder 6. The outline of the encoder 4 and the decoder 6 will be described below.

【0019】(1)符号化器 図3は符号化器の回路構成を示す図であり、従来技術の
項で説明した図3と同じ構成要素には同一符号を付して
詳細な説明は割愛する。同図においてシフトレジスタ1
9に記憶されている予測値yn-1 及びyn-2 より直線予
測によりyn を求める。本実施例の場合は前記数3にお
いてa1 =2、a2 =−1、a3 =0とした。従って、
n はシフトレジスタ19及び加算器20により次の数
4のように求められる。この時2倍の乗算はシフト演算
に置き換えられる。
(1) Encoder FIG. 3 is a diagram showing a circuit configuration of the encoder. The same components as those of FIG. 3 described in the section of the prior art are designated by the same reference numerals and detailed description thereof will be omitted. To do. In the figure, the shift register 1
Y n is obtained by linear prediction from the predicted values y n-1 and y n-2 stored in 9. In the case of the present embodiment, a 1 = 2, a 2 = −1, and a 3 = 0 in the above mathematical expression 3 . Therefore,
y n is calculated by the shift register 19 and the adder 20 as in the following Expression 4. At this time, the double multiplication is replaced with a shift operation.

【0020】[0020]

【数4】 [Equation 4]

【0021】図2において信号修復回路2から入力され
る16ビットのPCMのデジタル楽音信号xn と予測信
号yn との差dn を差分回路1を用いて次の数5により
求める。
In FIG. 2, the difference d n between the 16-bit PCM digital tone signal x n input from the signal restoration circuit 2 and the predicted signal y n is calculated by the following equation 5 using the difference circuit 1.

【0022】[0022]

【数5】 [Equation 5]

【0023】次にシフトレジスタ12及び判定回路13
で次の数6により符号化し、Ln を求める。
Next, the shift register 12 and the determination circuit 13
Then, it is encoded by the following equation 6 to obtain L n .

【0024】[0024]

【数6】 [Equation 6]

【0025】上記数6において[ ]はガウス記号であ
り、その数を越えない最大の整数を表す。また本実施例
のように5ビット符号化の場合、符号Ln は−16〜1
5までの整数となるので、符号化時の割り算は正負の判
定と最大15回の引き算による場合分けを判定回路13
で行うことになる。また量子化幅Δnの初期値は0以外
の任意の数でよく、本実施例では8とした。
In the above formula 6, [] is a Gauss symbol and represents the maximum integer that does not exceed the number. In the case of 5-bit encoding as in this embodiment, the code L n is -16 to 1
Since it is an integer up to 5, the division at the time of encoding is determined by the determination circuit 13 by determining whether the sign is positive or negative and dividing the case by a maximum of 15 times.
Will be done in. The initial value of the quantization width Δn may be any number other than 0, and is 8 in this embodiment.

【0026】更に上記Ln 、及びΔnを使いシフトレジ
スタ14を用いて次の数7により量子化し、qn を求め
る。
Further, using the above L n and Δn, the shift register 14 is used to quantize by the following equation 7, and q n is obtained.

【0027】[0027]

【数7】 [Equation 7]

【0028】そして最後に加算器15を用いて数8によ
り予測量子化信号Yn を求める。
Finally, the adder 15 is used to obtain the predicted quantized signal Y n according to the equation (8).

【0029】[0029]

【数8】 [Equation 8]

【0030】一方量子化幅Δnの更新は次の数9により
行われる。
On the other hand, the quantization width Δn is updated by the following equation 9.

【0031】[0031]

【数9】 [Equation 9]

【0032】この数9においてM(Ln )は次の表1に
則った関数であり、これを用いて判定回路16、乗算器
17及び係数メモリ18を用いて量子化幅の更新を行
う。
In the equation (9), M (L n ) is a function according to the following Table 1, and the decision circuit 16, the multiplier 17 and the coefficient memory 18 are used to update the quantization width.

【0033】[0033]

【表1】 [Table 1]

【0034】(2)復号化器 復号化器ではADPCM符号Ln から次の数10により
再生音声xn ’を求める。
(2) Decoder The decoder obtains the reproduced voice x n 'from the ADPCM code L n by the following equation 10.

【0035】[0035]

【数10】 [Equation 10]

【0036】またここでの量子化幅の更新も前記数9と
同じである。
Also, the updating of the quantization width here is the same as in the above-mentioned equation 9.

【0037】[0037]

【発明の効果】本発明は以上の説明のごとく楽音信号圧
縮のための量子化の予測を直線予測を用いて行う方法に
より、クラシック等の高周波数成分のレベルの低い楽音
信号に対しては、5〜6dBの改善があった。
According to the present invention, as described above, the method of performing the prediction of the quantization for the compression of the musical tone signal by using the linear prediction makes it possible to reproduce the musical tone signal with a low level of high frequency components such as classical music. There was an improvement of 5-6 dB.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明をCD音飛び装置に適応した実施構成図
を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment configuration diagram in which the present invention is applied to a CD sound skipping device.

【図2】図1の符号化器の一実施構成例を示すブロック
図である。
FIG. 2 is a block diagram showing an example of an implementation configuration of the encoder of FIG. 1.

