JPH0689740A - Sodium-sulphur battery - Google Patents

Sodium-sulphur battery

Info

Publication number
JPH0689740A
JPH0689740A JP4238434A JP23843492A JPH0689740A JP H0689740 A JPH0689740 A JP H0689740A JP 4238434 A JP4238434 A JP 4238434A JP 23843492 A JP23843492 A JP 23843492A JP H0689740 A JPH0689740 A JP H0689740A
Authority
JP
Japan
Prior art keywords
anode
solid electrolyte
electrolyte tube
sodium
mat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4238434A
Other languages
Japanese (ja)
Other versions
JP2771398B2 (en
Inventor
Kazuto Furuta
一人 古田
Koji Sugimoto
宏次 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP4238434A priority Critical patent/JP2771398B2/en
Publication of JPH0689740A publication Critical patent/JPH0689740A/en
Application granted granted Critical
Publication of JP2771398B2 publication Critical patent/JP2771398B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To suppress local precipitation of sulfur having an insulative nature and enhance the bakery performance such as charge recovery rate through increasing the reacting chance of sodium multi-sulfide on the anode vessel side. CONSTITUTION:A solid electrolyte tube 4 in the form of bottom-equipped cylinder which admits permeation of sodium ion selectively is installed in a cylindrical anode vessel 1, and an electroconductive material 6 for anode for sulfur impregnation is accommodated in the space between the two members. The material 6 for anode is formed in single layer, and its bulk density is made greater on the anode vessel 1 side than on the solid electrolyte tube 4 side. The conductive material 6 is made in single layer or layers, and its bulk density is made greater on the anode vessel 1 side than on the solid electrolyte tube 4 side, and the rate of the fibers stretching in the direction across the thickness is formed higher on the solid electrolyte tube 4 side than on the anode vessel 1 side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば電力貯蔵用の
二次電池として利用されるナトリウム−硫黄電池に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sodium-sulfur battery used as, for example, a secondary battery for storing electric power.

【0002】[0002]

【従来の技術】従来、ナトリウム−硫黄電池の充電性能
を改良するために、陽極部の炭素又は黒鉛材中にセラミ
ック繊維を混入させたものを使用し、放電時の生成物で
ある多硫化ナトリウムの濡れ性を改善して多硫化ナトリ
ウムの移動を容易にしたものが知られている(特開昭5
2−121730号公報)。しかし、このナトリウム−
硫黄電池は陽極部全体を均一層とし、セラミック繊維を
陽極部全体に混入しているため、陽極部における抵抗が
大きくなり過ぎ、電池の充放電におけるエネルギー効率
が低いという問題があった。
2. Description of the Related Art Conventionally, in order to improve the charging performance of a sodium-sulfur battery, carbon or graphite material in the anode part mixed with ceramic fibers is used, and sodium polysulfide which is a product at the time of discharge is used. It is known to improve the wettability of sodium hydroxide and facilitate the movement of sodium polysulfide (Japanese Patent Laid-Open No. Sho 5).
No. 2-121730). But this sodium-
Since the sulfur battery has a uniform layer over the entire anode part and the ceramic fibers are mixed in over the entire anode part, there is a problem that the resistance in the anode part becomes too large and the energy efficiency during charge / discharge of the battery is low.

【0003】そこで、本願出願人は先に、上記陽極用導
電材として繊維を積層した複数層に形成し、その厚さ方
向にニードルパンチが施されて厚さ方向に繊維が配向さ
れた状態で、陽極容器と固体電解質管との間に配置され
たものを提案した(特開平3−145069号公報)。
このナトリウム−硫黄電池においては、厚さ方向の繊維
の配向が陽極容器側で高く、固体電解質管側で低く、か
つ陽極用導電材の嵩密度が陽極容器側で密で、固体電解
質管側で粗となっている。
Therefore, the present applicant has previously formed a plurality of laminated layers of fibers as the above-mentioned conductive material for the anode, and needle-punched in the thickness direction thereof so that the fibers are oriented in the thickness direction. , The one disposed between the anode container and the solid electrolyte tube was proposed (JP-A-3-145069).
In this sodium-sulfur battery, the orientation of the fibers in the thickness direction is high on the anode container side, low on the solid electrolyte tube side, and the bulk density of the conductive material for the anode is dense on the anode container side and on the solid electrolyte tube side. It is coarse.

【0004】そのため、低配向層の厚さ方向の抵抗が高
く、高配向層の厚さ方向の抵抗が低くなるため、固体電
解質管の界面付近の反応速度が小さくなり、充電末期に
絶縁性の硫黄が固体電解質管付近に析出するのが抑えら
れ、充電回復率の向上が図られる。
Therefore, the resistance in the thickness direction of the low orientation layer is high, and the resistance in the thickness direction of the high orientation layer is low, so that the reaction rate near the interface of the solid electrolyte tube becomes small, and the insulating property at the end of charging becomes low. Sulfur is prevented from precipitating near the solid electrolyte tube, and the charge recovery rate is improved.

【0005】[0005]

【発明が解決しようとする課題】ところが、このナトリ
ウム−硫黄電池では、陽極用導電材が繊維を積層した複
数層に形成されていることから、その境界部において絶
縁性の硫黄が析出して充電時の反応が阻害され、この現
象は充放電サイクルの経過と共に顕著になり、やがて充
電回復率が低下するという問題があった。また、厚み方
向の繊維の配向が固体電解質管側で低く、陽極容器側で
高いため、陽極用導電材は固体電解質管側で圧縮されや
すく、陽極容器側では圧縮されにくい。
However, in this sodium-sulfur battery, since the conductive material for the anode is formed in a plurality of layers in which fibers are laminated, insulative sulfur is deposited at the boundary portion of the conductive material to charge the anode. There is a problem that the reaction at the time is obstructed, and this phenomenon becomes remarkable as the charge / discharge cycle progresses, and eventually the charge recovery rate decreases. Moreover, since the orientation of the fibers in the thickness direction is low on the solid electrolyte tube side and high on the anode container side, the conductive material for the anode is easily compressed on the solid electrolyte tube side and is difficult to be compressed on the anode container side.

【0006】そのため、陽極用導電材を圧縮状態で陽極
容器内に収容すると、圧縮前の陽極用導電材に嵩密度差
があっても、配向の違いにより、圧縮されやすさが変わ
るため、電池内の圧縮状態では、固体電解質管側と陽極
容器側とでは圧縮前に予想されたほど嵩密度差はついて
いない。従って、充電時における多硫化ナトリウムの反
応は繊維上で行われることから、陽極容器側の多硫化ナ
トリウムが反応に関与する機会が少なくなり、充電回復
率などの電池性能の向上が期待したほど望めないという
問題があった。
Therefore, when the conductive material for the anode is stored in the anode container in a compressed state, even if there is a difference in the bulk density of the conductive material for the anode before compression, the ease of compression changes due to the difference in orientation. In the compressed state, the difference in bulk density between the solid electrolyte tube side and the anode container side is not as large as expected before compression. Therefore, since the reaction of sodium polysulfide during charging is performed on the fiber, the chances that sodium polysulfide in the anode container side will participate in the reaction will be reduced, and the improvement in battery performance such as charge recovery rate can be expected as expected. There was a problem of not having.

【0007】この発明は上記従来の問題に着目してなさ
れたものであって、その目的は、局所的に絶縁性の硫黄
が析出するのを抑制するとともに、陽極容器側の多硫化
ナトリウムの反応の機会を増やして充電回復率などの電
池性能を向上させることができるナトリウム−硫黄電池
を提供することにある。
The present invention has been made by paying attention to the above-mentioned conventional problems, and its object is to suppress the local deposition of insulating sulfur and to react the sodium polysulfide on the anode container side. It is intended to provide a sodium-sulfur battery capable of increasing the number of opportunities to improve the battery performance such as the charge recovery rate.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、第1の発明では筒状の陽極容器内にナトリウムイオ
ンを選択的に透過させる有底筒状の固体電解質管を配置
するとともに、両者間の収容空間に硫黄を含浸する陽極
用導電材を収容したナトリウム−硫黄電池において、前
記陽極用導電材を単層で形成し、かつその嵩密度を固体
電解質管側より陽極容器側を高く形成したことを特徴と
する。
In order to achieve the above object, in the first aspect of the present invention, a bottomed cylindrical solid electrolyte tube for selectively permeating sodium ions is arranged in a cylindrical anode container, and In a sodium-sulfur battery containing a positive electrode conductive material impregnated with sulfur in a storage space between the two, the positive electrode conductive material is formed in a single layer, and its bulk density is higher on the anode container side than on the solid electrolyte tube side. It is characterized by being formed.

【0009】また、第2の発明では、前記陽極用導電材
を単層又は複数層とし、その嵩密度を固体電解質管側よ
り陽極容器側を高く形成するとともに、厚さ方向に伸び
る繊維の割合を陽極容器側より固体電解質管側を高くし
たことを特徴とする。
In the second aspect of the invention, the conductive material for the anode is a single layer or a plurality of layers, the bulk density of which is higher on the anode container side than on the solid electrolyte tube side, and the proportion of fibers extending in the thickness direction is high. Is higher on the solid electrolyte tube side than on the anode container side.

【0010】[0010]

【作用】第1の発明においては、陽極用導電材が単層に
て形成され、かつその嵩密度を固体電解質管側より陽極
容器側を高く形成したことから、充電反応において従来
のような複数層における各層間の不連続な部分で絶縁性
の硫黄が析出するおそれが少なく、しかも充電反応に関
与する陽極容器側の多硫化ナトリウムが増大する。従っ
て、充電時における反応が阻害されるおそれがなく、充
電反応は円滑に進行する。
In the first aspect of the invention, the conductive material for the anode is formed of a single layer, and the bulk density thereof is higher on the side of the anode container than on the side of the solid electrolyte tube. Insulating sulfur is less likely to be deposited at discontinuous portions between layers in the layer, and moreover, sodium polysulfide on the anode container side involved in the charging reaction is increased. Therefore, there is no fear that the reaction at the time of charging is disturbed, and the charging reaction proceeds smoothly.

【0011】第2の発明では、さらに厚さ方向に伸びる
繊維の割合を陽極容器側より固体電解質管側を高くした
ことから、陽極容器側の繊維は圧縮されやすく、従って
嵩密度が高くなってこの部分に存在する多硫化ナトリウ
ムの反応に関与する機会が高まり、充電反応の効率が良
くなって充電回復率が向上する。
In the second aspect of the invention, since the proportion of the fibers extending in the thickness direction is made higher on the solid electrolyte tube side than on the anode container side, the fibers on the anode container side are easily compressed and therefore the bulk density becomes high. The chance of participating in the reaction of sodium polysulfide existing in this portion is increased, the efficiency of the charging reaction is improved, and the charge recovery rate is improved.

【0012】[0012]

【実施例】以下にこの発明を具体化した一実施例につい
て図1〜4に従って説明する。図1に示すように、陽極
容器1は円筒状に形成され、その下端部に陽極蓋2が接
合されるとともに、陽極蓋2には陽極端子3が取着され
ている。固体電解質管4は有底円筒状に形成され、その
上端が陽極容器1の上端部に接合されたα−アルミナ製
の絶縁リング5の内周面に接合されている。陽極用導電
材6は、グラファイト繊維によりマット状に形成され、
陽極容器1と固体電解質管4で形成された収容空間に収
納されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment embodying the present invention will be described below with reference to FIGS. As shown in FIG. 1, the anode container 1 is formed in a cylindrical shape, the anode lid 2 is joined to the lower end portion thereof, and the anode terminal 3 is attached to the anode lid 2. The solid electrolyte tube 4 is formed in a bottomed cylindrical shape, and its upper end is joined to the inner peripheral surface of an α-alumina insulating ring 5 joined to the upper end of the anode container 1. The conductive material 6 for the anode is formed of graphite fiber in a mat shape,
It is housed in a housing space formed by the anode container 1 and the solid electrolyte tube 4.

【0013】陰極容器7は絶縁リング5の上部に固着さ
れ、その上端に陰極蓋8が接合されている。細長円筒状
の陰極管9は陰極蓋8に接合支持され、その下端部は前
記固体電解質管4の内底部近傍まで達し、上端部は陰極
端子10となっている。陰極容器7内及び固体電解質管
4内にはナトリウムが収容されるとともに、ステンレス
製のウイック11が充填され、ナトリウムの流動性を調
整してその利用率と安全性を確保するようにしている。
なお、固体電解質管4の外周部には高抵抗層12が形成
されている。
The cathode container 7 is fixed to the upper portion of the insulating ring 5, and the cathode lid 8 is joined to the upper end thereof. The slender cylindrical cathode tube 9 is joined and supported by the cathode lid 8, the lower end portion thereof reaches the vicinity of the inner bottom portion of the solid electrolyte tube 4, and the upper end portion serves as the cathode terminal 10. Sodium is stored in the cathode container 7 and the solid electrolyte tube 4, and a wick 11 made of stainless steel is filled therein to adjust the fluidity of sodium to ensure its utilization and safety.
A high resistance layer 12 is formed on the outer peripheral portion of the solid electrolyte tube 4.

【0014】そして、放電時には下記のような反応式に
より、固体電解質管4を透過したナトリウムイオンが陽
極側の硫黄と反応し、多硫化ナトリウムが生成する。 2Na+XS → Na2 Sx 充電時には放電時とは逆の反応が起こり、ナトリウムと
硫黄が生成する。
At the time of discharge, the sodium ion having passed through the solid electrolyte tube 4 reacts with the sulfur on the anode side according to the following reaction formula to produce sodium polysulfide. When 2Na + XS → Na 2 Sx is charged, a reaction opposite to that at the time of discharging occurs, and sodium and sulfur are generated.

【0015】図4(a),(b)に示すように、前記陽
極用導電材6はポリアクリロニトリル系繊維束を直方体
状に織り込んだ後焼成したマットMから構成されてお
り、その厚さ方向に対し鍵針13を挿通してニードルパ
ンチが行われている。すなわち、ニードルパンチが行わ
れると、鍵針13の鍵部13aにより引っ掛けられたマ
ットMの繊維は鍵針13の挿入方向と同じ方向、すなわ
ちマットMの厚さ方向に配向されることになる。このよ
うに、ニードルパンチの挿入密度によりマットMの配向
量を自在に調節できる。
As shown in FIGS. 4 (a) and 4 (b), the conductive material 6 for the anode is composed of a mat M in which polyacrylonitrile fiber bundles are woven in a rectangular parallelepiped shape and then fired, and the thickness direction thereof. On the other hand, the key punch 13 is inserted and needle punching is performed. That is, when the needle punching is performed, the fibers of the mat M hooked by the key portion 13a of the key needle 13 are oriented in the same direction as the insertion direction of the key needle 13, that is, in the thickness direction of the mat M. Thus, the orientation amount of the mat M can be freely adjusted by the insertion density of the needle punches.

【0016】従って、マットMは鍵針13が挿入され
ず、繊維が厚さ方向において低配向となる低配向部分6
aと、鍵針13が挿入されて繊維がマットMの厚さ方向
において高配向となる高配向部分6bとから構成されて
いる。そして、低配向部分6aが陽極容器1側に配置さ
れ、高配向部分6bが固体電解質管4側に配置される。
これら低配向部分6aと高配向部分6bとの割合は、挿
入する鍵針13の深さHを調整することにより形成され
る。この低配向部分6aは厚み方向の圧縮に対する抵抗
が小さく、その方向に圧縮されやすい。
Therefore, in the mat M, the key needle 13 is not inserted, and the low orientation portion 6 in which the fibers have low orientation in the thickness direction.
a and a highly oriented portion 6b in which the key needle 13 is inserted and the fibers are highly oriented in the thickness direction of the mat M. Then, the low orientation portion 6a is arranged on the anode container 1 side, and the high orientation portion 6b is arranged on the solid electrolyte tube 4 side.
The ratio of the low orientation portion 6a and the high orientation portion 6b is formed by adjusting the depth H of the key needle 13 to be inserted. The low orientation portion 6a has a small resistance to compression in the thickness direction and is easily compressed in that direction.

【0017】図2,3に示すように、このように構成さ
れたマットMを断面円弧状に圧縮湾曲形成し、これを複
数個陽極容器1と固体電解質管4との間の収容空間に環
状に配置する。このとき、低配向部分6aは高配向部分
6bより圧縮された状態で配置されるため、陽極容器1
側の低配向部分6aの嵩密度、すなわち繊維の充填密度
は固体電解質管4側の高配向部分6bよりも高くなる。
従って、充電反応時における陽極容器1側のマットM内
の繊維上で反応する多硫化ナトリウムが反応に寄与する
機会が高くなる。このような機能を有効に発揮させるた
めに、低配向部分6aと高配向部分6bとの嵩密度の差
は0.08g/cc以上であることが望ましい。
As shown in FIGS. 2 and 3, the mat M constructed as described above is compression-curved in an arcuate cross section, and a plurality of the mats M are annularly housed in the accommodation space between the anode container 1 and the solid electrolyte tube 4. To place. At this time, since the low-orientation portion 6a is arranged in a compressed state as compared with the high-orientation portion 6b, the anode container 1
The bulk density of the low orientation portion 6a on the side, that is, the packing density of the fibers is higher than that of the high orientation portion 6b on the solid electrolyte tube 4 side.
Therefore, there is a high chance that sodium polysulfide that reacts on the fibers in the mat M on the anode container 1 side during the charging reaction contributes to the reaction. In order to effectively exhibit such a function, it is desirable that the difference in bulk density between the low orientation portion 6a and the high orientation portion 6b is 0.08 g / cc or more.

【0018】また、これら低配向部分6aと高配向部分
6bはその厚さ方向に段階的又は傾斜的に配置される。
高配向部分6bは低配向部分6aに比べて全体の厚さの
2分の1以上であることが好ましい。さらに、高配向部
分6bの繊維の配向率は50〜90%であることが好適
で、低配向部分6aの繊維の配向率は10〜40%であ
ることが好適である。
The low-orientation portion 6a and the high-orientation portion 6b are arranged stepwise or slantwise in the thickness direction.
It is preferable that the high orientation portion 6b has a thickness of ½ or more of the entire thickness as compared with the low orientation portion 6a. Furthermore, the fiber orientation ratio of the high orientation portion 6b is preferably 50 to 90%, and the fiber orientation ratio of the low orientation portion 6a is preferably 10 to 40%.

【0019】次に、具体的数値に基づいて、実施例及び
この発明の範囲外の比較例について説明する。実施例1
及び2では、陽極マットMを単層で形成し、前述した鍵
針13の挿入深さHを陽極マットMの厚みの実施例1で
は8/10、実施例2では9/10に変更することによ
り、陽極容器1側と固体電解質管4側の配向量を変え
た。実施例3では陽極マットMを別の工程で作製した配
向量及び密度の異なる2層で形成した。このようにして
得られたマットMについて、光学顕微鏡で周方向及び厚
み方向の繊維の本数を数えて繊維の配向性を求めた。そ
の結果、実施例1〜3では陽極容器1側が 0.2、固体電
解質管4側が 0.6であった。
Next, examples and comparative examples outside the scope of the present invention will be described based on specific numerical values. Example 1
In Nos. 2 and 2, the anode mat M is formed as a single layer, and the insertion depth H of the key needle 13 is changed to 8/10 in the first embodiment and 9/10 in the second embodiment with respect to the thickness of the anode mat M. Thus, the amount of orientation on the side of the anode container 1 and on the side of the solid electrolyte tube 4 was changed. In Example 3, the anode mat M was formed by two layers having different orientation amounts and different densities, which were manufactured in different steps. With respect to the thus obtained mat M, the orientation of the fibers was determined by counting the number of fibers in the circumferential direction and the thickness direction with an optical microscope. As a result, in Examples 1 to 3, the anode container 1 side was 0.2 and the solid electrolyte tube 4 side was 0.6.

【0020】一方、比較例1及び2では陽極マットMを
単層で形成し、比較例1においては、鍵針13の挿入深
さ及び挿入密度は従来と同レベルにした。また、比較例
2では実施例2で形成したマットMを、固体電解質管側
4側と陽極容器1側を反対に配した。さらに、比較例3
では陽極マットMを異なる工程で作製した配向量の異な
る2層で形成した。
On the other hand, in Comparative Examples 1 and 2, the anode mat M was formed as a single layer, and in Comparative Example 1, the insertion depth and the insertion density of the key needle 13 were at the same level as in the conventional case. Further, in Comparative Example 2, the mat M formed in Example 2 was arranged such that the solid electrolyte tube side 4 side and the anode container 1 side were opposite. Furthermore, Comparative Example 3
Then, the anode mat M was formed of two layers having different orientation amounts, which were produced in different steps.

【0021】また、厚さ方向で配向量の異なるマットM
は、鍵針13の挿入した高配向部分6b側は固く、鍵針
13が到達していない低高配向部分6a側は軟らかく仕
上がっている。そして、マットMが電池に組み込まれた
状態では厚み方向に圧縮されているが、マットMの軟ら
かい側は厚み方向の圧縮に対する抵抗が小さいため、圧
縮されやすく、従ってその密度は高くなる。従って、嵩
密度は、陽極寸法に圧縮された状態で測定しなければな
らない。
Further, the mat M having a different amount of orientation in the thickness direction
Is hard on the side of the high orientation portion 6b where the key needle 13 is inserted, and soft on the side of the low high orientation portion 6a where the key needle 13 has not reached. Further, although the mat M is compressed in the thickness direction in a state where it is incorporated in the battery, the soft side of the mat M has a small resistance to compression in the thickness direction, and thus is easily compressed, and therefore its density becomes high. Therefore, bulk density must be measured while compressed to anode dimensions.

【0022】このようにして作製されたマットMに硫黄
を充填して圧縮した状態で電池に組み込んだ。このマッ
トMについて、充電回復率(多硫化ナトリウムが全て硫
黄に戻ったときが充電回復率100%である。)を、比
較例1の100サイクル充放電繰り返し後の充電回復率
を基準にして相対値として求めた。
The mat M thus produced was filled with sulfur and compressed, and then assembled into a battery. With respect to this matte M, the charge recovery rate (the charge recovery rate is 100% when all the sodium polysulfide has returned to sulfur) is relative to the charge recovery rate after 100 cycles of charge and discharge in Comparative Example 1. It was calculated as a value.

【0023】この試験後、電池を解体してマットMを取
り出した。このマットMを厚み方向に3分割し、陽極容
器1側と固体電解質管4側のサンプルの体積を測定し
た。この後、加熱及び洗浄工程で、硫黄と多硫化ナトリ
ウムを除去し、それぞれのマットMの重量を測定した。
この結果より、陽極容器1側と固体電解質管4側のサン
プルの嵩密度を測定した。これらの結果を表1に併せて
示す。
After this test, the battery was disassembled and the mat M was taken out. This mat M was divided into three in the thickness direction, and the volume of the sample on the anode container 1 side and the solid electrolyte tube 4 side was measured. Then, in the heating and washing steps, sulfur and sodium polysulfide were removed, and the weight of each mat M was measured.
From this result, the bulk densities of the samples on the anode container 1 side and the solid electrolyte tube 4 side were measured. The results are also shown in Table 1.

【0024】なお、表1中の層は厚み方向に分割された
数を表し、配向量は厚み方向の繊維の本数/周方向の繊
維の本数の比率を表す。また、充電回復率(1) は100
サイクルにわたる充放電の繰り返し後の値、充電回復率
(2) は1000サイクルにわたる充放電の繰り返し後の
値を示す。
The layers in Table 1 represent the number divided in the thickness direction, and the orientation amount represents the ratio of the number of fibers in the thickness direction / the number of fibers in the circumferential direction. The charge recovery rate (1) is 100
Value after repeated charge / discharge over a cycle, charge recovery rate
(2) shows a value after repeating charge and discharge for 1000 cycles.

【0025】[0025]

【表1】 [Table 1]

【0026】表1に示したように、各実施例の充電回復
率は比較例1のそれに比べると、100サイクルの充放
電の繰り返し後に3〜5%向上した。さらに、1000
サイクルの長期にわたる充放電の繰り返し後の充電回復
率は11〜16%向上し、長期にわたる試験でも、性能
劣化が低く抑えられている。これは、マットMが1層の
場合には層間の不連続部分で硫黄が析出して充電反応を
阻害するおそれがなく、また嵩密度は固体電解質管4側
より陽極容器1側が高くなり、かつ繊維の配向は低配向
部分6aが陽極容器1側で、高配向部分6bが固体電解
質管4側であることから、陽極容器1側に存在する活物
質の多硫化ナトリウムが充電反応に寄与する機会が高く
なったためと推定される。
As shown in Table 1, the charge recovery rate of each example was improved by 3 to 5% as compared with that of Comparative Example 1 after repeating 100 cycles of charging and discharging. In addition, 1000
The charge recovery rate after repeated charging and discharging for a long period of the cycle was improved by 11 to 16%, and the performance deterioration was suppressed to be low even in the long-term test. This is because when the mat M is a single layer, there is no risk that sulfur will be deposited in the discontinuous portion between the layers and inhibit the charging reaction, and the bulk density will be higher on the anode container 1 side than on the solid electrolyte tube 4 side, and The orientation of the fibers is such that the low orientation portion 6a is on the anode container 1 side and the high orientation portion 6b is on the solid electrolyte tube 4 side, so that the sodium polysulfide of the active material present on the anode container 1 side contributes to the charging reaction. It is highly probable that

【0027】この発明は上記実施例に限定されるもので
はなく、この発明の趣旨を逸脱しない範囲で例えば以下
のように構成を変更して具体化してもよい。 (1)陽極マットMを一層で形成し、鍵針13を挿入す
る深さHを3段階以上に変えて、繊維の配向の異なる層
を3層以上とすること。 (2)配向の異なる陽極マットMを別体で成形した後、
各マットMを接続する程度に鍵針13を挿入して一体化
すること。 (3)陽極マットMの低配向部分6aと高配向部分6b
の割合を変えたり、陽極マットMを3層以上で形成し
て、嵩密度や配向量を段階状又は傾斜状に変えること。
The present invention is not limited to the above-described embodiments, but may be embodied by changing the configuration as follows, for example, without departing from the spirit of the present invention. (1) The anode mat M is formed in a single layer, and the depth H into which the key needle 13 is inserted is changed in three or more steps so that the number of layers having different fiber orientations is three or more. (2) After separately molding the anode mats M having different orientations,
Insert and integrate the key needle 13 to the extent that the mats M are connected. (3) Low-orientation portion 6a and high-orientation portion 6b of the anode mat M
Or the anode mat M is formed of three or more layers to change the bulk density or the orientation amount in a stepwise or inclined manner.

【0028】[0028]

【発明の効果】以上詳述したように第1の発明によれ
ば、局所的に絶縁性の硫黄が析出するのを抑制して充電
回復率などの電池性能を向上させることができるという
優れた効果を奏する。第2の発明によれば、電池の充電
反応における反応効率を高めて充電回復率を確実に向上
させることができるという優れた効果が得られる。
As described in detail above, according to the first aspect of the invention, it is possible to suppress the local deposition of insulating sulfur and improve the battery performance such as the charge recovery rate. Produce an effect. According to the second aspect of the invention, the excellent effect that the reaction efficiency in the charging reaction of the battery can be increased and the charge recovery rate can be surely improved can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明を具体化したナトリウム−硫黄電池の
断面図である。
FIG. 1 is a cross-sectional view of a sodium-sulfur battery embodying the present invention.

【図2】図1のA−A線断面図である。FIG. 2 is a sectional view taken along the line AA of FIG.

【図3】陽極マットを示す部分斜視図である。FIG. 3 is a partial perspective view showing an anode mat.

【図4】(a)は鍵針をマットに挿入した状態を示す断
面図、(b)は鍵針をマットから抜いた状態を示す断面
図である。
FIG. 4A is a sectional view showing a state where a key needle is inserted in a mat, and FIG. 4B is a sectional view showing a state where the key needle is pulled out from the mat.

【符号の説明】[Explanation of symbols]

1…陽極容器、4…固体電解質管、6…陽極用導電材、
6a…低配向部分、6b…高配向部分、M…陽極マッ
ト。
1 ... Anode container, 4 ... Solid electrolyte tube, 6 ... Anode conductive material,
6a ... Low orientation portion, 6b ... High orientation portion, M ... Anode mat.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 筒状の陽極容器内にナトリウムイオンを
選択的に透過させる有底筒状の固体電解質管を配置する
とともに、両者間の収容空間に硫黄を含浸する陽極用導
電材を収容したナトリウム−硫黄電池において、 前記陽極用導電材を単層で形成し、かつその嵩密度を固
体電解質管側より陽極容器側を高く形成したことを特徴
とするナトリウム−硫黄電池。
1. A cylindrical solid electrolyte tube having a bottom for selectively allowing sodium ions to permeate is arranged in a cylindrical anode container, and a conductive material for an anode impregnated with sulfur is contained in a space between them. In the sodium-sulfur battery, the conductive material for an anode is formed in a single layer, and the bulk density thereof is formed higher on the anode container side than on the solid electrolyte tube side.
【請求項2】 前記陽極用導電材を単層又は複数層と
し、その嵩密度を固体電解質管側より陽極容器側を高く
形成するとともに、厚さ方向に伸びる繊維の割合を陽極
容器側より固体電解質管側を高くしたことを特徴とする
ナトリウム−硫黄電池。
2. The conductive material for an anode is a single layer or a plurality of layers, the bulk density of which is higher on the anode container side than on the solid electrolyte tube side, and the proportion of fibers extending in the thickness direction is more solid than the anode container side. A sodium-sulfur battery characterized in that the electrolyte tube side is raised.
JP4238434A 1992-09-07 1992-09-07 Sodium-sulfur battery Expired - Lifetime JP2771398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4238434A JP2771398B2 (en) 1992-09-07 1992-09-07 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4238434A JP2771398B2 (en) 1992-09-07 1992-09-07 Sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPH0689740A true JPH0689740A (en) 1994-03-29
JP2771398B2 JP2771398B2 (en) 1998-07-02

Family

ID=17030162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4238434A Expired - Lifetime JP2771398B2 (en) 1992-09-07 1992-09-07 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JP2771398B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101104801B1 (en) * 2009-10-14 2012-01-12 주식회사 효성 Sulfur Positive Electrodes and Method for Preparing the Same
CN109075352A (en) * 2015-10-08 2018-12-21 电喷飞行***公司 battery pack system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101104801B1 (en) * 2009-10-14 2012-01-12 주식회사 효성 Sulfur Positive Electrodes and Method for Preparing the Same
CN109075352A (en) * 2015-10-08 2018-12-21 电喷飞行***公司 battery pack system

Also Published As

Publication number Publication date
JP2771398B2 (en) 1998-07-02

Similar Documents

Publication Publication Date Title
EP0697746B1 (en) Sealed zinc secondary battery and zinc electrode therefor
JP6444205B2 (en) Positive electrode, manufacturing method thereof, and air secondary battery using the positive electrode
EP1775787B1 (en) Manufacturing method for cathode active material for alkaline battery
CA2037742C (en) Electrochemical cell
GB2280779A (en) High-temperature rechargeable cell having solid electrolyte separator with projecting lobes in polygonal housing
JP2021114361A (en) Power storage device and power storage module
CA1170308A (en) Electrochemical cell having cylindrical electrode elements
US5460899A (en) Sealed zinc secondary battery and zinc electrode therefor
US4076902A (en) Sodium-sulfur storage battery
JPH09504905A (en) Improved battery plate and method of making the same
JP2771398B2 (en) Sodium-sulfur battery
WO2020080420A1 (en) Lead-acid battery
JP3086345B2 (en) Method for manufacturing sodium-sulfur battery
EP0213828A1 (en) Sodium-sulphur storage battery
EP0161079B1 (en) Sodium-sulfur storage batteries
EP1116288B1 (en) Nickel positive electrode plate for alkaline storage batteries and method for producing the same
JPH0261101B2 (en)
JP2820376B2 (en) Carbon felt for sodium-sulfur battery and method for producing the same
JP2919269B2 (en) Method for producing carbon felt for sodium-sulfur battery
JP2725984B2 (en) Sodium-sulfur battery
JP2820354B2 (en) Sodium-sulfur battery
JPH0665070B2 (en) Sodium-sulfur battery
JP2832155B2 (en) Carbon felt for sodium-sulfur battery and method for producing the same
JP2001500314A (en) Electrochemical storage battery in which electrolyte is stored
JP2680642B2 (en) Method for manufacturing zinc electrode for alkaline storage battery