JPH0689388B2 - Method for producing reducing gas - Google Patents

Method for producing reducing gas

Info

Publication number
JPH0689388B2
JPH0689388B2 JP61178208A JP17820886A JPH0689388B2 JP H0689388 B2 JPH0689388 B2 JP H0689388B2 JP 61178208 A JP61178208 A JP 61178208A JP 17820886 A JP17820886 A JP 17820886A JP H0689388 B2 JPH0689388 B2 JP H0689388B2
Authority
JP
Japan
Prior art keywords
gas
reducing
furnace
iron
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61178208A
Other languages
Japanese (ja)
Other versions
JPS6335733A (en
Inventor
茂樹 笹原
勲 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP61178208A priority Critical patent/JPH0689388B2/en
Publication of JPS6335733A publication Critical patent/JPS6335733A/en
Publication of JPH0689388B2 publication Critical patent/JPH0689388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Landscapes

  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は直接製鉄法用の生産設備を利用して行なう還元
性ガスの製造方法に関し、詳細には、溶融還元法を適用
した直接製鉄工程で、高い還元ポテンシャルを持った還
元性ガスを必要量確実に得ることができる様に改善され
た還元性ガスの製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a reducing gas using a production facility for a direct iron-making method, and more specifically, a direct iron-making step to which a smelting reduction method is applied. Then, the present invention relates to an improved method for producing a reducing gas which can surely obtain a required amount of the reducing gas having a high reducing potential.

[従来の技術] 高炉によらないで銑鉄を製造する技術としていわゆる直
接製鉄法が脚光を浴びつつあり、鉄鉱石をいかに低コス
トで還元するかという観点に立って様々の改良研究が進
められている。
[Prior Art] The so-called direct iron-making method is in the spotlight as a technology for producing pig iron without using a blast furnace, and various improvement studies have been conducted from the viewpoint of how to reduce iron ore at low cost. There is.

たとえば特開昭56−123310号公報は上記直接製鉄法を開
示するものの一つであり、その基本的な構成は第4図の
フローに示す通りである。即ち、鉄鉱石はシャフト炉1
で予備還元された後キュポラ2へ送られ、ここにはコー
クスや石灰石及び熱風が吹込まれ、予備還元鉄は更に溶
融還元を受けて銑鉄となる。この銑鉄は引き続いてガス
化炉4へ送られ、該溶銑中に吹込まれる炭材と酸素の反
応によって生じる還元性ガスにより最終還元に付すと共
に、該ガス化炉4で発生する還元性ガスはブロア5から
熱風炉3aを経た後、シャフト炉1へ還元性ガスとして供
給される。尚ガス化炉4で最終還元を受けた溶銑は、そ
の後溶銑処理炉6で脱珪、脱硫、脱燐等の処理を経た
後、転炉7で脱炭処理して鋼とする。
For example, Japanese Unexamined Patent Publication No. 56-123310 discloses one of the above direct iron making methods, and its basic configuration is as shown in the flow chart of FIG. That is, iron ore is a shaft furnace 1
Then, it is pre-reduced and sent to the cupola 2, where coke, limestone, and hot air are blown, and the pre-reduced iron is further subjected to smelting reduction to become pig iron. This pig iron is subsequently sent to the gasification furnace 4, where it is subjected to final reduction by the reducing gas generated by the reaction of the carbonaceous material blown into the hot metal and oxygen, and the reducing gas generated in the gasification furnace 4 is After passing through the hot air stove 3a from the blower 5, the reducing gas is supplied to the shaft furnace 1. The hot metal subjected to the final reduction in the gasification furnace 4 is then subjected to desiliconization, desulfurization, dephosphorization, etc. in the hot metal treatment furnace 6 and then decarburized in the converter 7 to obtain steel.

上記の方法では、シャフト炉およびキュポラを経由する
ことによって製造された溶銑をガス化炉に導き、該ガス
化炉内へ炭材と酸素を吹込んで燃焼させ、当該燃焼熱に
よって溶銑を加熱すると共に、生成する還元性ガスはブ
ロワー5から熱風炉3bを経てシャフト炉1へ送り鉄鉱石
の予備還元に利用していた。この方法であれば、上記ガ
ス化炉4内に装入された溶銑中に含まれる少量の未還元
成分についても、前記還元性ガスによって還元が行なわ
れるため、高レベルの還元効率を得ることができる。
In the above method, the hot metal produced by passing through a shaft furnace and cupola is introduced into a gasification furnace, carbon material and oxygen are blown into the gasification furnace to burn, and the hot metal is heated by the combustion heat. The reducing gas produced was sent from the blower 5 to the shaft furnace 1 through the hot air stove 3b and used for preliminary reduction of iron ore. According to this method, even a small amount of unreduced components contained in the hot metal charged in the gasification furnace 4 is reduced by the reducing gas, so that a high level of reduction efficiency can be obtained. it can.

ところが上記の方法を実施する為には本来の製鉄設備以
外に専用のガス化炉を設けなければならないので、設備
負担が大きいという問題がある。
However, in order to carry out the above method, it is necessary to provide a dedicated gasification furnace in addition to the original iron making equipment, which causes a problem of heavy equipment load.

そこで、たとえば特開昭59−222508号公報に開示されて
いる様な直接製鉄法が開発され、直接製鉄法の主流とな
ってきている。第5図はその様な直接製鉄法を略示する
ものであり、鉄鉱石を予備還元炉8で予備還元した後溶
融還元炉9へ送り、該溶融還元炉9に吹込まれる炭材と
酸素の反応によって生ずる還元性ガスにより最終還元し
て溶鉄を得るものである。この新しい直接製鉄法では、
溶融還元炉9内における溶鉄を十分な高熱に保持する必
要があるため、湯面に酸素を吹込み、湯面に浮上してく
る還元性ガスを対象とするポストコンバッションが行な
われる。そしてポストコンバッションにより還元ポテン
シャルの低下した高温ガスは改質器10で炭化水素ガス等
と反応させることにより還元ポテンシャルを高めると共
に予備還元に適した温度まで降下させ、予備還元用のガ
スとして予備還元炉8へ供給している。即ち第5図に示
したタイプの直接製鉄法では、溶融還元炉9にガス発生
炉としての機能を兼備させているので、わざわざ専用の
ガス発生炉を設ける必要がなく、しかも生成ガスを還元
ポテンシャルの高められた状態で予備還元炉8へ送給す
る方法であるから予備還元効率も高く、設備的にもまた
操業効率の面からみても非常に有効な方法と言える。
Therefore, for example, a direct iron manufacturing method as disclosed in Japanese Patent Laid-Open No. 59-222508 has been developed and has become the mainstream of the direct iron manufacturing method. FIG. 5 schematically shows such a direct iron-making method. The iron ore is pre-reduced in the preliminary reduction furnace 8 and then sent to the smelting reduction furnace 9, and the carbonaceous material and oxygen blown into the smelting reduction furnace 9 are supplied. The molten iron is finally reduced by the reducing gas generated by the reaction of. With this new direct ironmaking process,
Since it is necessary to keep the molten iron in the smelting reduction furnace 9 at a sufficiently high temperature, oxygen is blown into the molten metal surface and post-combustion is performed on the reducing gas that floats on the molten metal surface. Then, the high-temperature gas whose reduction potential has been reduced by post-combustion is reacted with hydrocarbon gas in the reformer 10 to increase the reduction potential and lower the temperature to a temperature suitable for preliminary reduction. Supply to 8. That is, in the direct iron manufacturing method of the type shown in FIG. 5, since the smelting reduction furnace 9 also has a function as a gas generation furnace, it is not necessary to bother to provide a dedicated gas generation furnace, and the generated gas has a reducing potential. Since it is a method of feeding it to the pre-reduction furnace 8 in a raised state, the pre-reduction efficiency is also high, and it can be said that it is a very effective method in terms of equipment and operation efficiency.

しかしながら上記の設備を還元性ガス発生設備として活
用しようとした場合、次の様な問題が生じてくる。
However, when the above equipment is used as a reducing gas generating equipment, the following problems occur.

即ち第5図に示したタイプの直接製鉄法では、溶融還元
炉9内における鉄浴温度の確保及び完全還元の達成とい
う2つの観点から炭材の吹込み量やポストコンバッショ
ン用酸素の吹込み量等が調整されるが、鉄鉱石の種類や
予備還元炉8における予備還元効率の良否等によって
は、溶融還元炉9へ供給される鉄鉱石の予備還元率はか
なり変動してくる。しかも鉄鉱石の鉄分含有率のばらつ
き等に起因して溶融還元炉9への予備還元鉱石供給速度
もかなり変動するので、こうした変動要因にもかかわら
ず溶融還元炉9で生成するガスの量や還元ポテンシャル
を一定に保つということは容易でない。
That is, in the direct iron-making method of the type shown in FIG. 5, from the two viewpoints of ensuring the temperature of the iron bath in the smelting reduction furnace 9 and achieving complete reduction, the amount of carbonaceous material and the amount of oxygen for post-combustion are injected. Etc. are adjusted, but the preliminary reduction rate of the iron ore supplied to the smelting reduction furnace 9 varies considerably depending on the type of iron ore and the quality of preliminary reduction efficiency in the preliminary reduction furnace 8. Moreover, since the preliminary reduction ore supply rate to the smelting reduction furnace 9 also fluctuates considerably due to variations in the iron content of the iron ore, etc., the amount and reduction of the gas generated in the smelting reduction furnace 9 in spite of these fluctuation factors. Keeping the potential constant is not easy.

換言すると、第5図に示した様な直接製鉄設備を還元性
ガス発生設備として有効に活用しようとした場合、ガス
発生量や当該ガスの還元ポテンシャルを一定に保つこと
が困難であるため、様々の不都合が生じてくる。
In other words, when it is attempted to effectively utilize the direct iron making equipment as shown in FIG. 5 as the reducing gas generating equipment, it is difficult to keep the amount of gas generated and the reducing potential of the gas constant, so Inconvenience will occur.

[発明が解決しようとする問題点] 本発明は上記の様な事情に着目してなされたものであっ
て、その目的は、直接製鉄設備を利用し、還元ポテンシ
ャルの高い還元性ガスを必要量安定して製造することの
できる方法を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention has been made in view of the circumstances as described above, and an object thereof is to directly use an iron making facility and to supply a necessary amount of reducing gas having a high reducing potential. It is intended to provide a method that can be stably manufactured.

[問題点を解決するための手段] 本発明に係る還元性ガス製造方法の構成は、未還元ある
いは予備還元された鉄鉱石を鉄浴中に投入し、該鉄浴中
に別途吹込まれる炭材および酸素の反応によって生じる
還元性ガスにより鉄鉱石を還元する直接製鉄設備を利用
し、鉄浴上の還元性高温ガスに酸素を吹付けてポストコ
ンバッションを行なうことによって高温燃焼ガスを製造
し、更にこれを改質ガスと反応させて還元性ガスを製造
するに当たり、上記改質ガスとして炭化水素の熱分解ガ
スを用い、上記ポストコンバッション用酸素の吹込み量
および/または前記熱分解ガスの送給量を調整すること
によって、生成する還元性ガスの量および/または還元
ポテンシャルをコントロールするところに要旨を有する
ものである。
[Means for Solving Problems] The structure of the method for producing a reducing gas according to the present invention is a charcoal in which unreduced or pre-reduced iron ore is put into an iron bath, and the iron bath is separately blown into the iron bath. Using a direct iron making facility that reduces iron ore by reducing gas generated by the reaction of wood and oxygen, hot combustion gas is produced by blowing oxygen to the reducing hot gas on the iron bath to perform post-combustion, Further, in reacting this with a reformed gas to produce a reducing gas, a pyrolysis gas of hydrocarbon is used as the reforming gas, and the blowing amount of oxygen for the post-combustion and / or the sending of the pyrolysis gas is used. The gist is to control the amount of reducing gas produced and / or the reduction potential by adjusting the supply amount.

[作用] たとえば第5図に示した様な溶融還元製鉄法において鉄
浴式溶融還元炉でポストコンバッションを行なうと、下
記の様な燃焼反応が起こり、この反応熱によって鉄浴が
加熱されるので、溶融還元炉内へ吹込む熱源としての炭
材量を低減させることができる。
[Operation] For example, when post-combustion is performed in an iron bath type smelting reduction furnace in the smelting reduction iron manufacturing method as shown in FIG. 5, the following combustion reaction occurs, and the iron heat is heated by this reaction heat. The amount of carbonaceous material as a heat source blown into the smelting reduction furnace can be reduced.

CO+1/2O2→CO2+67.6Kcal/mol (1) H2+1/2O2→H2O+57.8Kcal/mol (2) たとえば第1図は、溶融還元炉におけるポストコンバッ
ション比率が、該溶融還元炉へ吹込む石炭(炭材)消費
量にどの様な影響を及ぼすかを示したものであり、この
図からも明らかな様にポストコンバッション比率を高め
ると、上記(1)、(2)式に示した反応による昇温効
果が高まるため、溶鉄を同一温度に保つために必要な石
炭消費量は少なくなってくる。但しポストコンバッショ
ン比率を高めると、還元性成分の酸化消費によって生成
ガスの還元ポテンシャルが低下すると共に、第1図に併
記する如く生成ガス量は減少してくる。
CO + 1 / 2O 2 → CO 2 + 67.6Kcal / mol (1) H 2 + 1 / 2O 2 → H 2 O + 57.8Kcal / mol (2) For example, Fig. 1 shows the post-combustion ratio in the smelting reduction furnace This figure shows how it affects the consumption of coal (carbonaceous material) blown into the furnace. As is clear from this figure, if the post-combination ratio is increased, the above equations (1) and (2) Since the effect of raising the temperature by the reaction shown in 1 is enhanced, the amount of coal consumption required to keep the molten iron at the same temperature is reduced. However, when the post-combustion ratio is increased, the reducing potential of the produced gas is lowered due to the oxidative consumption of the reducing component, and the produced gas amount is reduced as also shown in FIG.

こうした傾向を「生成ガス量の調整」という観点からみ
ると、ポストコンバッション用酸素量を増減してポスト
コンバッション比率を適正にコントロールすることによ
り、溶融還元炉からの生成ガス量を自由に調整し得るこ
とが分かる。
From the viewpoint of "adjusting the amount of produced gas", this tendency allows the amount of produced gas from the smelting reduction furnace to be freely adjusted by increasing or decreasing the oxygen amount for post-combustion and controlling the post-combustion ratio appropriately. I understand.

但しポストコンバッション比率を変えるとそれに伴って
生成ガスの還元ポテンシャルが変動するため、還元性ガ
スの安定供給という本発明の目的に沿わなくなる。そこ
で上記生成ガスの還元ポテンシャル向上措置として、た
とえば前記特開昭59−222508号公報等で採用されている
様な炭化水素ガス(メタン等)による改質が考えられ
る。ところがこの改質反応は下記の様な吸熱反応である
ため、 CO2+CH4→2CO+2H2−59.1Kcal/mol (3) H2O+CH4→CO+3H2−49.3Kcal/mol (4) 生成ガスの温度が低下してくる。そしてこの温度が900
℃程度以下になると上記改質反応速度が極端に遅くな
る。こうした吸熱反応による降温効果は、該生成ガスを
鉄鉱石予備還元炉の還元ガスとして利用しようとする場
合にあっては、該予備還元の安定操業(予備還元物の融
着あるいはスティキングの防止等)という観点からすれ
ば好ましいことであるとされているが、本発明で意図す
る様な還元性ガスの安定供給という観点からすると決し
て好ましいことではない。
However, if the post-combustion ratio is changed, the reduction potential of the produced gas fluctuates accordingly, so that the object of the present invention of stable supply of the reducing gas cannot be met. Therefore, as a measure for improving the reduction potential of the produced gas, reforming with a hydrocarbon gas (such as methane) as employed in, for example, the above-mentioned JP-A-59-222508 can be considered. However, since this reforming reaction is an endothermic reaction as shown below, CO 2 + CH 4 → 2CO + 2H 2 -59.1Kcal / mol (3) H 2 O + CH 4 → CO + 3H 2 -49.3Kcal / mol (4) Product gas temperature Is coming down. And this temperature is 900
If the temperature is lower than about 0 ° C, the reforming reaction rate becomes extremely slow. The effect of lowering the temperature by the endothermic reaction is that when the produced gas is to be used as the reducing gas in the iron ore preliminary reducing furnace, the stable operation of the preliminary reducing (prevention of fusion or sticking of the preliminary reducing substance, etc. However, it is not preferable from the viewpoint of the stable supply of the reducing gas as intended in the present invention.

そこで本発明では、降温による改質反応速度の低下を防
止して還元ポテンシャル回復効果を高めるため、例えば
下記(5)式の様な反応により炭化水素を予め加熱分解
せしめ、該熱分解ガスを前述のポストコンバッション生
成ガスと反応させることによって、下記(6)、(7)
式に示す如く改質が効率良く行なわれる様にしている。
Therefore, in the present invention, in order to prevent the reduction of the reforming reaction rate due to the temperature decrease and enhance the reduction potential recovery effect, for example, the hydrocarbon is preliminarily thermally decomposed by the reaction represented by the following formula (5), and the thermally decomposed gas is converted into The following (6) and (7)
As shown in the formula, the reforming is performed efficiently.

CO2+C+2H2→2CO+2H2 (6) H2O+C+2H2→CO+3H2 (7) そしてこの反応により生成するガスの量及び当該ガスの
酸化度(還元ポテンシャルに反比例する値)に応じて、
炭化水素分解ガスの供給量を調整することによって、最
終改質ガスの還元ポテンシャルを高レベルに保つことが
できる。
CO 2 + C + 2H 2 → 2CO + 2H 2 (6) H 2 O + C + 2H 2 → CO + 3H 2 (7) Then, depending on the amount of gas produced by this reaction and the oxidation degree of the gas (value inversely proportional to the reduction potential),
The reduction potential of the final reformed gas can be maintained at a high level by adjusting the supply amount of the hydrocarbon decomposition gas.

第2図はポストコンバッション比率を変えた場合のガス
発生量の変化と、該発生ガスの酸化度を3%にするのに
必要なメタン使用量の関係を示したものである。この図
からも明らかな様に、ガス発生量はポストコンバッショ
ン比率を高めるにつれて少なくなる傾向があり、溶鉄生
産量が一定である場合でもポストコンバッション比率
(換言すればポストコンバッション用酸素の吹込み量)
を変えることによって生成ガス量を任意にコントロール
することができ、また溶鉄生産量が変動した場合でもポ
ストコンバッション比率を変えることによって生成ガス
量を一定に保つことができる。またポストコンバッショ
ン比率を変えることによる生成ガスの還元ポテンシャル
の変動については、炭化水素熱分解ガスの供給量を調整
することによって還元ポテンシャルを高レベルの値で一
定に保つことができる。この様に本発明法を利用すれば
ポストコンバッション用酸素供給量及び/又は炭化水素
分解ガス供給量を調整することによって、溶鉄生産量に
直接的な影響を受けることなく最終的に得られる還元性
ガスの生産量や還元ポテンシャルを自由にコントロール
することができ、還元性ガスの安定供給が可能となる。
尚本発明では前述の如く改質反応効率を高めるため改質
ガスの降温を抑制しつつ改質する方法を採用しており、
改質ガスはかなり高温状態のものとして得られる。従っ
てこの改質ガスをたとえば鉄鉱石の予備還元用ガスとし
て使用する場合は、熱交換器を通して予備還元に適した
温度に降温すると共に熱エネルギーを回収すればよく、
また高温の還元性ガスとして他の用途に利用する場合は
そのままの温度あるいは必要により温度調整を行なった
後に使用すればよい。
FIG. 2 shows the relationship between the change in the amount of gas generated when the post-combination ratio is changed and the amount of methane used to bring the degree of oxidation of the generated gas to 3%. As is clear from this figure, the amount of gas generation tends to decrease as the post-combustion ratio increases, and even if the molten iron production is constant, the post-combustion ratio (in other words, the amount of post-combustion oxygen blown)
The amount of produced gas can be controlled arbitrarily by changing the value of, and the amount of produced gas can be kept constant by changing the post-combination ratio even when the amount of molten iron production changes. Regarding the fluctuation of the reduction potential of the produced gas due to the change of the post-combustion ratio, the reduction potential can be kept constant at a high level by adjusting the supply amount of the hydrocarbon pyrolysis gas. As described above, when the method of the present invention is used, by adjusting the oxygen supply amount for post-combustion and / or the hydrocarbon decomposition gas supply amount, the reducing property finally obtained without being directly affected by the molten iron production amount. The amount of gas produced and the reduction potential can be freely controlled, and a stable supply of reducing gas becomes possible.
Incidentally, in the present invention, as described above, in order to improve the efficiency of the reforming reaction, the method of reforming while suppressing the temperature drop of the reformed gas is adopted,
The reformed gas is obtained in a fairly high temperature state. Therefore, when using this reformed gas as a gas for preliminary reduction of iron ore, for example, the temperature may be lowered to a temperature suitable for preliminary reduction through a heat exchanger and the thermal energy may be recovered.
When it is used as a high-temperature reducing gas for other purposes, it may be used at the temperature as it is or after adjusting the temperature if necessary.

[実施例] 第3図のフローに示す如く、未還元の粉粒状鉄鉱石1450
Kgを溶融還元炉9内へ供給しつつ炉底部のノズルより石
炭粉2278Kgと底吹き酸素1174Nm3を吹込み、鉄鉱石の直
接還元を行なった。このとき鉄浴表面に酸素319Nm3を吹
付けることによってポストコンバッションを行ない(ポ
ストコバッション比率:15%)、生成ガス(1608℃、434
9Nm3、組成CO:66.7%、CO2:6.7%、H2:17.9%、H2O:8.0
%)を改質炉10へ送った。一方該改質炉10には炭化水素
加熱分解炉11を隣設しておき、これにメタン523Nm3を吹
込んで1032℃で加熱分解した後前記改質炉10へ吹込んで
ガス改質を行なうと、組成がCO:61.5%、CO2:1.4%、
H2:35.0%、H2O:1.0%の高カロリーガス(温度1100℃、
ガスカロリー:2760Kcal/Nm3)5860Nm3が得られた。
[Example] As shown in the flow chart of Fig. 3, unreduced powdery iron ore 1450
While supplying Kg into the smelting reduction furnace 9, 2278 Kg of coal powder and 1174 Nm 3 of bottom-blown oxygen were blown from the nozzle at the bottom of the furnace to directly reduce the iron ore. At this time, post-combustion was performed by spraying oxygen 319 Nm 3 on the iron bath surface (post-combustion ratio: 15%), and the generated gas (1608 ° C, 434 ° C).
9Nm 3 , composition CO: 66.7%, CO 2 : 6.7%, H 2 : 17.9%, H 2 O: 8.0
%) Was sent to the reforming furnace 10. On the other hand, a hydrocarbon thermal decomposition furnace 11 is provided adjacent to the reforming furnace 10, and methane 523 Nm 3 is blown into the reforming furnace 11 to thermally decompose it at 1032 ° C. and then blown into the reforming furnace 10 to perform gas reforming. , Composition is CO: 61.5%, CO 2 : 1.4%,
H 2 : 35.0%, H 2 O: 1.0% high calorie gas (temperature 1100 ° C,
Gas calorie: 2760 Kcal / Nm 3 ) 5860 Nm 3 was obtained.

尚第3図の実施例では未還元の鉄鉱石を直接溶融還元炉
9内へ供給して溶融還元を行なう例を示したが、第5図
に示す如く鉄鉱石をシャフト炉等で予備還元した後溶融
還元炉へ送ることにより、溶融還元炉における負荷を軽
減することも勿論可能である。
Although the example of FIG. 3 shows an example in which unreduced iron ore is directly supplied into the smelting reduction furnace 9 to perform smelting reduction, the iron ore is pre-reduced in a shaft furnace or the like as shown in FIG. It is of course possible to reduce the load on the smelting reduction furnace by sending it to the post-smelting reduction furnace.

また本発明は前述の趣旨からも明らかである様に、直接
製鉄設備を利用した還元性ガスの製造装置として位置付
けられるものであり、高い還元ポテンシャルを持った還
元性ガスを必要量安定して製造するところに特徴を有す
るものであるから、こうした特徴をより有効に発揮せし
め得るよう、たとえば溶融還元炉から出てくるポストコ
ンバッション後のガスの流量や還元ポテンシャル等を自
動的に検知してポストコンバッション用酸素の供給量や
改質用熱分解炭化水素の供給量等を自動制御し得る様な
自動制御システムを組んで実施することも、本発明に係
る好ましい実施態様の1つである。
Further, as is apparent from the above-mentioned gist, the present invention is positioned as a reducing gas production apparatus using a direct iron making facility, and stably produces a required amount of reducing gas having a high reduction potential. Therefore, in order to exert these characteristics more effectively, for example, the flow rate of post-combustion gas from the smelting reduction furnace, the reduction potential, etc. are automatically detected and post-combustion is performed. It is also one of the preferred embodiments according to the present invention to carry out by implementing an automatic control system capable of automatically controlling the supply amount of oxygen for use and the supply amount of pyrolysis hydrocarbon for reforming.

[発明の効果] 本発明は以上の様に構成されており、その効果を要約す
ると下記の通りである。
[Effects of the Invention] The present invention is configured as described above, and the effects thereof are summarized as follows.

直接製鉄設備を利用して高い還元ポテンシャルを有す
る還元性ガスを効率良く製造することができる。
It is possible to efficiently produce a reducing gas having a high reduction potential by directly utilizing the iron making equipment.

溶融還元炉におけるポストコンバッション比率を変え
ることによってガス発生量を任意にコントロールするこ
とができ、必要に応じた量の還元性ガスを安定して供給
することができる。
By changing the post-combustion ratio in the smelting reduction furnace, the amount of gas generated can be arbitrarily controlled, and the amount of reducing gas required can be stably supplied.

ポストコンバッションによって低下する還元ポテンシ
ャルの低下は、炭化水素熱分解ガスによる改質反応によ
り補なわれるので、高カロリーの還元性ガスを得ること
ができる。しかもガス改質には炭化水素の熱分解ガスを
利用しており吸熱反応による改質時の降温が抑制される
ので、高レベルの改質反応効率が保証される。
The reduction in the reduction potential, which is reduced by the post-combustion, is compensated by the reforming reaction by the hydrocarbon pyrolysis gas, so that a high-calorie reducing gas can be obtained. Moreover, the pyrolysis gas of hydrocarbon is used for gas reforming, and the temperature drop during reforming due to the endothermic reaction is suppressed, so that a high level of reforming reaction efficiency is guaranteed.

【図面の簡単な説明】[Brief description of drawings]

第1図はポストコンバッション比率が石炭消費量及びガ
ス発生量に及ぼす影響を示すグラフ、第2図はポストコ
ンバッション比率とガス発生量及び生成ガスの酸化度を
3%とするのに必要なメタン使用量の関係を示すグラ
フ、第3図は本発明の実施例を示すフロー図、第4、5
図は従来法を示すフロー図である。 1……シャフト炉、2……キュポラ 4……ガス化炉、3a,3b……熱風炉 6……溶銑処理炉、7……転炉 8……予備還元炉、9……溶融還元炉 10……ガス改質器、11……熱分解炉
Fig. 1 is a graph showing the effect of post-combustion ratio on coal consumption and gas generation, and Fig. 2 is the use of methane required to make post-combustion ratio and gas generation and the degree of oxidation of generated gas 3%. FIG. 3 is a flow chart showing an embodiment of the present invention, FIG.
The figure is a flow chart showing a conventional method. 1 ... Shaft furnace, 2 ... Cupola 4 ... Gasification furnace, 3a, 3b ... Hot air furnace 6 ... Hot metal treatment furnace, 7 ... Converter furnace 8 ... Preliminary reduction furnace, 9 ... Melt reduction furnace 10 ...... Gas reformer, 11 ...... Pyrolysis furnace

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】未還元あるいは予備還元された鉄鉱石を鉄
浴中に投入し、該鉄浴中に別途吹込まれる炭材および酸
素の反応によって生じる還元性ガスにより鉄鉱石を還元
する直接製鉄設備を利用し、鉄浴上の還元性高温ガスに
酸素を吹付けてポストコンバッションを行なうことによ
って高温燃焼ガスを製造し、更にこれを改質ガスと反応
させて還元性ガスを製造するに当たり、上記改質ガスと
して炭化水素の熱分解ガスを用い、上記ポストコンバッ
ション用酸素の吹込み量および/または前記熱分解ガス
の送給量を調整することによって、生成する還元性ガス
の量および/または還元ポテンシャルをコントロールす
ることを特徴とする還元性ガスの製造方法。
1. A direct ironmaking process in which unreduced or pre-reduced iron ore is put into an iron bath, and the iron ore is reduced by a reducing gas produced by the reaction of carbonaceous material and oxygen separately blown into the iron bath. Using equipment to produce high-temperature combustion gas by blowing oxygen to reducing high-temperature gas on the iron bath to perform post-combustion, and further reacting this with reformed gas to produce reducing gas, A hydrocarbon pyrolysis gas is used as the reforming gas, and the amount of the reducing gas produced by adjusting the blowing amount of the post-combustion oxygen and / or the feeding amount of the pyrolysis gas and / or A method for producing a reducing gas, which comprises controlling a reducing potential.
JP61178208A 1986-07-29 1986-07-29 Method for producing reducing gas Expired - Fee Related JPH0689388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61178208A JPH0689388B2 (en) 1986-07-29 1986-07-29 Method for producing reducing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61178208A JPH0689388B2 (en) 1986-07-29 1986-07-29 Method for producing reducing gas

Publications (2)

Publication Number Publication Date
JPS6335733A JPS6335733A (en) 1988-02-16
JPH0689388B2 true JPH0689388B2 (en) 1994-11-09

Family

ID=16044468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61178208A Expired - Fee Related JPH0689388B2 (en) 1986-07-29 1986-07-29 Method for producing reducing gas

Country Status (1)

Country Link
JP (1) JPH0689388B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4998716A (en) * 1973-01-30 1974-09-18

Also Published As

Publication number Publication date
JPS6335733A (en) 1988-02-16

Similar Documents

Publication Publication Date Title
KR100430707B1 (en) Dual production method of metals and metal alloys based on metal oxide ores
KR101720075B1 (en) Method for melting raw iron while recirculating blast furnace gas by adding hydrocarbons
US4988079A (en) Apparatus for smelting and reducing iron ores
JP2001518557A (en) Direct smelting method for producing metal from metal oxide
AUPQ152299A0 (en) Start-up procedure for direct smelting process
JPS6254163B2 (en)
JP5039945B2 (en) Method and apparatus for producing pig iron or fluid primary iron from charges containing iron ore
US5632953A (en) Process and device for melting iron metallurgical materials in a coke-fired cupola
CA1284274C (en) Melt-reductive iron making method from iron ore
TW304982B (en)
JPH0414162B2 (en)
JPH079015B2 (en) Smelting reduction method for iron ore
AU733442B2 (en) Process for producing sponge iron
JPH0689388B2 (en) Method for producing reducing gas
US20050151307A1 (en) Method and apparatus for producing molten iron
US2715575A (en) Method of treating iron ore blast furnaces
EP0950117B1 (en) A method for producing metals and metal alloys
JPS63171807A (en) Operation method for oxygen blast furnace
JPH01147009A (en) Melting and reducing method
JPH0826378B2 (en) Method for producing molten iron containing chromium
US4996694A (en) Method and apparatus for melting iron and steel scrap
JPH01162711A (en) Smelting reduction method
JPS63176407A (en) Production of molten iron
JPS63195244A (en) Production of ferromanganese
CA2115625A1 (en) Metallurgical processes and apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees