JPH0689621A - Manufacture of high conductivity and high strength stranded wire - Google Patents

Manufacture of high conductivity and high strength stranded wire

Info

Publication number
JPH0689621A
JPH0689621A JP26802092A JP26802092A JPH0689621A JP H0689621 A JPH0689621 A JP H0689621A JP 26802092 A JP26802092 A JP 26802092A JP 26802092 A JP26802092 A JP 26802092A JP H0689621 A JPH0689621 A JP H0689621A
Authority
JP
Japan
Prior art keywords
wire
stranded wire
copper alloy
copper
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26802092A
Other languages
Japanese (ja)
Inventor
Mutsuo Sakamoto
睦夫 阪本
Seiichi Doi
誠一 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP26802092A priority Critical patent/JPH0689621A/en
Publication of JPH0689621A publication Critical patent/JPH0689621A/en
Pending legal-status Critical Current

Links

Landscapes

  • Wire Processing (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

PURPOSE:To obtain a stranded wire with the improved conductivity, strength, and straightness, by annealing a copper, applying a wire drawing process, stranding plural wires into the stranded wire, continuously heating and cooling the stranded wire in a straight line condition, and then winding it. CONSTITUTION:After a copper or a copper alloy wire is annealed, a wire drawing process is applied at the room temperature the processing rate 905 or more, and plural copper or copper alloy wires after the wire drawing process are stranded into a stranded wire. Then, the stranded ire is continuously heated and cooled in a straight line condition, and then, it is wound into an objective stranded wire. In this case, since a distortion is generated by winding a high strength stranded wire, it is favorable to continuously heat and cool the stranded wire in an unwound straight line condition and to wind it after that. As the copper alloy, a copper alloy wire including 0.1 to 0.9% of Sn, and Cu and the unavoidable impurities of the remaining part, or a copper alloy including 0.1 to 0.5% of Zn, 0.05 to 0.5% of Mg, and Cu and the unavoidable impurities of the remaining part, is used favorably.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、医療機器、ロボット、
あるいは自動車等の電気配線として使用される撚り線の
製造法に関するもので、特に導電性、強度および真直性
を改善した撚り線の製造法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to medical equipment, robots,
Alternatively, the present invention relates to a method for manufacturing a stranded wire used as electric wiring for automobiles, etc., and particularly to a method for manufacturing a stranded wire having improved conductivity, strength and straightness.

【0002】[0002]

【従来の技術】従来、医療機器、ロボット、あるいは自
動車等の電気配線として使用される撚り線は、無酸素銅
やタフピッチ銅などの純銅線を焼鈍して軟らかくした
後、複数本を集合して撚り合わせて撚り線とし、これに
塩化ビニール、架橋塩化ビニールや架橋ポリエチレン等
の絶縁体を被覆したものが使用されていた。
2. Description of the Related Art Conventionally, twisted wires used as electric wiring for medical equipment, robots, automobiles, etc. are made by annealing pure copper wires such as oxygen-free copper or tough pitch copper to soften them and then gathering a plurality of them. A twisted wire is formed by twisting the wires, and the wires are covered with an insulating material such as vinyl chloride, crosslinked vinyl chloride or crosslinked polyethylene.

【0003】[0003]

【発明が解決しようとする課題】しかし、近年の傾向と
して、上記機器の小型化、軽量化に伴い、配線もより細
線が要求されるようになっている。これに伴い、撚り線
は、より強度の高いものとする必要あるが、純銅線の場
合強度を高くするため焼鈍しないものを使用すると、撚
り加工が困難となり、真直性の良い撚り線が得られない
という問題があった。また高強度銅合金線を使用した場
合は、焼鈍しないと撚り加工が著しく困難となり、真直
性の良い撚り線が得られないという問題があった。
However, as a tendency in recent years, with the miniaturization and weight reduction of the above-mentioned equipment, finer wiring is required. Along with this, it is necessary for the stranded wire to have higher strength, but in the case of pure copper wire, if a non-annealed wire is used to increase the strength, it becomes difficult to twist the wire and a stranded wire with good straightness can be obtained. There was a problem of not having. Further, when a high-strength copper alloy wire is used, there is a problem that twisting becomes extremely difficult without annealing and a twisted wire with good straightness cannot be obtained.

【0004】[0004]

【問題を解決するための手段】本発明は、これに鑑み種
々検討の結果、導電性、強度に優れ、かつ真直性に優れ
た撚り線の製造法を開発したものである。即ち本発明
は、銅または銅合金線を焼鈍した後室温で加工率90%
以上の伸線加工を施す工程と、該伸線加工後の銅または
銅合金線を複数本撚り合わせて撚り線とする工程と、こ
の撚り線を直線状態で連続して加熱後冷却処理した後、
巻取る工程とを含むことを特徴とする高導電性高強度撚
り線の製造方法である。ここで強度の高い撚り線を巻取
ることにより、歪が生じるため巻取ることなく直線状態
で連続して加熱後冷却処理した後巻取ることが好まし
い。
As a result of various studies in view of this, the present invention has developed a method for producing a stranded wire which is excellent in conductivity, strength and straightness. That is, the present invention has a working rate of 90% at room temperature after annealing a copper or copper alloy wire.
After the above wire drawing step, a step of twisting a plurality of copper or copper alloy wires after the wire drawing into a stranded wire, and continuously heating the stranded wire in a straight line state and after cooling it ,
And a winding step, which is a method for producing a highly conductive and high strength stranded wire. Since winding a high-strength stranded wire causes distortion, it is preferable that the stranded wire is continuously wound in a straight line without being wound and then cooled after being wound.

【0005】銅合金線としてはSnを0.1〜0.9%
含み残部がCuと不可避的不純物とからなる銅合金線、
Znを0.1〜0.5%、Mgを0.05〜0.5%含
み残部がCuと不可避的不純物とからなる銅合金線が好
適である。
As a copper alloy wire, Sn is 0.1 to 0.9%.
A copper alloy wire, the balance of which is Cu and inevitable impurities,
A copper alloy wire containing 0.1 to 0.5% Zn, 0.05 to 0.5% Mg and the balance Cu and inevitable impurities is preferable.

【0006】また銅または銅合金線に厚さ0.1〜2μ
mのAgまたはNi層を被覆した複合線も効果的に使用
される。
The thickness of the copper or copper alloy wire is 0.1 to 2 μm.
Composite wires coated with m Ag or Ni layers are also effectively used.

【0007】伸線加工の加工率は99%以上であること
が望ましい。
It is desirable that the working ratio of wire drawing is 99% or more.

【0008】銅または銅合金線を撚り線とした後、この
撚り線をダイスで縮径加工した後、直線状態で連続して
加熱冷却する場合もある。
In some cases, after twisting a copper or copper alloy wire into a stranded wire, the stranded wire is subjected to a diameter reduction process with a die and then continuously heated and cooled in a linear state.

【0009】加熱後冷却する条件としては、加熱後冷却
した撚り線の引張り強さが加熱前の撚り線の引張強さの
70〜95%となるようにすることが望ましい。
As a condition for cooling after heating, it is desirable that the tensile strength of the stranded wire cooled after heating is 70 to 95% of the tensile strength of the stranded wire before heating.

【0010】[0010]

【作用】本発明は、銅または銅合金線を焼鈍した後室温
で加工率90%以上の伸線加工を施すことにより強度の
著しい改善を行い、それらを複数本撚り合わせて撚り線
とした後、この撚り線を巻き取らずに直線状態で連続し
て加熱後冷却処理することにより、強度を著しく低下さ
せずに、撚線工程で生じた内部歪を緩和することにより
撚り線の「ばらけ」を防止することを特徴とするもので
ある。伸線加工の加工率が90%未満では強度が充分に
向上せず、強度を充分に向上させるためには加工率は9
9%以上とするのが望ましい。
According to the present invention, after the copper or copper alloy wire is annealed, the strength is remarkably improved by performing drawing at a room temperature at a working rate of 90% or more, and a plurality of them are twisted to form a stranded wire. By continuously heating the stranded wire in a straight line without winding it and then cooling it, the internal strain generated in the stranded wire process is alleviated without significantly lowering the strength. It is characterized by preventing. If the working ratio of wire drawing is less than 90%, the strength is not sufficiently improved, and the working ratio is 9 in order to sufficiently improve the strength.
It is desirable to be 9% or more.

