JPH0689873A - Formation of metal thin film by chemical vapor growth - Google Patents

Formation of metal thin film by chemical vapor growth

Info

Publication number
JPH0689873A
JPH0689873A JP18251893A JP18251893A JPH0689873A JP H0689873 A JPH0689873 A JP H0689873A JP 18251893 A JP18251893 A JP 18251893A JP 18251893 A JP18251893 A JP 18251893A JP H0689873 A JPH0689873 A JP H0689873A
Authority
JP
Japan
Prior art keywords
gas
thin film
substrate
chemical vapor
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18251893A
Other languages
Japanese (ja)
Other versions
JP3415207B2 (en
Inventor
Hirohiko Izumi
宏比古 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18251893A priority Critical patent/JP3415207B2/en
Publication of JPH0689873A publication Critical patent/JPH0689873A/en
Application granted granted Critical
Publication of JP3415207B2 publication Critical patent/JP3415207B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To form, on a substrate, a metal thin film which does not erode the substrate, is free from the surface roughness, controls the leakage current, and improves the surface flatness, by alternately and discontinuously introducing and applying raw gas and reducing gas to the surface of the substrate by a chemical vapor growth method. CONSTITUTION:A CVD chamber 4 is depressurized by a vacuum pump 5, with a pressure controller 8 connected in-between, to several tens Torr. Raw gas 6, tungsten hexafluoride WF6, is introduced from a gas feed port 1 into the CVD chamber 4 through a gas flow rate controller 2a. At that time, a substrate 9 in the CVD chamber 4 is heated to approx. 400 deg.C, and the temperature is maintained. The raw gas is thereby absorbed in the substrate 9. The feed of the raw gas in then interrupted, and reducing gas 7, hydrogen H2, is introduced into the CVD chamber 4. Thus the raw material WFx adsorbed into the substrate 9 is reduced with hydrogen gas, and a thin film of tungsten W is deposited on the substrate 9. Thereafter, the gasses 6 and 7 are alternately and repeatedly introduced until the thickness of the thin film reaches a desired value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体デバイスの製造の
際に、基体上に金属薄膜を形成するための化学気相成長
による金属薄膜形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a metal thin film by chemical vapor deposition for forming a metal thin film on a substrate in manufacturing a semiconductor device.

【0002】[0002]

【従来の技術】半導体デバイスの高集積化が進むに伴な
って、絶縁膜に形成されるコンタクトホールやスルホー
ルの径は極度に微細化されてきている。このような微細
パターンの段差部の穴埋め、例えば基板上の絶縁膜中の
コンタクトホールやスルホールへの高融点金属などの穴
埋めの技術としては、化学気相成長法(以下、CVDと
称する)が有効であることが知られている。
2. Description of the Related Art As semiconductor devices have been highly integrated, the diameters of contact holes and through holes formed in an insulating film have been extremely miniaturized. Chemical vapor deposition (hereinafter referred to as CVD) is effective as a technique for filling the stepped portion of such a fine pattern, for example, filling a contact hole or a through hole in an insulating film on a substrate with a refractory metal or the like. Is known to be.

【0003】金属の薄膜を基板上に堆積して段差部の穴
埋めをする従来のCVDでは、原料ガスとして、例えば
タングステンやモリブデン等のフッ化物を用い、この金
属フッ化物を、還元剤となる還元性ガスである水素やシ
ラン系ガスとの混合ガスとしてCVD装置に導入し、プ
ラズマや紫外線等によりこの還元性ガスを励起させなが
ら、この原料ガスと還元性ガスの還元反応を基板上で行
い金属の薄膜を堆積している(特開昭63−65075
号公報、特開昭64−233号公報)。
In the conventional CVD in which a metal thin film is deposited on a substrate to fill up the stepped portion, a fluoride such as tungsten or molybdenum is used as a source gas, and this metal fluoride is reduced as a reducing agent. It is introduced into a CVD device as a mixed gas with hydrogen, which is a reducing gas, or a silane-based gas, and while the reducing gas is excited by plasma, ultraviolet rays, etc., a reduction reaction between this source gas and the reducing gas is performed on the substrate. Is deposited (Japanese Patent Laid-Open No. 63-65075).
JP-A-64-233).

【0004】しかし、化学気相成長法による基体上での
薄膜の形成は、原料ガスと還元性ガスの選択によりほぼ
決まっており、選択された原料ガスと還元性ガスの反応
過程に依存して、ウェーハ基板や堆積した薄膜のエッチ
ング反応がおこる。例えば基板上へのタングステン薄膜
の形成に当たっては、フッ化タングステンを金属タング
ステンに還元するための還元反応は、最終生成物として
還元により基体上に堆積させる金属タングステンの外
に、三フッ化シラン(SiHF3 )を生成する反応が最
も進行しやすい反応として伴なわれる。そのため、水素
を還元性ガスとして用いた場合には、反応温度として4
00〜500℃程度の温度が必要であり、この反応温度
ではシリコン基板のエッチング反応が促進されたり、生
成金属薄膜表面が荒れたりする。また、シラン系ガスを
還元性ガスとして用いた場合には、低温で還元反応が進
むが、膜中にシリコンが残り易く膜質の低下を招く。
However, the formation of a thin film on a substrate by the chemical vapor deposition method is almost determined by the selection of the source gas and the reducing gas, and depends on the reaction process of the selected source gas and the reducing gas. , The etching reaction of the wafer substrate and the deposited thin film occurs. For example, in forming a tungsten thin film on a substrate, a reduction reaction for reducing tungsten fluoride to metallic tungsten includes the addition of metallic trifluoride (SiHF) in addition to metallic tungsten to be deposited on a substrate by reduction as a final product. The reaction that produces 3 ) is the reaction most likely to proceed. Therefore, when hydrogen is used as the reducing gas, the reaction temperature is 4
A temperature of about 00 to 500 ° C. is required. At this reaction temperature, the etching reaction of the silicon substrate is promoted and the surface of the formed metal thin film is roughened. Further, when a silane-based gas is used as the reducing gas, the reduction reaction proceeds at a low temperature, but silicon tends to remain in the film, resulting in deterioration of the film quality.

【0005】[0005]

【発明が解決しようとする課題】この様に、還元性ガス
として水素を用いた場合には反応に高温度を必要とする
ために、表面の荒れや基板の侵食等を起こし、これが漏
洩電流や薄膜剥離の原因となっている。一方、シラン系
のガスを用いた場合には膜中にシリコンが混入し、金属
薄膜の高抵抗化や残留応力の原因になるという問題があ
った。
As described above, when hydrogen is used as the reducing gas, a high temperature is required for the reaction, so that the surface is roughened or the substrate is eroded, which causes leakage current or It is a cause of thin film peeling. On the other hand, when a silane-based gas is used, there is a problem that silicon is mixed in the film, which causes a high resistance of the metal thin film and a residual stress.

【0006】そこで、本発明の目的は、シリコンの不純
物の混入のない低抵抗、低残留応力の金属薄膜で、基板
の侵食を防止して漏洩電流を押さえ、膜表面の平坦性を
向上した化学気相成長法による金属薄膜形成方法を提供
することにある。
Therefore, an object of the present invention is to provide a metal thin film having a low resistance and a low residual stress, which is free from impurities of silicon, to prevent corrosion of the substrate, suppress leakage current, and improve the flatness of the film surface. It is to provide a method for forming a metal thin film by a vapor phase growth method.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明は、化学気相成長法により金属薄膜を基体上に
形成する方法において、原料ガスと還元性ガスを交互に
不連続的に基体上に導入して、一定温度で化学気相成長
を行い、この化学気相成長を繰り返し行うことにより所
要の膜厚の金属薄膜を基体上に形成することを特徴とす
る化学気相成長による金属薄膜形成方法である。
The present invention for achieving the above object provides a method of forming a metal thin film on a substrate by chemical vapor deposition, in which a source gas and a reducing gas are alternately and discontinuously. Introduced on a substrate, chemical vapor deposition is performed at a constant temperature, and by repeating this chemical vapor deposition, a metal thin film having a required film thickness is formed on the substrate. It is a method for forming a metal thin film.

【0008】[0008]

【作用】本発明は、化学気相成長法により金属の薄膜を
半導体デバイス基板などの基体上に形成する際に、原料
ガスと還元性ガスとを交互に不連続的に基体上に導入
し、原料ガス導入により基体上に吸着した原料ガスを、
次いで導入された還元性ガスで還元して、金属の薄膜を
形成し、この工程を一定温度で繰り返し行って所要の膜
厚の金属薄膜を基体上に形成するものである。
When the metal thin film is formed on the substrate such as a semiconductor device substrate by the chemical vapor deposition method, the source gas and the reducing gas are alternately and discontinuously introduced onto the substrate, The raw material gas adsorbed on the substrate by introducing the raw material gas,
Then, it is reduced with the reducing gas introduced to form a metal thin film, and this step is repeated at a constant temperature to form a metal thin film of a required film thickness on the substrate.

【0009】また、本発明では、還元性ガス導入時に、
還元性ガスを適切な励起手段により励起させて、水素ラ
ジカル等の励起種として基体上に導入することにより、
還元反応温度を低下でき、金属薄膜をより短時間で形成
できる。
Further, according to the present invention, when the reducing gas is introduced,
By exciting the reducing gas by an appropriate excitation means and introducing it as an excited species such as hydrogen radicals on the substrate,
The reduction reaction temperature can be lowered and the metal thin film can be formed in a shorter time.

【0010】これは、例えば水素ガスを還元性ガスとし
て、例えば電子サイクロトロン共鳴により形成されるプ
ラズマや、紫外線により励起させ、水素ラジカルの励起
種として導入して、基体表面に吸着した例えば六フッ化
タングステンの原料ガスが還元して、薄膜状の金属タン
グステンを形成する。この場合、基体温度は原料ガスの
吸着状態にのみ影響し、還元反応自体には影響すること
がないため、基体温度は反応性ガスを励起させないとき
より低くなる。基体温度が低いため、原料ガスによるシ
リコン基板等の基体の侵食と、膜表面の荒れ防止をさら
によくする。
This is because, for example, hydrogen gas is used as a reducing gas and excited by plasma formed by, for example, electron cyclotron resonance or ultraviolet rays, introduced as an excited species of hydrogen radicals, and adsorbed on the surface of the substrate, for example, hexafluoride. The source gas of tungsten is reduced to form thin film metal tungsten. In this case, the substrate temperature affects only the adsorbed state of the raw material gas and does not affect the reduction reaction itself, so that the substrate temperature becomes lower than that when the reactive gas is not excited. Since the substrate temperature is low, the erosion of the substrate such as the silicon substrate by the source gas and the roughening of the film surface are further prevented.

【0011】本発明で用いる基体とは、半導体集積回路
製造用のシリコンや化合物半導体などのウェーハ基板、
液晶表示装置やプラズマ表示装置などに用いられるガラ
ス基板およびその他の半導体デバイス製造用基板などの
基体であり、特にその表面に絶縁膜を設けた基板、特に
コンタクトホールやスルホールのごとき段差部のあるも
ので、その段差部を金属で埋め込む必要のあるものであ
る。
The substrate used in the present invention is a wafer substrate of silicon or compound semiconductor for manufacturing semiconductor integrated circuits,
Substrates such as glass substrates used for liquid crystal display devices and plasma display devices and substrates for manufacturing other semiconductor devices, especially substrates having an insulating film on the surface thereof, particularly those having stepped portions such as contact holes and through holes Therefore, it is necessary to embed the stepped portion with metal.

【0012】本発明で用いる原料ガスは、金属ハロゲン
化物、例えば六フッ化タングステン、四塩化チタンおよ
び有機金属化合物、例えばトリメチルアルミニウム、ト
リエチルアルミニウムなどの一種である、また、本発明
で用いる還元性ガスは、上記原料ガスを還元することが
できるガスで、例えば水素、ヒドラジン、ホスフィン、
ジボランなどの一種であり、還元性ガスとしてのシラン
系ガスは膜中にシリコンが混入するので、本発明では用
いない。
The raw material gas used in the present invention is a kind of metal halide such as tungsten hexafluoride, titanium tetrachloride and an organometallic compound such as trimethylaluminum and triethylaluminum. Further, the reducing gas used in the present invention is also used. Is a gas capable of reducing the above raw material gas, such as hydrogen, hydrazine, phosphine,
Silane gas, which is a kind of diborane or the like, is not used in the present invention because silicon is mixed in the film as a reducing gas.

【0013】本発明における基体温度(CVDプロセス
温度)は、還元性ガス励起手段を用いないときには、全
CVDプロセスを通じて、CVDプロセスに用いられる
従来の基体温度範囲、すなわち、350〜500℃、好
ましくは400〜500℃から選択された一定温度であ
り、還元性ガスの励起手段を用いる場合には、室温から
400℃未満の一定温度である。
The substrate temperature (CVD process temperature) in the present invention is the conventional substrate temperature range used in the CVD process throughout the entire CVD process, that is, 350 to 500 ° C., preferably 350 to 500 ° C., when the reducing gas exciting means is not used. The temperature is a constant temperature selected from 400 to 500 ° C., and when the reducing gas excitation means is used, the temperature is a constant temperature from room temperature to less than 400 ° C.

【0014】すなわち、本発明では、全CVDプロセス
を通して、上記の範囲から選択された一定の基体温度を
用いるので、基体温度を変えるための基体の加熱、冷却
のヒートサイクル(複数回)を行う必要がない。このた
め、CVDプロセス時間が短縮される。また、励起手段
を用いると、これを用いないときに比べCVDプロセス
時間はさらに短縮できる。
That is, in the present invention, since a constant substrate temperature selected from the above range is used throughout the entire CVD process, it is necessary to perform a heat cycle (a plurality of times) for heating and cooling the substrate to change the substrate temperature. There is no. Therefore, the CVD process time is shortened. Further, when the exciting means is used, the CVD process time can be further shortened as compared with the case where the exciting means is not used.

【0015】本発明では、原料ガスと還元性ガスの導入
を交互に行うため、原料ガスによる基体の侵食や膜表面
の荒れが防止され、また還元性ガスにシラン系化合物を
用いないために、シリコン等の不純物の混入しない低ス
トレス、低抵抗の金属薄膜がCVDにより形成できる。
In the present invention, since the raw material gas and the reducing gas are introduced alternately, the erosion of the substrate by the raw material gas and the roughening of the film surface are prevented, and the silane compound is not used as the reducing gas. A low stress, low resistance metal thin film in which impurities such as silicon are not mixed can be formed by CVD.

【0016】[0016]

【実施例】以下、本発明の実施例を添付した図面を参照
して説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0017】実施例1 図1に示したCVD装置を用いて原料ガスである六フッ
化タングステン(WF6 )と、還元性ガスである水素ガ
ス(H2 )とを半導体デバイス基板上に、図2に示す時
間間隔とガス流量で交互に導入して金属タングステン膜
を形成した。
Example 1 Tungsten hexafluoride (WF 6 ) which is a source gas and hydrogen gas (H 2 ) which is a reducing gas are formed on a semiconductor device substrate by using the CVD apparatus shown in FIG. The metal tungsten film was formed by alternately introducing the gas at a time interval and a gas flow rate shown in 2.

【0018】すなわち、CVD室4内を圧力制御装置8
を経て真空ポンプ5で数10Torrに減圧した後に、ガス
導入口1より原料ガス6として六フッ化タングステン
(WF6 )をガス流量制御装置2aを介してCVD室4
内へ、図3Aで示すように導入した。このとき、CVD
室4内および半導体デバイス基板9は400℃で一定に
加熱保持した。
That is, the pressure control device 8 is provided inside the CVD chamber 4.
After the pressure is reduced to several tens Torr by a vacuum pump 5, tungsten hexafluoride (WF 6 ) as a raw material gas 6 is introduced from a gas inlet port 1 into a CVD chamber 4 through a gas flow rate controller 2a.
Introduced therein as shown in FIG. 3A. At this time, CVD
The inside of the chamber 4 and the semiconductor device substrate 9 were heated and held at 400 ° C. constantly.

【0019】原料ガス(WF6 )は、半導体デバイス基
板9上に3〜5分子の層厚で吸着され(WF)、次い
で、図3Bで示すように原料ガスの供給を中断し、還元
性ガス7としての水素(H2 )をガス流量制御装置2b
を介してCVD室4内へ導入する。半導体デバイス基板
9上に吸着した原料(WF)は、水素ガス(H2 )に
よって還元されて、タングステン(W)の薄膜を半導体
デバイス基板9に堆積させた(図3C)。
The raw material gas (WF 6 ) is adsorbed on the semiconductor device substrate 9 in a layer thickness of 3 to 5 molecules (WF x ), and then the supply of the raw material gas is interrupted as shown in FIG. Hydrogen (H 2 ) as gas 7 is used as a gas flow rate control device 2b
It is introduced into the CVD chamber 4 via. The raw material (WF x ) adsorbed on the semiconductor device substrate 9 was reduced by hydrogen gas (H 2 ) and a thin film of tungsten (W) was deposited on the semiconductor device substrate 9 (FIG. 3C).

【0020】以後、薄膜が所望の厚さに半導体デバイス
基板9上に形成できるように原料ガスと還元性ガスを交
互に図2で示す時間間隔とガス流量で供給を繰り返すこ
とによりタングステン(W)の薄膜を形成した。
Thereafter, the source gas and the reducing gas are alternately supplied at the time intervals and the gas flow rates shown in FIG. 2 so that a thin film having a desired thickness can be formed on the semiconductor device substrate 9. Thin film was formed.

【0021】従来の六フッ化タングステン(WF6 )と
水素ガス(H2 )の混合ガス、および六フッ化タングス
テン(WF6 )と還元性ガスとして四水素化ケイ素(S
iH4 )の混合ガスをそれぞれ用いるCVDでタングス
テン薄膜を同じ基体上に形成した場合と、本発明の方法
で成膜した場合の基体温度と物性を下記表1に比較して
示す。
Conventional mixed gas of tungsten hexafluoride (WF 6 ) and hydrogen gas (H 2 ), or tungsten hexafluoride (WF 6 ) and silicon tetrahydride (S) as reducing gas.
Table 1 below shows the substrate temperature and physical properties when a tungsten thin film is formed on the same substrate by CVD using a mixed gas of iH 4 ) and when the film is formed by the method of the present invention.

【0022】[0022]

【表1】 [Table 1]

【0023】表1中、段差被覆率とは、平面上の生成膜
の膜厚aに対するホール底部上の生成膜の膜厚bの比、
b/a×100%で表示したもので、100%に近い程
よい。また、表面荒さは表面反射率から評価したもので
あり、◎印は表面状態が実質的にミラー表面であり、優
れていること、○印は表面状態がミラー表面に近く良好
なこと、△印は表面状態がミラー表面にはほど遠く不良
であることを表す。
In Table 1, the step coverage is the ratio of the film thickness a of the film formed on the plane to the film thickness b of the film formed on the bottom of the hole.
It is expressed by b / a × 100%, and the closer to 100% the better. The surface roughness is evaluated from the surface reflectance, and ◎ indicates that the surface state is substantially the mirror surface and is excellent, and ○ indicates that the surface state is close to the mirror surface and good, and the Δ mark Indicates that the surface condition is far from the mirror surface and is defective.

【0024】上記表1から、原料ガス供給と、還元性ガ
ス供給を交互に不連続的に繰り返すことからなる本発明
は、基体浸蝕のない、表面平坦性に優れた金属薄膜が形
成されていることがわかる。
From Table 1 above, according to the present invention, in which the supply of the raw material gas and the supply of the reducing gas are alternately and discontinuously repeated, the metal thin film having no surface erosion and excellent surface flatness is formed. I understand.

【0025】実施例2 図4に示すように、励起手段としてRF誘導プラズマを
備えたCVD装置を用いて、原料ガスとして六フッ化タ
ングステン(WF6 )と、還元性ガスとして水素ガス
(H2 )とを半導体デバイス基板9上に、図2の時間間
隔と類似の時間間隔とガス流量で交互に不連続的に導入
して金属タングステン膜を形成した。
Example 2 As shown in FIG. 4, a CVD apparatus equipped with RF induction plasma as an exciting means was used, and tungsten hexafluoride (WF 6 ) was used as a source gas and hydrogen gas (H 2 was used as a reducing gas. 2) and (4) are alternately and discontinuously introduced on the semiconductor device substrate 9 at time intervals and gas flow rates similar to those of FIG. 2 to form a metal tungsten film.

【0026】すなわち、放電管3内をCVD室4内と共
に圧力制御装置8を経て真空ポンプ5で数10Torrに減
圧した後に、ガス導入口より原料ガス6として六フッ化
タングステン(WF6 )をガス流量制御装置2aを介し
て放電管3へ導入する。このとき、反応室4内および半
導体デバイス基板9の温度は300℃もしくはそれ以下
に加熱した。
That is, the inside of the discharge tube 3 is decompressed to several tens Torr by the vacuum pump 5 through the pressure control device 8 together with the inside of the CVD chamber 4, and then tungsten hexafluoride (WF 6 ) is used as a source gas 6 from the gas inlet. It is introduced into the discharge tube 3 via the flow rate control device 2a. At this time, the temperature in the reaction chamber 4 and the semiconductor device substrate 9 was heated to 300 ° C. or lower.

【0027】半導体デバイス基板9上に原料ガス(WF
6 )は3〜5分子の層厚で吸着される(WF)。次い
で、原料ガスの供給を中断し、還元性ガス7としての水
素(H2 )をガス流量制御装置2bを介して放電管3内
へ導入する。そして、高周波発生器10により高周波を
導入して放電管3内にプラズマを形成し、H2 ガスを励
起状態(H)にして基体上に供給する。半導体デバイス
基板9上に吸着した原料(WF)は、励起Hによって
還元されてタングステン(W)の薄膜を半導体デバイス
基板9に堆積させた。
On the semiconductor device substrate 9, the source gas (WF
6 ) is adsorbed with a layer thickness of 3 to 5 molecules (WF x ). Then, the supply of the raw material gas is interrupted, and hydrogen (H 2 ) as the reducing gas 7 is introduced into the discharge tube 3 via the gas flow rate control device 2b. Then, a high frequency is introduced by the high frequency generator 10 to form plasma in the discharge tube 3, and the H 2 gas is excited (H) and supplied onto the substrate. The raw material (WF x ) adsorbed on the semiconductor device substrate 9 was reduced by excitation H to deposit a thin film of tungsten (W) on the semiconductor device substrate 9.

【0028】以後、薄膜が所望の厚さに形成できるよう
に原料ガスと還元性ガスの供給を交互に繰り返すことに
よりタングステン(W)の薄膜を形成した。このとき放
電を安定させるためにアルゴンガスなどを添加すること
もできる。
Thereafter, a thin film of tungsten (W) was formed by alternately repeating the supply of the source gas and the reducing gas so that the thin film could be formed to a desired thickness. At this time, argon gas or the like can be added to stabilize the discharge.

【0029】上記プロセスにより実施例1と同等の特性
を有する金属タングステン薄膜を得た。還元性ガスの励
起手段としてRF誘導プラズマを用いることにより、励
起手段を用いないときよりも低い基体温度を用いること
ができ、しかもCVDプロセス時間を短縮できた。
A metal tungsten thin film having the same characteristics as in Example 1 was obtained by the above process. By using the RF induction plasma as the exciting means for the reducing gas, it was possible to use a lower substrate temperature than when the exciting means was not used, and the CVD process time could be shortened.

【0030】実施例3 図5に示すように、励起手段として電子サイクロトロン
共鳴を備えたCVD装置を用いて、実施例2と同様にし
て、CVDにより金属タングステン膜を半導体デバイス
基板9上に形成した。
Example 3 As shown in FIG. 5, using a CVD apparatus equipped with electron cyclotron resonance as an excitation means, a metal tungsten film was formed on the semiconductor device substrate 9 by CVD in the same manner as in Example 2. .

【0031】すなわち、実施例2で用いたRF誘導放電
管の代わりに、マイクロ波発振器13と電磁石12から
なる電子サイクロトロン共鳴放電管14を用い、原料ガ
ス6である六フッ化タングステン(WF6 )と還元性ガ
ス7である水素ガス(H2 )とを図2に示した時間間隔
と同様に交互に導入し、水素(H2 )ガスを電子サイク
ロトロン共鳴放電により励起種(H)生成を行い、実施
例2と同様にして、実施例1と同等の特性を有する金属
タングステン薄膜を得た。このとき放電を安定させるた
めにアルゴンガスなどを添加してもよい。
That is, instead of the RF induction discharge tube used in Example 2, an electron cyclotron resonance discharge tube 14 composed of a microwave oscillator 13 and an electromagnet 12 is used, and the source gas 6 is tungsten hexafluoride (WF 6 ). 2 and hydrogen gas (H 2 ) which is the reducing gas 7 are alternately introduced at the same time intervals as shown in FIG. 2, and the hydrogen (H 2 ) gas is excited to generate excited species (H) by electron cyclotron resonance discharge. A metal tungsten thin film having the same characteristics as in Example 1 was obtained in the same manner as in Example 2. At this time, argon gas or the like may be added to stabilize the discharge.

【0032】還元性ガスの励起手段として電子サイクロ
トロン共鳴を用いることにより、励起手段を用いないと
きよりも低い基体温度を用いることができ、しかもCV
Dプロセス時間を短縮できた。
By using electron cyclotron resonance as the means for exciting the reducing gas, it is possible to use a lower substrate temperature than when no excitation means is used, and further, CV
D Process time could be shortened.

【0033】実施例4 図6に示すように、励起手段として紫外線を使用した光
励起を用いたCVD装置を用いて、実施例2と同様にし
て、CVDにより金属タングステン膜を半導体デバイス
基板9上に形成した。
Example 4 As shown in FIG. 6, a metal tungsten film was deposited on the semiconductor device substrate 9 by CVD in the same manner as in Example 2 using a CVD apparatus using photoexcitation using ultraviolet rays as an excitation means. Formed.

【0034】すなわち、実施例2で用いたRF誘導放電
管の代わりに、紫外線ランプ15を半導体デバイス基板
9上に設置してあり、原料ガス6である六フッ化タング
ステン(WF6 )と還元性ガス7である水素ガス
(H2 )の交互導入と紫外線光による還元性ガス
(H2 )の励起種(H)生成とを上記実施例2と同様に
して行って、実施例1と同等の特性を有する金属タング
ステン薄膜を得た。
That is, instead of the RF induction discharge tube used in Example 2, an ultraviolet lamp 15 is installed on the semiconductor device substrate 9, and it is reduced with tungsten hexafluoride (WF 6 ) which is the raw material gas 6. Alternate introduction of hydrogen gas (H 2 ) which is gas 7 and generation of excited species (H) of reducing gas (H 2 ) by ultraviolet light were performed in the same manner as in Example 2 above, and the same as Example 1 was performed. A metallic tungsten thin film having characteristics was obtained.

【0035】還元性ガスの励起手段として紫外線ランプ
を用いることにより、励起手段を用いないときよりも低
い基体温度を用いることができ、しかもCVDプロセス
時間を短縮できた。
By using the ultraviolet lamp as the exciting means for the reducing gas, it was possible to use a lower substrate temperature than when the exciting means was not used, and the CVD process time could be shortened.

【0036】なお、紫外線光源としてはエキマレーザな
どの紫外線レーザや水素放電による真空紫外線光源など
を用いることもできる。また、実施例4に実施例2およ
び3の方法を組み合わせることも可能である。
As the ultraviolet light source, an ultraviolet laser such as an excimer laser or a vacuum ultraviolet light source by hydrogen discharge can be used. It is also possible to combine the method of Embodiments 2 and 3 with Embodiment 4.

【0037】[0037]

【発明の効果】以上説明したように本発明によれば、原
料ガスを還元性ガス用いて分解する化学気相成長法によ
り金属薄膜を形成する方法において、原料ガスと還元性
ガスを交互に不連続的に基体上に導入することにより、
基体の侵食や金属薄膜表面の荒れのない、漏洩電流を抑
え、金属薄膜表面の平坦性が向上した金属薄膜が得られ
る。
As described above, according to the present invention, in the method of forming a metal thin film by the chemical vapor deposition method in which the source gas is decomposed by using the reducing gas, the source gas and the reducing gas are not alternately supplied. By continuously introducing onto the substrate,
It is possible to obtain a metal thin film in which the flatness of the surface of the metal thin film is improved by preventing leakage current without erosion of the substrate and roughening of the surface of the metal thin film.

【0038】また、還元性ガスの導入時、励起手段を用
いて還元性ガスの励起種を生成し、この励起種を基体上
に吸着した原料ガスの分解に用いることにより、励起種
を用いないときよりもより低い基体温度を用いることが
でき、CVD時間を短縮することができる。
When introducing the reducing gas, the exciting species are used to generate the excited species of the reducing gas, and the excited species are used for decomposing the raw material gas adsorbed on the substrate, so that the excited species are not used. Substrate temperatures lower than can be used and CVD times can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1に用いたCVD装置の概略
図である。
FIG. 1 is a schematic diagram of a CVD apparatus used in a first embodiment of the present invention.

【図2】 本発明の実施例1において、原料ガスと還元
性ガスとを交互に不連続的に導入する時間間隔をガス流
量と供に示す。
FIG. 2 shows, together with the gas flow rate, the time intervals at which the source gas and the reducing gas are alternately and discontinuously introduced in Example 1 of the present invention.

【図3】 本発明の実施例1による薄膜形成のステップ
を示す概略図である。
FIG. 3 is a schematic view showing steps of forming a thin film according to Example 1 of the present invention.

【図4】 本発明の実施例2に用いたCVD装置の概略
図である。
FIG. 4 is a schematic diagram of a CVD apparatus used in Example 2 of the present invention.

【図5】 本発明の実施例3に用いたCVD装置の概略
図である。
FIG. 5 is a schematic view of a CVD apparatus used in Example 3 of the present invention.

【図6】 本発明の実施例4に用いたCVD装置の概略
図である。
FIG. 6 is a schematic diagram of a CVD apparatus used in Example 4 of the present invention.

【符号の説明】[Explanation of symbols]

1…ガス導入口、 2…ガス流量
制御装置、3…放電管、 4
…反応室、5…真空ポンプ、 6
…原料ガス、7…還元性ガス、
8…圧力制御装置、9…半導体デバイス基板、
10…高周波発振器、11…コイル、
12…電磁石、13…マイクロ波発振
器、 14…電子サクロトロン共鳴放電
管、15…紫外線ランプ。
1 ... Gas inlet, 2 ... Gas flow control device, 3 ... Discharge tube, 4
… Reaction chamber, 5… Vacuum pump, 6
... raw material gas, 7 ... reducing gas,
8 ... Pressure control device, 9 ... Semiconductor device substrate,
10 ... High-frequency oscillator, 11 ... Coil,
12 ... Electromagnet, 13 ... Microwave oscillator, 14 ... Electron sacrotron resonance discharge tube, 15 ... UV lamp.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 化学気相成長法により金属薄膜を基体上
に形成する方法において、原料ガスと還元性ガスを交互
に不連続的に基体上に導入して、一定温度で化学気相成
長を行い、この化学気相成長を繰り返し行うことにより
所要の膜厚の金属薄膜を基体上に形成することを特徴と
する化学気相成長による金属薄膜形成方法。
1. A method for forming a metal thin film on a substrate by chemical vapor deposition, in which a source gas and a reducing gas are alternately and discontinuously introduced onto the substrate to carry out chemical vapor deposition at a constant temperature. A method for forming a metal thin film by chemical vapor deposition, characterized in that a metal thin film having a required thickness is formed on a substrate by repeating the chemical vapor deposition.
【請求項2】 前記原料ガスは金属のハロゲン化物およ
び有機金属化合物よりなる群から選択された少なくとも
1種であり、前記還元性ガスは前記原料ガスをその構成
金属に分解することができるガスの1種であることを特
徴とする請求項1に記載の化学気相成長による金属薄膜
形成方法。
2. The source gas is at least one selected from the group consisting of metal halides and organometallic compounds, and the reducing gas is a gas capable of decomposing the source gas into its constituent metals. The method for forming a metal thin film by chemical vapor deposition according to claim 1, wherein the method is one kind.
【請求項3】 前記原料ガスは六フッ化タングステンガ
スであり、前記還元性ガスは水素ガスであることを特徴
とする請求項2に記載の化学気相成長による金属薄膜形
成方法。
3. The method for forming a metal thin film by chemical vapor deposition according to claim 2, wherein the source gas is tungsten hexafluoride gas and the reducing gas is hydrogen gas.
【請求項4】 前記化学気相成長は350〜500℃の
一定温度で、減圧下において行うことを特徴とする請求
項1に記載の化学気相成長による金属薄膜形成方法。
4. The method for forming a metal thin film by chemical vapor deposition according to claim 1, wherein the chemical vapor deposition is performed at a constant temperature of 350 to 500 ° C. under reduced pressure.
【請求項5】 前記原料ガスの還元は前記還元性ガスの
導入時、励起手段により還元性ガスの励起種を形成さ
せ、該励起種により行うことを特徴とする請求項1に記
載の化学気相成長による金属薄膜形成方法。
5. The chemical vapor according to claim 1, wherein the reduction of the raw material gas is performed by forming an excited species of the reducing gas by an exciting means when the reducing gas is introduced, and by using the excited species. Metal thin film formation method by phase growth.
【請求項6】 前記励起手段は、RF誘導プラズマ、電
子サイクロトロン共鳴および紫外線光よりなる群から選
択された少なくとも一つの手段を用いることを特徴とす
る請求項5に記載の化学気相成長による金属薄膜形成方
法。
6. The chemical vapor deposition metal according to claim 5, wherein the exciting means is at least one means selected from the group consisting of RF induction plasma, electron cyclotron resonance, and ultraviolet light. Thin film forming method.
【請求項7】 前記化学気相成長は、室温から350℃
未満の一定温度で行われることを特徴とする請求項6に
記載の化学気相成長による金属薄膜形成方法
7. The chemical vapor deposition is performed at room temperature to 350 ° C.
The method for forming a metal thin film by chemical vapor deposition according to claim 6, wherein the method is performed at a constant temperature of less than
【請求項8】 前記基体は半導体デバイス基板であるこ
とを特徴とする請求項1に記載の化学気相成長による金
属薄膜形成方法。
8. The method for forming a metal thin film by chemical vapor deposition according to claim 1, wherein the base is a semiconductor device substrate.
JP18251893A 1992-07-24 1993-07-23 Metal thin film formation method by chemical vapor deposition Expired - Lifetime JP3415207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18251893A JP3415207B2 (en) 1992-07-24 1993-07-23 Metal thin film formation method by chemical vapor deposition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-198778 1992-07-24
JP19877892 1992-07-24
JP18251893A JP3415207B2 (en) 1992-07-24 1993-07-23 Metal thin film formation method by chemical vapor deposition

Related Child Applications (5)

Application Number Title Priority Date Filing Date
JP2002313145A Division JP3522737B2 (en) 1992-07-24 2002-10-28 Method for forming tungsten thin film by chemical vapor deposition
JP2002313146A Division JP2003160871A (en) 1992-07-24 2002-10-28 Method for forming thin film by chemical vapor deposition
JP2002313147A Division JP3522738B2 (en) 1992-07-24 2002-10-28 Metal thin film formation method by chemical vapor deposition
JP2002313149A Division JP2003160873A (en) 1992-07-24 2002-10-28 Method for forming metallic thin film by chemical vapor deposition
JP2002313148A Division JP2003160867A (en) 1992-07-24 2002-10-28 Method for forming thin film by chemical vapor deposition

Publications (2)

Publication Number Publication Date
JPH0689873A true JPH0689873A (en) 1994-03-29
JP3415207B2 JP3415207B2 (en) 2003-06-09

Family

ID=26501299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18251893A Expired - Lifetime JP3415207B2 (en) 1992-07-24 1993-07-23 Metal thin film formation method by chemical vapor deposition

Country Status (1)

Country Link
JP (1) JP3415207B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172049A (en) * 1999-06-30 2001-06-26 Saint Gobain Vitrage Process for depositing tungsten-based and/or molybdenum-based layer on glass, ceramic or glass- ceramic substrate, and substrate thus coated
KR20010059541A (en) * 1999-12-30 2001-07-06 박종섭 Method for forming metal line of semiconductor device
JP2001217206A (en) * 1999-12-08 2001-08-10 Samsung Electronics Co Ltd Method of forming metallic layer utilizing atomic layer vapor deposition method and semiconductor element using the same
JP2002038271A (en) * 2000-06-28 2002-02-06 Applied Materials Inc Method and apparatus for forming nucleation layer by depositing refractory metal layer using sequential depositing technique
JP2003193233A (en) * 2001-08-14 2003-07-09 Tokyo Electron Ltd Method for depositing tungsten film
JP2004218053A (en) * 2003-01-17 2004-08-05 Tokyo Electron Ltd Thin film deposition method, and thin film deposition system
JP2004273764A (en) * 2003-03-07 2004-09-30 Tokyo Electron Ltd Method for forming tungsten film
WO2004101845A1 (en) * 2003-05-13 2004-11-25 Tokyo Electron Limited Treating device using raw material gas and reactive gas
JP2004536225A (en) * 2001-07-16 2004-12-02 アプライド マテリアルズ インコーポレイテッド Method and apparatus for depositing tungsten after surface treatment to improve film properties
WO2004112114A1 (en) * 2003-06-16 2004-12-23 Tokyo Electron Limited Process for depositing film, process for fabricating semiconductor device, semiconductor device and system for depositing film
WO2005015622A1 (en) * 2003-08-11 2005-02-17 Tokyo Electron Limited Film forming method
JP2005518088A (en) * 2001-07-16 2005-06-16 アプライド マテリアルズ インコーポレイテッド Formation of tungsten composite film
KR100505197B1 (en) * 2000-01-13 2005-07-29 동경 엘렉트론 주식회사 Method for forming film
WO2005085495A1 (en) * 2004-03-03 2005-09-15 Tokyo Electron Limited Film forming method
JPWO2004008513A1 (en) * 2002-07-15 2005-11-10 株式会社日立国際電気 Semiconductor device manufacturing method and substrate processing apparatus
JP2006024668A (en) * 2004-07-07 2006-01-26 Fujitsu Ltd Process for fabricating semiconductor device
JP2006265724A (en) * 2005-03-22 2006-10-05 Sungkyunkwan Univ Foundation For Corporate Collaboration Atomic layer vapor deposition apparatus utilizing neutral beam and atomic layer vapor deposition method utilizing the apparatus
US7338900B2 (en) 2002-12-27 2008-03-04 Ulvac Inc. Method for forming tungsten nitride film
JP2008057048A (en) * 2007-11-02 2008-03-13 Ulvac Japan Ltd Method for forming barrier film
JP2008060603A (en) * 2001-08-24 2008-03-13 Tokyo Electron Ltd Method of forming film
US7419904B2 (en) 2004-04-12 2008-09-02 Ulvac Inc. Method for forming barrier film and method for forming electrode film
JP2008303466A (en) * 2001-10-10 2008-12-18 Applied Materials Inc Method for depositing refractory metal layer employing sequential deposition techniques
US7481902B2 (en) 2002-03-26 2009-01-27 Tokyo Electron Limited Substrate processing apparatus and method, high speed rotary valve and cleaning method
US7935384B2 (en) 2001-09-03 2011-05-03 Tokyo Electron Limited Film forming method
US7972649B2 (en) 2004-08-06 2011-07-05 Tokyo Electron Limited Thin film forming method and thin film forming apparatus
US8211799B2 (en) 2005-01-19 2012-07-03 Applied Materials, Inc. Atomic layer deposition of tungsten materials
US8518181B2 (en) 2004-08-10 2013-08-27 Tokyo Electron Limited Film forming apparatus and film forming method
CN112501586A (en) * 2020-10-22 2021-03-16 季华实验室 Preparation method and preparation device of high-purity metal film and semiconductor chip

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172049A (en) * 1999-06-30 2001-06-26 Saint Gobain Vitrage Process for depositing tungsten-based and/or molybdenum-based layer on glass, ceramic or glass- ceramic substrate, and substrate thus coated
JP2001217206A (en) * 1999-12-08 2001-08-10 Samsung Electronics Co Ltd Method of forming metallic layer utilizing atomic layer vapor deposition method and semiconductor element using the same
KR20010059541A (en) * 1999-12-30 2001-07-06 박종섭 Method for forming metal line of semiconductor device
KR100505197B1 (en) * 2000-01-13 2005-07-29 동경 엘렉트론 주식회사 Method for forming film
JP2002038271A (en) * 2000-06-28 2002-02-06 Applied Materials Inc Method and apparatus for forming nucleation layer by depositing refractory metal layer using sequential depositing technique
JP2004536225A (en) * 2001-07-16 2004-12-02 アプライド マテリアルズ インコーポレイテッド Method and apparatus for depositing tungsten after surface treatment to improve film properties
JP2005518088A (en) * 2001-07-16 2005-06-16 アプライド マテリアルズ インコーポレイテッド Formation of tungsten composite film
JP2003193233A (en) * 2001-08-14 2003-07-09 Tokyo Electron Ltd Method for depositing tungsten film
JP4595989B2 (en) * 2001-08-24 2010-12-08 東京エレクトロン株式会社 Deposition method
JP2008060603A (en) * 2001-08-24 2008-03-13 Tokyo Electron Ltd Method of forming film
US7935384B2 (en) 2001-09-03 2011-05-03 Tokyo Electron Limited Film forming method
JP2008303466A (en) * 2001-10-10 2008-12-18 Applied Materials Inc Method for depositing refractory metal layer employing sequential deposition techniques
US7481902B2 (en) 2002-03-26 2009-01-27 Tokyo Electron Limited Substrate processing apparatus and method, high speed rotary valve and cleaning method
JPWO2004008513A1 (en) * 2002-07-15 2005-11-10 株式会社日立国際電気 Semiconductor device manufacturing method and substrate processing apparatus
JP4559223B2 (en) * 2002-07-15 2010-10-06 株式会社日立国際電気 Semiconductor device manufacturing method and substrate processing apparatus
US7338900B2 (en) 2002-12-27 2008-03-04 Ulvac Inc. Method for forming tungsten nitride film
JP2004218053A (en) * 2003-01-17 2004-08-05 Tokyo Electron Ltd Thin film deposition method, and thin film deposition system
JP2004273764A (en) * 2003-03-07 2004-09-30 Tokyo Electron Ltd Method for forming tungsten film
WO2004101845A1 (en) * 2003-05-13 2004-11-25 Tokyo Electron Limited Treating device using raw material gas and reactive gas
KR100724181B1 (en) * 2003-06-16 2007-05-31 동경 엘렉트론 주식회사 Process for depositing film, process for fabricating semiconductor device, semiconductor device and system for depositing film
JPWO2004112114A1 (en) * 2003-06-16 2006-07-27 東京エレクトロン株式会社 Film forming method, semiconductor device manufacturing method, semiconductor device, and film forming apparatus
WO2004112114A1 (en) * 2003-06-16 2004-12-23 Tokyo Electron Limited Process for depositing film, process for fabricating semiconductor device, semiconductor device and system for depositing film
JP4823690B2 (en) * 2003-06-16 2011-11-24 東京エレクトロン株式会社 Film-forming method and semiconductor device manufacturing method
WO2005015622A1 (en) * 2003-08-11 2005-02-17 Tokyo Electron Limited Film forming method
WO2005085495A1 (en) * 2004-03-03 2005-09-15 Tokyo Electron Limited Film forming method
US7419904B2 (en) 2004-04-12 2008-09-02 Ulvac Inc. Method for forming barrier film and method for forming electrode film
JP2006024668A (en) * 2004-07-07 2006-01-26 Fujitsu Ltd Process for fabricating semiconductor device
US7972649B2 (en) 2004-08-06 2011-07-05 Tokyo Electron Limited Thin film forming method and thin film forming apparatus
US8518181B2 (en) 2004-08-10 2013-08-27 Tokyo Electron Limited Film forming apparatus and film forming method
US8211799B2 (en) 2005-01-19 2012-07-03 Applied Materials, Inc. Atomic layer deposition of tungsten materials
US8513116B2 (en) 2005-01-19 2013-08-20 Applied Materials, Inc. Atomic layer deposition of tungsten materials
JP2006265724A (en) * 2005-03-22 2006-10-05 Sungkyunkwan Univ Foundation For Corporate Collaboration Atomic layer vapor deposition apparatus utilizing neutral beam and atomic layer vapor deposition method utilizing the apparatus
JP4533324B2 (en) * 2005-03-22 2010-09-01 サンキョンカン ユニバーシティ ファンデーション フォー コーポレート コラボレーション Atomic layer deposition apparatus using neutral beam and atomic layer deposition method using this apparatus
JP2008057048A (en) * 2007-11-02 2008-03-13 Ulvac Japan Ltd Method for forming barrier film
CN112501586A (en) * 2020-10-22 2021-03-16 季华实验室 Preparation method and preparation device of high-purity metal film and semiconductor chip

Also Published As

Publication number Publication date
JP3415207B2 (en) 2003-06-09

Similar Documents

Publication Publication Date Title
JP3415207B2 (en) Metal thin film formation method by chemical vapor deposition
US5306666A (en) Process for forming a thin metal film by chemical vapor deposition
TWI394858B (en) Method of depositing tungsten film with reduced resistivity and improved surface morphology
US7410671B2 (en) Sequential chemical vapor deposition
US5954887A (en) Cleaning processing method of a film forming apparatus
US4563367A (en) Apparatus and method for high rate deposition and etching
EP1672093B1 (en) Film-forming apparatus and film-forming method
US20060029745A1 (en) High throughput ILD fill process for high aspect ratio gap fill
JP2002505804A (en) Method and apparatus for metallizing silicon semiconductor device contacts with high aspect ratio
US6375756B1 (en) Method for removing a deposited film
EP0493002A1 (en) Process for forming deposition film
US6942892B1 (en) Hot element CVD apparatus and a method for removing a deposited film
US10879081B2 (en) Methods of reducing or eliminating defects in tungsten film
US5491112A (en) Method and arrangement for treating silicon plates
CN113710829B (en) High etch selectivity low stress ashed carbon hard mask
JP3522738B2 (en) Metal thin film formation method by chemical vapor deposition
JP3522737B2 (en) Method for forming tungsten thin film by chemical vapor deposition
JP2006005147A (en) Substrate processing apparatus
JP2003160867A (en) Method for forming thin film by chemical vapor deposition
JP2003160873A (en) Method for forming metallic thin film by chemical vapor deposition
JP4589591B2 (en) Metal film manufacturing method and metal film manufacturing apparatus
JP4059792B2 (en) Semiconductor manufacturing method
JP2003160871A (en) Method for forming thin film by chemical vapor deposition
JP3649696B2 (en) Metal film production apparatus and metal film production method
JPH07142411A (en) Deposition of thin metal film in semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030318

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 11

EXPY Cancellation because of completion of term