【図3】図2に相当する符号化器の従来の構成例を示す
ブロック図である。
FIG. 3 is a block diagram showing a conventional configuration example of an encoder corresponding to FIG.

【符号の説明】[Explanation of symbols]

1 コンパクトディスク 2 光ピックアップ 3 信号修復回路 4 符号化器 5 バッファメモリ 6 復号化器 7 DA変換器 8 ローパスフィルタ 9 スピーカー 10 システム制御回路 11 差分回路 12、14、19 シフトレジスタ 13、16 判定回路 15、20 加算器 1 Compact Disc 2 Optical Pickup 3 Signal Restoring Circuit 4 Encoder 5 Buffer Memory 6 Decoder 7 DA Converter 8 Low Pass Filter 9 Speaker 10 System Control Circuit 11 Difference Circuit 12, 14, 19 Shift Register 13, 16 Judgment Circuit 15 , 20 adder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 記録情報を適応差分符号化方式にて符号
化することによって圧縮する方法であって、この適応差
分符号化方式における信号予測過程に際し、時刻nのと
きの記録情報のデジタルサンプリング値yn の予測を時
刻n−1の予測値yn-1 及び時刻n−2の予測値yn-2
を用いて数1に基づいて直線予測を行うことを特徴とす
るデジタル楽音信号圧縮方法。 【数1】
1. A method for compressing recording information by encoding it by an adaptive differential encoding method, which is a digital sampling value of the recording information at time n in a signal prediction process in this adaptive differential encoding method. predicted value prediction of time n-1 of y n y n-1 and time n-2 of the predicted value y n-2
A method for compressing a digital musical tone signal, characterized by performing a straight line prediction based on Equation 1 using [Equation 1]
JP4240644A 1992-04-15 1992-09-09 Digital music signal compressing method Pending JPH0690175A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4240644A JPH0690175A (en) 1992-09-09 1992-09-09 Digital music signal compressing method
US08/045,426 US5511095A (en) 1992-04-15 1993-04-13 Audio signal coding and decoding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4240644A JPH0690175A (en) 1992-09-09 1992-09-09 Digital music signal compressing method

Publications (1)

Publication Number Publication Date
JPH0690175A true JPH0690175A (en) 1994-03-29

Family

ID=17062567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4240644A Pending JPH0690175A (en) 1992-04-15 1992-09-09 Digital music signal compressing method

Country Status (1)

Country Link
JP (1) JPH0690175A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316721A (en) * 1986-07-09 1988-01-23 Fujitsu Ltd Noise eliminating device
JPH01268317A (en) * 1988-04-20 1989-10-26 Sanyo Electric Co Ltd Decoding device for adpcm signal
JPH0250637A (en) * 1988-08-12 1990-02-20 Victor Co Of Japan Ltd Adaptive differential pcm system
JPH0685766A (en) * 1992-03-18 1994-03-25 Philips Gloeilampenfab:Nv Method and apparatus for editing of audio signal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316721A (en) * 1986-07-09 1988-01-23 Fujitsu Ltd Noise eliminating device
JPH01268317A (en) * 1988-04-20 1989-10-26 Sanyo Electric Co Ltd Decoding device for adpcm signal
JPH0250637A (en) * 1988-08-12 1990-02-20 Victor Co Of Japan Ltd Adaptive differential pcm system
JPH0685766A (en) * 1992-03-18 1994-03-25 Philips Gloeilampenfab:Nv Method and apparatus for editing of audio signal

Similar Documents

Publication Publication Date Title
US5511095A (en) Audio signal coding and decoding device
US20010051870A1 (en) Pitch changer for audio sound reproduced by frequency axis processing, method thereof and digital signal processor provided with the same
US6480550B1 (en) Method of compressing an analogue signal
JPS58164007A (en) Encoding storage and regenerating device of signal
JPH0690175A (en) Digital music signal compressing method
JP2002538503A (en) Reverse decoding method for digital audio data
JP2674161B2 (en) Sound source data compression coding method
US8626494B2 (en) Data compression format
US8368569B2 (en) Data converting device, program and method
Ghido et al. Accounting for companding nonlinearities in lossless audio compression
JPH05122167A (en) Digital musical sound compressing device
JPH09120647A (en) Audio signal-compressing/recording apparatus and audio signal-compressing apparatus and optical recording medium
JP2562659B2 (en) ADPCM signal decoding device
JPH11109996A (en) Voice coding device, voice coding method and optical recording medium recorded with voice coding information and voice decoding device
JPH1049200A (en) Method and device for voice information compression and accumulation
JP3341348B2 (en) Information detection / reproduction device and information recording device
JP2730028B2 (en) Linear predictive coding method
JP2992994B2 (en) How to encode digital audio data
JPH10124097A (en) Voice recording and reproducing device
JPH08305393A (en) Reproducing device
JP3807599B2 (en) Recording device
CN1753081B (en) Playing method of ware shaped document and its device
JPH10260695A (en) Speech signal encoding device
JPS62227198A (en) Band division forecast encoding system
JP2001175292A (en) Audio signal encoding/decoding device