【0011】ここで、好ましくは、撚り線を巻取らずに
直線状態で連続して加熱後冷却処理を行う理由は、直線
状態で加熱、冷却処理を行うことにより、撚り線の真直
性が改善されるからである。なお、この後、スプール等
に巻き取られることにより、真直性が少々損なわれ、い
わゆる巻き癖がつく場合があるが、通常、知られている
ように撚り線の直径に比較してスプールの径を十分大き
くすることにより実用上、不都合が生じない。
[0011] Here, preferably, the reason why the cooling treatment after heating is continuously performed in a straight state without winding the stranded wire is that the straightness of the stranded wire is improved by performing the heating and cooling treatment in the straight state. Because it is done. After that, when wound around a spool or the like, the straightness may be slightly impaired and a so-called winding tendency may be generated, but as is generally known, the diameter of the spool is larger than the diameter of the twisted wire. Is sufficiently large so that practically no inconvenience occurs.

【0012】銅合金線としてSnを0.1〜0.9%含
み残部がCuと不可避的不純物とからなる銅合金線、Z
nを0.1〜0.5%、Mgを0.05〜0.5%含み
残部がCuと不可避的不純物とからなる銅合金線が好適
なのはこれらの銅合金線は加工硬化により強度が大きく
なり、加工性も良好であるからである。Sn、Zn、M
gが下限未満では充分な強度が得られず上限を超えると
加工性、導電性が若干低下してしまうので上記のように
限定したものが好適なのである。
As a copper alloy wire, a copper alloy wire containing 0.1 to 0.9% of Sn and the balance of Cu and inevitable impurities, Z
A copper alloy wire in which n is 0.1 to 0.5%, Mg is 0.05 to 0.5% and the balance is Cu and inevitable impurities is preferable because these copper alloy wires have high strength due to work hardening. And the workability is also good. Sn, Zn, M
When g is less than the lower limit, sufficient strength cannot be obtained, and when it exceeds the upper limit, workability and conductivity are slightly deteriorated. Therefore, the above-specified ones are preferable.

【0013】本発明の対象である長尺撚り線の場合、こ
れを巻き取った状態で加熱冷却処理を行うと、真直性が
悪く、たとえば、これに塩化ビニール等を被覆して自動
車用配線に使用した場合、真直性が悪く組み付け作業性
を損なう。本発明では、直線状態で連続して加熱処理を
行うことにより、真直性が良好でかつ、実用上十分な強
度と導電性が得られることを見い出した。なお、直線状
態で連続して加熱処理を行う際、張力を負荷することに
より、より真直性の改善を計ることが出来る。この場
合、被熱処理材に負荷する張力は、大きい方がその効果
が顕著であるが、大きすぎると張力変動が生じた場合に
断線事故に至るため、通常は、加熱状態における耐力の
20〜70%程度が好ましい。また撚り線を加熱冷却処
理する条件を加熱後冷却した撚り線の引張り強さが加熱
前の撚り線の引張り強さの70〜95%となる条件とす
るのが望ましいのは、95%を超える場合は真直性の改
善が充分でなく、70%未満の場合は真直性は充分とな
るが、強度の低下が著しいため、実用上70〜95%が
最も好ましい結果が得られたからである。
In the case of the long stranded wire which is the object of the present invention, when it is heated and cooled in a wound state, the straightness is poor. For example, it is coated with vinyl chloride or the like to be used for automobile wiring. If used, straightness is poor and assembly workability is impaired. In the present invention, it was found that the straightness is good and the practically sufficient strength and conductivity can be obtained by continuously performing the heat treatment in a linear state. In addition, when the heat treatment is continuously performed in a straight line state, the straightness can be further improved by applying tension. In this case, the larger the tension applied to the material to be heat-treated is, the more remarkable the effect is. However, if the tension is too large, a wire breakage accident occurs, so that the yield strength in the heated state is usually 20 to 70. % Is preferable. Further, it is preferable that the condition for heating and cooling the stranded wire is such that the tensile strength of the stranded wire that is cooled after heating is 70 to 95% of the tensile strength of the stranded wire before heating, which exceeds 95%. In this case, the straightness is not sufficiently improved, and when it is less than 70%, the straightness is sufficient, but the strength is remarkably reduced, and therefore, the practically preferable range is 70 to 95%.

【0014】これらの銅または銅合金線に厚さ0.1〜
2μmのAgまたはNi層を被覆した複合線を用いるこ
ともあるがこれは胴または銅合金線の耐食性を向上さ
せ、特に腐食環境および高温における電気接触特性を向
上させるためであり、被覆の厚さを0.1〜2μmとす
るのは、0.1μm未満ではその効果が不充分であり、
2μmを超えると、その効果が飽和する一方、いたずら
にコストを上昇させるからである。
These copper or copper alloy wires have a thickness of 0.1 to
A composite wire coated with a 2 μm Ag or Ni layer may be used, but this is to improve the corrosion resistance of the body or the copper alloy wire, especially to improve the electrical contact characteristics in a corrosive environment and high temperature. Is 0.1 to 2 μm, the effect is insufficient if less than 0.1 μm,
This is because if the thickness exceeds 2 μm, the effect is saturated and the cost is unnecessarily increased.

【0015】さらに、撚り線加工を行った後、撚り線の
密度を向上させるため、撚り線の外径よりも小径のダイ
スを通すことにより、いわゆる縮径加工を行った場合に
ついては、真直性に関して本発明の効果がより一層、発
揮される。
Furthermore, in order to improve the density of the twisted wire after the twisted wire is processed, a so-called diameter-reducing process is performed by passing through a die having a diameter smaller than the outer diameter of the twisted wire. With respect to the above, the effect of the present invention is further exerted.

【0016】[0016]

【実施例】以下、本発明を実施例により更に詳細に説明
する。表1に示す銅および銅合金を通常の溶解鋳造、伸
線、焼鈍の繰り返しによりそれぞれ所定の線径までの伸
線を行った後、500℃で30分間の焼鈍処理をした
後、表1に示す加工率で伸線を行い、直径0.19mmの
線とした。これらの線を、7本撚り合わせて撚り線とし
た後、巻取らずに直線状態で、加熱部の長さが5mの走
間加熱冷却装置により表1に示す温度、時間で加熱後、
室温まで冷却し、いわゆる時効処理を行った。この後、
この撚り線は、胴径200mmのボビンに巻取られた。こ
れらの、撚り線の諸特性を測定したところ、表1に示す
結果が得られた。ここで真直性は、長さ1mの撚り線を
垂直に吊り下げた時の自由長さ10 (m)を測定し、次
式で定義した。 真直性=10 ×100(%)
EXAMPLES The present invention will now be described in more detail with reference to examples. The copper and copper alloys shown in Table 1 were each drawn to a predetermined wire diameter by repeating ordinary melting casting, wire drawing and annealing, and then annealed at 500 ° C. for 30 minutes, and then shown in Table 1. A wire having a diameter of 0.19 mm was drawn at the processing rate shown. After twisting 7 of these wires into a stranded wire, after heating at a temperature and time shown in Table 1 by a running heating and cooling device with a heating section of 5 m in a straight state without winding,
After cooling to room temperature, so-called aging treatment was performed. After this,
The stranded wire was wound on a bobbin having a body diameter of 200 mm. When the properties of these stranded wires were measured, the results shown in Table 1 were obtained. Here straightness measures the free length 1 0 (m) when suspended strand length 1m vertically, as defined by the following equation. Straightness = 1 0 × 100 (%)

【0017】[0017]

【表1】 [Table 1]

【0018】表1から明らかなように本発明例No.1〜
9は導電性は充分良好であり、No.3〜9は従来例に比
較して強度と真直性に優れている。またNo.1、2は従
来例に比較して真直性に優れており、強度も従来例と同
程度である。これに対し、伸線加工率が本発明の範囲よ
り小さい比較例No.11は強度と真直が劣ることが判
る。
As is apparent from Table 1, the invention sample No. 1 to
No. 9 has sufficiently good conductivity, and No. 9 3 to 9 are superior in strength and straightness as compared with the conventional example. In addition, No. Nos. 1 and 2 are superior in straightness as compared with the conventional example, and the strength is similar to that of the conventional example. On the other hand, Comparative Example No. having a wire drawing ratio smaller than the range of the present invention. No. 11 is inferior in strength and straightness.

【0019】[0019]

【発明の効果】以上述べたように本発明によれば、導電
性と強度に優れ、かつ真直性の良好な撚り線の製造が可
能であり、工業上顕著な効果を奏するものである。
As described above, according to the present invention, it is possible to manufacture a stranded wire having excellent conductivity and strength and good straightness, and it is possible to achieve a remarkable effect industrially.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 銅または銅合金線を焼鈍した後、室温で
加工率90%以上の伸線加工を施す工程と、該伸線加工
後の銅または銅合金線を複数本撚り合わせて撚り線とす
る工程と、この撚り線を直線状態で連続して加熱後冷却
処理した後、巻取る工程とを含むことを特徴とする高導
電性高強度撚り線の製造法。
1. A step of annealing a copper or copper alloy wire and then performing a drawing process at a working rate of 90% or more at room temperature, and twisting a plurality of the copper or copper alloy wires after the drawing process into a stranded wire. And a step of continuously heating the stranded wire in a linear state, cooling the stranded wire, and then winding the stranded wire, and then winding the wound wire.
【請求項2】 撚り線を巻取ることなく直線状態で連続
して加熱後冷却処理した後、巻取ることを特徴とする請
求項1記載の高導電性高強度撚り線の製造法。
2. The method for producing a highly conductive and high strength stranded wire according to claim 1, wherein the stranded wire is continuously heated in a straight line without being wound and then cooled and then wound.
【請求項3】 銅合金線が、Snを0.1〜0.9%
(wt%以下同じ)含み残部がCuと不可避不純物とから
なる銅合金線であることを特徴とする請求項1記載の高
導電性高強度撚り線の製造法。
3. The copper alloy wire has a Sn content of 0.1 to 0.9%.
The method for producing a highly conductive and high-strength stranded wire according to claim 1, characterized in that the remaining content (same as in wt% or less) is a copper alloy wire comprising Cu and inevitable impurities.
【請求項4】 銅合金線が、Znを0.1〜0.5%、
Mgを0.05〜0.5%含み残部がCuと不可避不純
物とからなる銅合金線であることを特徴とする請求項1
記載の高導電性高強度撚り線の製造法。
4. The copper alloy wire contains Zn in an amount of 0.1 to 0.5%,
2. A copper alloy wire comprising 0.05 to 0.5% of Mg and the balance of Cu and unavoidable impurities.
A method for producing a high-conductivity, high-strength stranded wire as described.
【請求項5】 銅または銅合金線が、厚さ0.1〜2μ
mのAgまたは、Ni層で被覆されている複合線である
ことを特徴とする請求項1記載の高導電性高強度撚り線
の製造法。
5. The copper or copper alloy wire has a thickness of 0.1 to 2 μm.
The method for producing a highly conductive and high strength stranded wire according to claim 1, which is a composite wire coated with m Ag or Ni layer.
【請求項6】 銅または銅合金線を焼鈍した後、室温で
加工率99%以上の伸線加工を施すことを特徴とする請
求項1記載の高導電性高強度撚り線の製造法。
6. The method for producing a highly conductive and high-strength stranded wire according to claim 1, wherein after the copper or copper alloy wire is annealed, the wire drawing is carried out at room temperature at a working ratio of 99% or more.
【請求項7】 撚り線を巻取ることなくダイスで縮径加
工した後、直線状態で連続して加熱後冷却処理した後巻
取ることを特徴とする請求項1記載の高導電性高強度撚
り線の製造法。
7. The high-conductivity and high-strength twist according to claim 1, wherein the stranded wire is subjected to diameter reduction processing with a die without being wound, and is continuously heated in a straight line and then cooled and then wound. Wire manufacturing method.
【請求項8】 直線状態で連続して加熱後冷却処理する
条件を、加熱後冷却した撚り線の引張り強さが加熱前の
撚り線の引張り強さの70〜95%となる条件とするこ
とを特徴とする請求項1記載の高導電性高強度撚り線の
製造法。
8. The condition for continuously heating and cooling in a linear state is such that the tensile strength of the stranded wire after heating and cooling is 70 to 95% of the tensile strength of the stranded wire before heating. The method for producing a high-conductivity, high-strength stranded wire according to claim 1, characterized in that
JP26802092A 1992-09-09 1992-09-09 Manufacture of high conductivity and high strength stranded wire Pending JPH0689621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26802092A JPH0689621A (en) 1992-09-09 1992-09-09 Manufacture of high conductivity and high strength stranded wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26802092A JPH0689621A (en) 1992-09-09 1992-09-09 Manufacture of high conductivity and high strength stranded wire

Publications (1)

Publication Number Publication Date
JPH0689621A true JPH0689621A (en) 1994-03-29

Family

ID=17452783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26802092A Pending JPH0689621A (en) 1992-09-09 1992-09-09 Manufacture of high conductivity and high strength stranded wire

Country Status (1)

Country Link
JP (1) JPH0689621A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238478A (en) * 2009-03-31 2010-10-21 Mitsubishi Cable Ind Ltd Manufacturing method of wire conductor, wire conductor and insulated wire
FR2971439A1 (en) * 2011-02-11 2012-08-17 Nexans Method for forming copper wire for electric cable, involves measuring parameters related to state of moisture and temperature of wire by temperature sensor and capacitive moisture sensor as wire passes to bobbin for winding
CN104051078A (en) * 2014-06-27 2014-09-17 安徽顺驰电缆有限公司 Technology for manufacturing plastic electric wire and cable
JP2015103478A (en) * 2013-11-27 2015-06-04 矢崎エナジーシステム株式会社 Stranded conductor and cable
CN107685078A (en) * 2017-07-10 2018-02-13 常州易藤电气有限公司 A kind of preparation method of electric railway copper alloy dropper line
JP2021531230A (en) * 2018-07-24 2021-11-18 南▲開▼大学Nankai University Graphene-Metal composite wire manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238478A (en) * 2009-03-31 2010-10-21 Mitsubishi Cable Ind Ltd Manufacturing method of wire conductor, wire conductor and insulated wire
FR2971439A1 (en) * 2011-02-11 2012-08-17 Nexans Method for forming copper wire for electric cable, involves measuring parameters related to state of moisture and temperature of wire by temperature sensor and capacitive moisture sensor as wire passes to bobbin for winding
JP2015103478A (en) * 2013-11-27 2015-06-04 矢崎エナジーシステム株式会社 Stranded conductor and cable
WO2015079992A1 (en) * 2013-11-27 2015-06-04 矢崎エナジーシステム株式会社 Twisted conductor and cable
CN104051078A (en) * 2014-06-27 2014-09-17 安徽顺驰电缆有限公司 Technology for manufacturing plastic electric wire and cable
CN107685078A (en) * 2017-07-10 2018-02-13 常州易藤电气有限公司 A kind of preparation method of electric railway copper alloy dropper line
JP2021531230A (en) * 2018-07-24 2021-11-18 南▲開▼大学Nankai University Graphene-Metal composite wire manufacturing method

Similar Documents

Publication Publication Date Title
JP5607853B1 (en) Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, wire harness, and aluminum alloy wire manufacturing method
US9099218B2 (en) Electric wire or cable
TWI413132B (en) Electric wire conductor for wiring, electric wire for wiring, and method of producing these
JP4845069B2 (en) Wire conductor for wiring, method for manufacturing wire conductor for wiring, wire for wiring and copper alloy wire
US6627009B1 (en) Extrafine copper alloy wire, ultrafine copper alloy wire, and process for producing the same
US10453581B2 (en) Method for manufacturing electric wire
WO2015129457A1 (en) Copper alloy twisted wire, manufacturing method therefor, and electrical wire for automobile
JP6686293B2 (en) Copper alloy wire, copper alloy stranded wire, coated wire and wire harness
JP2007023305A (en) Conductor element wire for electric wire for automobile, and its manufacturing method
JP2006307307A (en) Wiring cable for moving part in robot
JP5486870B2 (en) Manufacturing method of aluminum alloy wire
JP2002129262A (en) Extra-fine copper alloy wire and its production method
JP2010205549A (en) Method of manufacturing wire conductor, and wire conductor
JPH0689621A (en) Manufacture of high conductivity and high strength stranded wire
JP7503240B2 (en) Coated electric wire, electric wire with terminal, copper alloy wire, copper alloy stranded wire, and method for manufacturing copper alloy wire
CN107887053B (en) Plated copper wire, plated stranded wire, insulated wire, and method for producing plated copper wire
JP5443744B2 (en) Electric wire conductor manufacturing method and electric wire conductor
JPH0689620A (en) Manufacture of high conductivity and high strength stranded wire
JPH0689622A (en) Manufacture of stranded wire for wiring
WO2009154239A1 (en) Electric wire conductor for wiring, electric wire for wiring, and method for manufacturing electric wire conductor for wiring
JPH06187831A (en) Automobile wire conductor and automobile wire
JP6135949B2 (en) Copper alloy wire, copper alloy stranded wire, covered wire, and wire with terminal
JP2021140958A (en) Plated copper wire, twisted plated wire and electric insulated wire
WO2024043284A1 (en) Aluminum-based wire, aluminum-based strand wire, and aluminum-based cable
JPH11224538A (en) Electric wire conductor for automobile