JPH0690123B2 - Compressive strength test method for ceramics - Google Patents

Compressive strength test method for ceramics

Info

Publication number
JPH0690123B2
JPH0690123B2 JP1071981A JP7198189A JPH0690123B2 JP H0690123 B2 JPH0690123 B2 JP H0690123B2 JP 1071981 A JP1071981 A JP 1071981A JP 7198189 A JP7198189 A JP 7198189A JP H0690123 B2 JPH0690123 B2 JP H0690123B2
Authority
JP
Japan
Prior art keywords
test piece
compressive strength
ceramic
tensile
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1071981A
Other languages
Japanese (ja)
Other versions
JPH02251738A (en
Inventor
直仁 山田
昌明 桝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1071981A priority Critical patent/JPH0690123B2/en
Publication of JPH02251738A publication Critical patent/JPH02251738A/en
Publication of JPH0690123B2 publication Critical patent/JPH0690123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/388Ceramics

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、セラミックスの高精度な圧縮強度を得ること
ができるセラミックスの圧縮強度試験方法に関するもの
である。
TECHNICAL FIELD The present invention relates to a ceramic compressive strength test method capable of obtaining highly accurate compressive strength of ceramics.

(従来の技術) 近年、ファインセラミック部品の設計では、部品に加わ
る引張応力を避け圧縮応力となるような設計手法が多く
用いられ、セラミックスの圧縮強度に関するデータが重
要となってきた。
(Prior Art) In recent years, in the design of fine ceramic parts, many design methods have been used in which a tensile stress applied to the parts is avoided and a compressive stress is applied, and data on the compressive strength of ceramics has become important.

しかしながら、脆性材料の圧縮強さ試験方法として、JI
Sには耐火レンガや岩石、コンクリートなどの試験方法
が規定されているが、高強度ファインセラミックスにつ
いての圧縮強度試験は規定されていない。
However, as a test method for compressive strength of brittle materials, JI
Although the test method for refractory bricks, rocks, concrete, etc. is specified for S, the compressive strength test for high strength fine ceramics is not specified.

そのため、従来セラミックスの圧縮強度試験は、上述し
た他の脆性材料と同様、セラミックスの試験片の端面に
金属部材を介して圧縮荷重を負荷して実施していた。
Therefore, the compressive strength test of the conventional ceramics has been carried out by applying a compressive load to the end surface of the ceramic test piece via the metal member, similarly to the other brittle materials described above.

(発明が解決しようとする課題) しかしながら、高荷重が加わるセラミックスの圧縮強度
試験においては、金属部材のセラミック試験片端面と接
する部分が塑性変形をおこしてくぼみ、セラミック試験
片の端面付近に比較的大きな引張応力が発生することが
ある。これによりセラミックスが引張応力破壊を起こし
て圧縮強度とみなせない場合や、引張応力により圧縮応
力場が乱されて適切な圧縮強度試験とはならない場合が
あった。
(Problems to be Solved by the Invention) However, in the compressive strength test of ceramics to which a high load is applied, the portion of the metal member in contact with the end surface of the ceramic test piece undergoes plastic deformation and is dented, and relatively close to the end surface of the ceramic test piece. Large tensile stress may occur. As a result, there are cases in which the ceramic causes tensile stress fracture and cannot be regarded as compressive strength, or the compressive stress field is disturbed by the tensile stress and an appropriate compressive strength test cannot be performed.

例えば、金属部材と試験片端面との間にアルミニウムな
どの柔らかい金属緩衝材を用いると、セラミック試験片
が竹を割ったように縦に割れることが確認されている。
これは引張応力による破壊で、このような場合は正確な
圧縮強度を得ることができない問題があった。
For example, it has been confirmed that when a soft metal cushioning material such as aluminum is used between the metal member and the end surface of the test piece, the ceramic test piece is vertically cracked like a crack of bamboo.
This is a fracture due to tensile stress, and in such a case, there was a problem that an accurate compressive strength could not be obtained.

本発明は上述した課題を解消して、引張応力による破壊
を防止し、あるいは圧縮応力場に引張応力の影響をでき
るだけ少なくして正確な圧縮強度を得ることができるセ
ラミックスの圧縮強度試験方法を提供しようとするもの
である。
The present invention solves the above-mentioned problems and provides a compressive strength test method for ceramics capable of preventing fracture due to tensile stress or obtaining accurate compressive strength by minimizing the influence of tensile stress on the compressive stress field. Is what you are trying to do.

(課題を解決するための手段) 本発明のセラミックスの圧縮強度試験方法は、柱状のセ
ラミック圧縮試験片の少なくとも片端面に金属部材を介
して圧縮荷重を負荷して行なうセラミックスの圧縮強度
試験において、前記セラミック試験片と同寸法の被試験
部を持ち、かつ、同材質の引張試験片の引張強度に対し
て、金属部材が3倍から8倍の範囲の降伏応力を有する
ことを特徴とするものである。
(Means for Solving the Problem) The method for testing the compressive strength of ceramics according to the present invention is a compressive strength test for ceramics performed by applying a compressive load to at least one end face of a columnar ceramic compressive test piece via a metal member, A test piece having the same dimensions as the ceramic test piece, and the metal member has a yield stress in the range of 3 to 8 times the tensile strength of the tensile test piece of the same material. Is.

(作 用) 上述した構成において、圧縮強度試験に使用する金属部
材と被試験材料であるセラミック試験片との関係を種々
調べた結果、使用する金属部材の降伏応力をセラミック
圧縮試験片と同寸法の被試験部を持つ同材質の引張試験
片の引張強度の3倍から8倍の範囲とすれば、引張応力
の発生も減少でき、正確な圧縮強度が得られることを見
出した。上記引張強度をセラミック圧縮試験片と同寸法
の被試験部を持つ同材質の引張試験の引張強度としたの
は、セラミックスの引張強度が試験片寸法により異なる
からである。
(Operation) With the above-mentioned structure, as a result of various investigations on the relationship between the metal member used for the compressive strength test and the ceramic test piece as the material under test, the yield stress of the metal member used has the same dimension as the ceramic compression test piece. It was found that when the tensile strength of the tensile test piece of the same material having the tested portion is 3 to 8 times, the occurrence of tensile stress can be reduced and accurate compressive strength can be obtained. The above-mentioned tensile strength is taken as the tensile strength of the tensile test of the same material having the portion to be tested having the same size as the ceramic compression test piece, because the tensile strength of the ceramic differs depending on the size of the test piece.

セラミック試験片の形状は円柱状または角柱状が好まし
い。また、金属部材は、セラミック試験片端面を押圧す
る面の面積がセラミック試験片端面の面積より大きけれ
ば良く、例えば直方体、立方体、円柱が好ましい。
The shape of the ceramic test piece is preferably cylindrical or prismatic. Further, the metal member has only to have an area of the surface for pressing the end surface of the ceramic test piece larger than that of the end surface of the ceramic test piece, and for example, a rectangular parallelepiped, a cube or a cylinder is preferable.

また、セラミック試験片端部外周部は、通常金属部材の
過度の塑性変形やセラミックス試験片の角のチッピング
の防止等のために面取りを施される。
Further, the outer peripheral portion of the end portion of the ceramic test piece is usually chamfered to prevent excessive plastic deformation of the metal member and chipping of corners of the ceramic test piece.

なお、本発明では、顕著な降伏点を示さない金属につい
ては、0.2%耐力を降伏の開始と考えて降伏応力とみな
している。
In the present invention, 0.2% proof stress is considered as the yield stress for a metal that does not show a remarkable yield point, considering the 0.2% proof stress as the start of the yield.

(実施例) 以下、上記限定の基礎となった有限要素法による解析に
ついての実施例を説明する。
(Example) Hereinafter, an example of analysis by the finite element method, which is the basis of the above limitation, will be described.

第1図は本発明のセラミックスの圧縮強度試験方法を実
施する状態を示す図である。第1図において、1はクロ
スヘッド押し棒、2は上側支持台、3は上側の金属部
材、4は柱状のセラミック圧縮試験片、5は下側の金属
部材、6は下側支持台、7は基台である。この状態を模
擬した有限要素法による解析において、金属部材3およ
び5と試験片4との間の滑りと摩擦を考慮し、金属部材
3および5は降伏応力を持ち塑性変形することを考慮す
るとともに、試験片4の直径を5mm、金属部材の直径を2
0mmとし、さらに試験片4の端面外周部には0.3mmの面取
りを施した。また、セラミック試験片4のヤング率を36
0GPa、ポアソン比0.27、金属製圧縮板5のヤング率を21
0GPa、ポアソン比0.3とした。
FIG. 1 is a diagram showing a state in which the method for testing compressive strength of ceramics of the present invention is carried out. In FIG. 1, 1 is a crosshead push rod, 2 is an upper support, 3 is an upper metal member, 4 is a columnar ceramic compression test piece, 5 is a lower metal member, 6 is a lower support, and 7 is a lower support. Is the base. In the analysis by the finite element method simulating this state, considering slip and friction between the metal members 3 and 5 and the test piece 4, and considering that the metal members 3 and 5 have a yield stress and undergo plastic deformation. , The diameter of the test piece 4 is 5 mm, the diameter of the metal member is 2
The test piece 4 was chamfered to 0.3 mm on the outer peripheral surface of the end surface. Also, the Young's modulus of the ceramic test piece 4 is set to 36
0GPa, Poisson's ratio 0.27, Young's modulus of metal compression plate 5 is 21
The value was 0 GPa and the Poisson's ratio was 0.3.

圧縮強度試験においては、金属部材3および5の降伏応
力が小さいときは試験片4の端面の中央に引張応力が発
生し、降伏応力が大きいときは試験片4の面取り部近傍
に径方向引張応力の大きい場所が現われる。そのため、
第2図に示す試験片4の横断面においてA部およびB部
における径方向引張力を、上記条件のもと荷重を7000kg
f、12000kgfとしたとき圧縮板3および5の降伏応力を
変えて解析した。
In the compressive strength test, when the yield stress of the metal members 3 and 5 is small, a tensile stress is generated in the center of the end surface of the test piece 4, and when the yield stress is large, the tensile stress in the radial direction near the chamfered portion of the test piece 4 is generated. A big place of appears. for that reason,
In the cross section of the test piece 4 shown in FIG.
When f and 12000 kgf, the yield stress of the compression plates 3 and 5 was changed and analyzed.

その結果の一例として、第3図に荷重12000kgfのときの
A部およびB部における径方向引張応力と金属部材3お
よび5の降伏応力との関係を、第4図に荷重7000kgfの
ときのA部およびB部における径方向引張応力と金属部
材3および5の降伏応力との関係を示す。第3図および
第4図の結果から、引張応力は金属の降伏応力の値によ
り変化し、引張応力が小さくなる金属の降伏応力の範囲
が存在することがわかる。
As an example of the results, FIG. 3 shows the relationship between the radial tensile stresses in the parts A and B when the load is 12000 kgf and the yield stress of the metal members 3 and 5, and in FIG. 4 the part A when the load is 7,000 kgf. 3 shows the relationship between the radial tensile stress in the section B and the yield stress of the metal members 3 and 5. From the results of FIGS. 3 and 4, it can be seen that the tensile stress changes depending on the value of the yield stress of the metal, and there is a range of the yield stress of the metal in which the tensile stress becomes small.

なお、上述した有限要素法の解析において、試験片、金
属部材ともにヤング率を変えても、金属部材の厚さを半
分の10mmとしても、試験片の高さおよび径を変えても、
引張応力の増減はあるものの第3図および第4図に示す
金属部材の降伏応力と引張応力の関係はほとんど傾向を
変えなかった。
Incidentally, in the analysis of the finite element method described above, even if the Young's modulus is changed for both the test piece and the metal member, even if the thickness of the metal member is half 10 mm, even if the height and diameter of the test piece are changed,
Although the tensile stress increased or decreased, the tendency of the relationship between the yield stress and the tensile stress of the metal member shown in FIGS. 3 and 4 hardly changed.

以下、実際の例について説明する。Hereinafter, an actual example will be described.

実施例 セラミック試験片として、直径5mm、厚さ7.5mmの円柱状
で0.3mmの面とりを施した窒化珪素焼結体とアルミナ焼
結体を準備した。これらのセラミック試験片と同寸法の
被試験部を有する同材質からなる引張試験片の引張強度
は、窒素珪素焼結体で60kgf/mm2、アルミナ焼結体で20k
g/mm2であった。
Example As a ceramic test piece, a columnar silicon nitride sintered body and an alumina sintered body having a diameter of 5 mm and a thickness of 7.5 mm and having a chamfer of 0.3 mm were prepared. The tensile strength of a tensile test piece made of the same material with a portion under test having the same dimensions as those of these ceramic test pieces is 60 kgf / mm 2 for a nitrogen silicon sintered body and 20 k for an alumina sintered body.
It was g / mm 2 .

金属部材としては、20mm×20mm×20mmの立方体状で、焼
なましまたは焼入れ、焼もどし処理により、降伏応力と
しての0.2%耐力を50,60,100,160,180kgf/mm2に調整し
たマルテンサイト系ステンレス鋼と、0.2%耐力が280kg
f/mm2の超硬工具鋼と、0.2%耐力が480,500kgf/mm2のタ
ングステンカーバイトと、降伏応力が30kgf/mm2の銅
と、降伏応力が10kgf/mm2のアルミニウムとを準備し
た。
As the metal member, it is a 20 mm × 20 mm × 20 mm cube, and the martensitic stainless steel with 0.2% proof stress as yield stress adjusted to 50, 60, 100, 160, 180 kgf / mm 2 by annealing or quenching and tempering treatment. , 0.2% proof stress is 280kg
a carbide tool steel f / mm 2, 0.2% proof stress and tungsten carbide of 480,500kgf / mm 2, and copper yield stress 30 kgf / mm 2, yield stress were prepared and aluminum 10 kgf / mm 2 .

これらのセラミック試験片と金属部材とを使用して、第
1図に示す状態で圧縮強度試験を実施した。なお、金属
部材として銅およびアルミニウムを使用する場合は、銅
およびアルミニウムを1mmの薄板として超硬工具鋼とセ
ラミック試験片との間に挿入して圧縮試験を実施した。
第5図に引張強度が60kgf/mm2の窒化珪素焼結体の結果
を、第6図に引張強度が20kgf/mm2のアルミナ焼結体の
結果を示す。
Using these ceramic test pieces and metal members, a compressive strength test was carried out in the state shown in FIG. When copper and aluminum were used as the metal member, a compression test was performed by inserting copper and aluminum as a 1 mm thin plate between the cemented carbide tool steel and the ceramic test piece.
FIG. 5 shows the results for the silicon nitride sintered body having a tensile strength of 60 kgf / mm 2 , and FIG. 6 shows the results for the alumina sintered body having a tensile strength of 20 kgf / mm 2 .

第5図の結果から、引張強度が60kgf/mm2の窒化珪素焼
結体に対しては、金属の降伏応力が180〜480kgf/mm2
間すなわち引張強度の3倍〜8倍の間で圧縮強度が約60
0kgf/mm2と一定し、その他の領域では低いことがわかっ
た。また、第6図の結果から引張強度が20kgf/mm2のア
ルミナ焼結体に対しては、金属の降伏応力が60〜160kgf
/mm2の間すなわち引張強度の3倍〜8倍の間で圧縮強度
が約200kgf/mm2と一定し、その他の領域では低いことが
わかった。金属の降伏応力が上記以外の範囲にあると
き、圧縮強度が低いのは、有限要素法の結果からも示さ
れているように、試験片中の引張応力が大きかったから
である。
From the results of Figure 5, with respect to the tensile strength of 60 kgf / mm 2 of silicon nitride sintered body, the yield stress of the metal is between 3 to eight times during i.e. tensile strength of 180~480kgf / mm 2 Compressive strength is about 60
It was found to be constant at 0 kgf / mm 2 and low in other regions. From the results shown in FIG. 6, the yield stress of the metal is 60 to 160 kgf for the alumina sintered body having a tensile strength of 20 kgf / mm 2.
It was found that the compressive strength remained constant at about 200 kgf / mm 2 in the range of / mm 2 , that is, 3 to 8 times the tensile strength, and was low in other regions. The reason why the compressive strength is low when the yield stress of the metal is in a range other than the above is that the tensile stress in the test piece was large, as shown by the results of the finite element method.

以上の実験結果から、セラミックスの圧縮試験では、金
属部材の降伏応力をセラミック圧縮試験片と同寸法の被
試験部を持ち、かつ同材質の引張試験片の引張強度の3
〜8倍とすると、適切な試験が実施できることがわか
る。
From the above experimental results, in the compression test of ceramics, the yield stress of the metal member has a portion under test having the same dimensions as the ceramic compression test piece, and the tensile strength of the tensile test piece of the same material is 3
It can be seen that an appropriate test can be carried out when it is set to 8 times.

なお、本発明の圧縮強度試験に供されるセラミックスは
どのようなものでも適用でき、その一例として、窒化珪
素、炭化珪素、サイアロン、ジルコニア、ムライト、ア
ルミナ、ベリリア、あるいはこれらの複合材料等が対象
となる。
Any ceramics can be applied to the compressive strength test of the present invention, and examples thereof include silicon nitride, silicon carbide, sialon, zirconia, mullite, alumina, beryllia, or composite materials thereof. Becomes

(発明の効果) 以上の説明から明らかなように、本発明のセラミックス
の圧縮試験方法によれば、金属部材の降伏応力を被試験
材料であるセラミックスの引張強度に対して適切に選択
することにより、圧縮強度試験においてセラミック試験
片中に発生する引張応力を最低限に抑えることができ、
セラミックスの圧縮強度試験において高精度な圧縮強度
を得ることができる。
(Effects of the Invention) As is apparent from the above description, according to the ceramic compression test method of the present invention, by appropriately selecting the yield stress of the metal member with respect to the tensile strength of the ceramic as the material to be tested. , It is possible to minimize the tensile stress generated in the ceramic test piece in the compressive strength test,
It is possible to obtain highly accurate compressive strength in the compressive strength test of ceramics.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のセラミックスの圧縮強度試験方法を実
施する状態を示す図、 第2図は有限要素法における解析において径方向引張力
を求めた部位を示す図、 第3図および第4図はそれぞれ有限要素法による解析結
果における金属部材の降伏応力と径方向引張応力との関
係を示す図、 第5図は窒素珪素に対する圧縮強度と金属部材の降伏応
力との関係を示す図、 第6図はアルミナに対する圧縮強度と金属部材の降伏応
力との関係を示す図である。 1……クロスヘッド押し棒、2……上側支持台 3,5……金属部材 4……セラミック圧縮試験片 6……下側支持台、7……基台。
FIG. 1 is a diagram showing a state in which the compressive strength test method for ceramics of the present invention is carried out, FIG. 2 is a diagram showing a portion where a radial tensile force is obtained in an analysis by the finite element method, FIG. 3 and FIG. Is a diagram showing the relationship between the yield stress of the metal member and the radial tensile stress in the analysis result by the finite element method. FIG. 5 is a diagram showing the relationship between the compressive strength against nitrogen silicon and the yield stress of the metal member. The figure is a diagram showing the relationship between the compressive strength against alumina and the yield stress of a metal member. 1 ... Crosshead push rod, 2 ... Upper support 3,5 ... Metal member 4 ... Ceramic compression test piece 6 ... Lower support, 7 ... Base.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】柱状のセラミック圧縮試験片の少なくとも
片端面に金属部材を介して圧縮荷重を負荷して行なうセ
ラミックスの圧縮強度試験方法において、前記セラミッ
ク試験片と同寸法の被試験部を持ち、かつ同材質の引張
試験片の引張強度に対して、前記金属部材が3倍から8
倍の降伏応力を有することを特徴とするセラミックスの
圧縮強度試験方法。
1. A method for testing the compressive strength of ceramics, in which a compressive load is applied to at least one end surface of a columnar ceramic compression test piece via a metal member, and a test portion having the same size as the ceramic test piece is provided. In addition, the metal member is 3 to 8 times the tensile strength of the tensile test piece of the same material.
A compressive strength test method for ceramics having a double yield stress.
JP1071981A 1989-03-27 1989-03-27 Compressive strength test method for ceramics Expired - Fee Related JPH0690123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1071981A JPH0690123B2 (en) 1989-03-27 1989-03-27 Compressive strength test method for ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1071981A JPH0690123B2 (en) 1989-03-27 1989-03-27 Compressive strength test method for ceramics

Publications (2)

Publication Number Publication Date
JPH02251738A JPH02251738A (en) 1990-10-09
JPH0690123B2 true JPH0690123B2 (en) 1994-11-14

Family

ID=13476151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1071981A Expired - Fee Related JPH0690123B2 (en) 1989-03-27 1989-03-27 Compressive strength test method for ceramics

Country Status (1)

Country Link
JP (1) JPH0690123B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111723A (en) * 2006-10-30 2008-05-15 Kurosaki Harima Corp Compression testing method, compression testing machine, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6358623B2 (en) * 2015-03-17 2018-07-18 日本碍子株式会社 Compressive strength test jig and compressive strength test method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111723A (en) * 2006-10-30 2008-05-15 Kurosaki Harima Corp Compression testing method, compression testing machine, and program

Also Published As

Publication number Publication date
JPH02251738A (en) 1990-10-09

Similar Documents

Publication Publication Date Title
Jitcharoen et al. Hertzian‐crack suppression in ceramics with elastic‐modulus‐graded surfaces
Krell et al. The influence of shaping method on the grain size dependence of strength in dense submicrometre alumina
Awaji et al. V‐notch technique for single‐edge notched beam and chevron notch methods
KR0167427B1 (en) Silicon nitride ceramic and method of shaping the same
Kilikoglou et al. Toughening of ceramic earthenwares by quartz inclusions: an ancient art revisited
Lee et al. Texture and anisotropy in silicon nitride
Subhash et al. Mechanical behaviour of a hot pressed aluminum nitride under uniaxial compression
Kondo et al. Strengthening and toughening of silicon nitride by superplastic deformation
JPH0690123B2 (en) Compressive strength test method for ceramics
Bandyopadhyay et al. Application of fused deposition in controlled microstructure metal‐ceramic composites
Meschke et al. Failure behavior of alumina and alumina/silicon carbide nanocomposites with natural and artificial flaws
Jun et al. Preliminary study of the crack healing and strength recovery of Al2O3‐matrix composites
ZDANIEWSKI et al. Effect of grain‐boundary oxidation on fracture toughness of SiC
Pratapa et al. Infiltration-processed, functionally graded aluminium titanate/zirconia–alumina compositePart II Mechanical properties
Takagi et al. Brittle fracture initiation under complex stress states
Tajima et al. Improvement of strength and toughness of silicon nitride ceramics
Awaji et al. Compressive testing of ceramics
JP3538524B2 (en) Ceramic rolling element and method of manufacturing the same
Motohashi et al. Variation in some mechanical properties of Y-TZP caused by superplastic compressive deformation
US5324693A (en) Ceramic composites and process for manufacturing the same
Marinescu et al. Deformation and fracture of ceramic materials
Cho et al. Microstructure and mechanical properties of AlN-BN based machinable ceramics
Kim et al. Strengthening mechanism of alumina ceramics prepared by precoarsening treatments
Katz et al. A novel tensile test technique for structural ceramics
Kondo et al. Indentation cracks in superplastically deformed silicon nitride consisting of strongly aligned rod-shaped grains

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees