JPH068915B2 - Reactor water supply - Google Patents

Reactor water supply

Info

Publication number
JPH068915B2
JPH068915B2 JP60255571A JP25557185A JPH068915B2 JP H068915 B2 JPH068915 B2 JP H068915B2 JP 60255571 A JP60255571 A JP 60255571A JP 25557185 A JP25557185 A JP 25557185A JP H068915 B2 JPH068915 B2 JP H068915B2
Authority
JP
Japan
Prior art keywords
water supply
water
pipe
reactor
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60255571A
Other languages
Japanese (ja)
Other versions
JPS62123396A (en
Inventor
健太郎 平林
昭夫 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60255571A priority Critical patent/JPH068915B2/en
Publication of JPS62123396A publication Critical patent/JPS62123396A/en
Publication of JPH068915B2 publication Critical patent/JPH068915B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子炉の給水装置に係り、特に複数系統の給
水系配管に冷却材浄化系戻り水を合流させて原子炉圧力
容器に給水を供給する給水装置に関するものである。
Description: FIELD OF THE INVENTION The present invention relates to a water supply system for a nuclear reactor, and more particularly, to supply the water to a reactor pressure vessel by combining return water of a coolant purification system with water supply system pipes of a plurality of systems. The present invention relates to a water supply device for supply.

〔発明の背景〕[Background of the Invention]

第4図は、従来の沸騰水型原子炉の給水装置を示すもの
であり、同図に基づいて給水装置の概略及び改善すべき
点を説明する。
FIG. 4 shows a conventional water supply system for a boiling water nuclear reactor, and the outline of the water supply system and points to be improved will be explained based on the figure.

この給水装置は、給水系Aと冷却材浄化系Bとよりな
り、給水系Aは、原子炉圧力容器1→主蒸気ライン2→
タービン5・復水器6→給水分岐配管7,7′→給水ポ
ンプ8,8′→給水加熱器10,10′→給水配管2
8,28′→原子炉圧力容器1のラインを構成してい
る。他方、冷却材浄化系Bは、原子炉圧力容器1→再生
熱交換器(管側)17→非再生熱交換器18→浄化水送
りポンプ19→ろ過脱塩装置20→再生熱交換器(胴
側)17→分岐配管29,29′→給水系の給水配管2
8,28′の合流部O,O′→原子炉圧力容器1のライ
ンを構成している。
This water supply system comprises a water supply system A and a coolant purification system B, and the water supply system A comprises a reactor pressure vessel 1 → main steam line 2 →
Turbine 5, condenser 6, water supply branch pipes 7, 7 '→ water supply pumps 8, 8' → water supply heaters 10, 10 '→ water supply pipe 2
The line of 8, 28 '→ reactor pressure vessel 1 is constructed. On the other hand, the coolant purification system B includes a reactor pressure vessel 1 → regeneration heat exchanger (pipe side) 17 → non-regeneration heat exchanger 18 → purified water feed pump 19 → filtration desalination device 20 → regeneration heat exchanger (body) Side) 17 → branch pipe 29, 29 ′ → water supply system water supply pipe 2
The line of the junctions O and O'of the unit 28 and 28 'to the reactor pressure vessel 1 is constituted.

このような給水装置においては、原子炉の起動時及び高
温待機運転時に次のような問題が生じるおそれを有して
いた。
In such a water supply device, there is a possibility that the following problems may occur at the time of starting the reactor and at the time of high temperature standby operation.

原子炉の起動時には、冷却材浄化系Bは既に運転状態に
あり、原子炉圧力容器1の昇温昇圧に伴い、原子炉圧力
容器1から冷却材浄化系Bに流入した冷却材は、再生熱
交換器(管側)17、非再生熱交換器19で冷却され、
ろ過脱塩装置20による浄化を経て再び再生熱交換器
(胴側)17で再加熱され、200℃程度の高温水とな
つて給水配管28,28′に合流する。他方、給水系A
では、原子炉圧力容器1が昇温昇圧過程にあるために、
タービン5に供給される蒸気発生量は少なくタービン5
が起動前の状態にあるので、給水配管28,28′に流
れる給水流量は少なく、給水温度も30℃程度の低温状
態にある。
When the reactor is started, the coolant purification system B is already in an operating state, and the coolant that has flowed into the coolant purification system B from the reactor pressure vessel 1 due to the increase in temperature and pressure of the reactor pressure vessel 1 regenerates heat. It is cooled by the exchanger (tube side) 17 and the non-regenerative heat exchanger 19,
After being purified by the filter desalting apparatus 20, it is reheated again in the regenerative heat exchanger (cylinder side) 17, becomes hot water of about 200 ° C., and joins the water supply pipes 28, 28 ′. On the other hand, water supply system A
Then, because the reactor pressure vessel 1 is in the process of increasing temperature and pressure,
The amount of steam generated supplied to the turbine 5 is small and the turbine 5
Is in a state before starting, the flow rate of feed water flowing through the feed water pipes 28, 28 'is small, and the feed water temperature is low at about 30 ° C.

従つて、給水配管28,28′における冷却材浄化系戻
り水との合流部O,O′では約200℃の浄化系Bの戻
り水と約30℃の給水系Aの給水とが合流するが、この
場合、低温状態にある給水系Aの給水量が少ないために
流れに乱れが生ぜず、合流部O,O′における冷却材浄
化系戻り水と給水系の給水とが十分に混ざり合わず、そ
の結果、給水配管28,28′内の上層に高温の冷却材
浄化系戻り水が流れ、下層に低温の給水が夫々分離して
流れる現象、いわゆる層化流動現象が発生するおそれが
あつた。そして、このような現象が発生した場合には、
配管に大きな上下温度差が生じ、過度の熱応力疲労が生
じるおそれがあつた。
Therefore, the return water of the purification system B having a temperature of about 200 ° C. and the feed water of the water supply system A having a temperature of about 30 ° C. merge at the merging portions O and O ′ of the water purification pipes 28 and 28 ′ with the return water of the coolant purification system. In this case, since the water supply amount of the water supply system A in the low temperature state is small, the flow is not disturbed and the return water of the coolant purifying system and the water supply of the water supply system at the merging portions O and O ′ are not sufficiently mixed. As a result, there is a possibility that a high-temperature coolant purification system return water flows in the upper layer in the water supply pipes 28, 28 'and a low-temperature water supply flows separately in the lower layer, that is, a so-called stratified flow phenomenon occurs. . And when such a phenomenon occurs,
There is a risk of excessive thermal stress fatigue due to a large temperature difference between the pipes.

次に、原子炉の高温待機運転時には、原子炉に制御棒が
挿入されており、原子炉圧力容器1は残留熱によつて蒸
気を少量発生し、発生する蒸気は、原子炉1→主蒸気ラ
イン2→タービンバイパス弁21を経て復水器6で凝縮
される。そして、発生する蒸気を補充する少量の給水
が、復水器6→給水ポンプ8,8′→給水加熱器10,
10′→給水配管28,28′を経て原子炉圧力容器1
に供給される。
Next, during the high temperature standby operation of the reactor, the control rod is inserted into the reactor, the reactor pressure vessel 1 generates a small amount of steam due to the residual heat, and the generated steam is the reactor 1 → main steam. It is condensed in the condenser 6 through the line 2 → turbine bypass valve 21. Then, a small amount of water supplied to replenish the generated steam is returned to the condenser 6, the water supply pumps 8 and 8 ', the water heater 10,
10 '→ reactor pressure vessel 1 via water supply pipes 28, 28'
Is supplied to.

この場合、蒸気は直接、復水器6で冷却されるため、復
水器6から流出する給水温度は、約30℃程度の低温状
態にある。一方、給水系Aの給水加熱器10,10′以
降には給水加熱器10,10′で既に加熱された約20
0℃程度の高温水が存在している。
In this case, since the steam is directly cooled by the condenser 6, the feed water temperature flowing out from the condenser 6 is in a low temperature state of about 30 ° C. On the other hand, after the feed water heaters 10 and 10 'of the feed water system A, about 20 units already heated by the feed water heaters 10 and 10' are provided.
High temperature water of about 0 ° C is present.

従つて、この場合には、給水加熱器10,10′の出口
側配管7a,7a′に約200℃の給水と約30℃程度
の少流量の給水が合流するので、この付近の配管に層化
流動現象が生じて、過度の熱応力疲労が生じるおそれが
あつた。
Therefore, in this case, since the feed water of about 200 ° C. and the feed water of a small flow rate of about 30 ° C. merge with the outlet side pipes 7a, 7a 'of the feed water heaters 10, 10', the pipes in the vicinity of this are There is a possibility that the fluidization phenomenon may occur, resulting in excessive thermal stress fatigue.

更に、原子炉の起動時,停止時,高温待機運転時等のよ
うに、給水系Aの給水が少ない場合には、給水が原子炉
圧力容器1内の圧力流体に押し戻されて、原子炉1の給
水ノズル部16付近で周期的な逆流現象が生じ、原子炉
圧力容器1内の高温水と給水系A側の低温水の出入りに
より、ノズル部16において周期的壁温変動現象が生じ
て熱応力疲労が生じるおそれがあつた。
Furthermore, when the water supply to the water supply system A is small, such as when the reactor is started up, shut down, or in high-temperature standby operation, the water supply is pushed back into the pressure fluid in the reactor pressure vessel 1 and the reactor 1 A periodic backflow phenomenon occurs in the vicinity of the water supply nozzle section 16 of the above, and due to the inflow and outflow of the high temperature water in the reactor pressure vessel 1 and the low temperature water of the water supply system A side, a periodic wall temperature fluctuation phenomenon occurs in the nozzle section 16 and Stress fatigue may occur.

なお、原子炉の冷却材浄化系装置、冷却材供給装置の従
来例としては、例えば特開昭54−20293 号,特開昭55−
478 号等の公報に開示されている。
As conventional examples of the coolant purification system and the coolant supply device for a nuclear reactor, for example, JP-A-54-20293, JP-A-55-55
It is disclosed in gazettes such as 478.

〔発明の目的〕[Object of the Invention]

本発明は、前記した従来の問題点を解消するためになさ
れたものであり、その目的とするところは、原子炉起動
時,高温待機運転時等に生じやすい給水系配管内の層化
流動現象の発生を防止して、給水系配管に過度の熱応力
疲労が生じるのを防止し、原子力プラントの信頼性及び
安全性を向上させることにある。
The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a stratified flow phenomenon in a water supply system pipe that tends to occur at the time of reactor startup, high temperature standby operation, etc. To prevent the occurrence of excessive thermal stress fatigue in the water supply system piping and improve the reliability and safety of the nuclear power plant.

〔発明の概要〕[Outline of Invention]

給水配管に発生する層化流動現象は、給水流量が少なく
且つ低温流体と高温流体が混在した時に両者の密度差に
より高温水に浮力が働き、管内上部に高温水、管内低部
に低温水が層状分離して生じるものである。
The stratified flow phenomenon that occurs in the water supply pipe is that when the feed water flow rate is low and the low-temperature fluid and the high-temperature fluid are mixed, buoyancy acts on the high-temperature water due to the density difference between the low-temperature fluid and the high-temperature fluid. It is a layered product.

このような現象は、給水流量が増大し、給水配管内が乱
流状態にある時には発生せず、実験によれば、定格給水
流量の略4%以上の流体が給水配管に流れている場合に
は層化流動現象が発生しないことが確認されている。
Such a phenomenon does not occur when the water supply flow rate increases and the inside of the water supply pipe is in a turbulent state. According to the experiment, when approximately 4% or more of the rated water supply flow rate flows in the water supply pipe. It has been confirmed that the stratified flow phenomenon does not occur.

本発明は、以上の点に着目してなされたものであり、 第1の発明の要旨とするところは、複数系統の給水配管
を介して原子炉圧力容器に給水を供給する給水系と、給
水系配管から分岐して給水の一部を給水源に戻す給水再
循環系と、原子炉から取水した冷却材をろ過し分岐配管
を介して前記給水系の各給水配管に合流させる冷却材浄
化系とを備えた給水装置において、前記冷却材浄化系の
各分岐配管に遠隔操作弁を夫々配設して、原子炉起動運
転時に、これらの遠隔操作が一つの弁を除いて弁閉制御
されるように設定したものである。
The present invention has been made in view of the above points, and the gist of the first invention is to provide a water supply system for supplying water to a reactor pressure vessel via a plurality of systems of water supply pipes, and a water supply system. A water supply recirculation system that branches from the system piping to return part of the water supply to the water supply source, and a coolant purification system that filters the coolant taken from the reactor and joins it into each water supply pipe of the water supply system via a branch pipe In the water supply device including the above, a remote control valve is provided in each of the branch pipes of the coolant purification system, and at the time of reactor start-up operation, these remote controls are closed except for one valve. Is set as follows.

このようにすれば、給水系の1本の給水配管に冷却材浄
化系の分岐配管の1つを介して冷却材浄化系戻り水の全
てを注入させることができる。従つて、原子炉起動時に
1本の給水配管における冷却材浄化系戻り水合流部以降
に層化流動現象の生じない範囲の給水(給水系の給水と
冷却材浄化系戻り水の合流したもの)を流すことができ
る。例えば、冷却材浄化系の分岐配管を2本とし、その
一方を弁開状態とし、他方を弁閉制御した場合には、通
常、これらの各分岐配管の系統流量は定格給水量の2%
であるから、冷却材浄化系戻り水を1つの分岐配管で流
せば、1本の給水系配管に定格給水流量の4%以上の流
体を流すことができ、給水配管に層化流動現象が発生す
るのを防止する。
With this configuration, all the return water of the coolant purifying system can be injected into one water supply pipe of the water purifying system through one of the branch pipes of the coolant purifying system. Therefore, water supply within a range where stratified flow phenomenon does not occur after the confluence part of the coolant purification system return water in one water supply pipe at the time of reactor startup (combination of the water supply system water and the coolant purification system return water) Can be drained. For example, when two branch pipes of the coolant purification system are provided, one of which is opened and the other is closed, the system flow rate of each of these branch pipes is usually 2% of the rated water supply amount.
Therefore, if the return water of the coolant purification system is made to flow through one branch pipe, it is possible to flow 4% or more of the rated water supply flow rate into one water supply pipe, and a stratified flow phenomenon occurs in the water supply pipe. Prevent from doing.

第2の発明の要旨とするところは、前述した第1発明と
同様の給水系,給水再循環系,冷却材浄化系を備えた給
水装置において、冷却材浄化系の分岐配管に原子炉起動
運転時に1つの弁を除いて弁閉制御される遠隔操作弁を
設ける他に、給水系,給水再循環系、冷却材浄化系に
は、前記給水系の給水配管を通過する給水流量の異常低
下或いは給水配管の上下温度差のいずれか一方或いは双
方を検知した時に、前記給水系の各給水配管に配設した
給水系止め弁及び前記冷却材浄化系の分岐配管に配設し
た遠隔操作弁をこれらの給水系止め弁及び遠隔操作弁の
夫々一つを除いて弁閉制御して、前記給水系と前記冷却
材浄化系を一系統運転させるインターロツクと、前記給
水再循環系に配設した給水再循環系止め弁を弁開制御す
るインターロツクとを設けたものである。
The gist of the second invention is that in a water supply apparatus including a water supply system, a water supply recirculation system, and a coolant purification system similar to those of the above-described first invention, a reactor starting operation is performed in a branch pipe of the coolant purification system. In addition to providing a remote-controlled valve that is sometimes closed except for one valve, the water supply system, the water supply recirculation system, and the coolant purification system may have an abnormal decrease in the amount of water supply that passes through the water supply pipe of the water supply system or When either one or both of the upper and lower temperature differences of the water supply pipe are detected, the water supply system stop valve arranged in each water supply pipe of the water supply system and the remote control valve arranged in the branch pipe of the coolant purification system are The water supply system stop valve and the remote control valve are controlled to be closed, and an interlock for operating the water supply system and the coolant purification system as one system, and the water supply arranged in the water supply recirculation system. An interlock that controls the opening of the recirculation stop valve It is those provided.

このような構成よりなれば、原子炉起動運転時のほか
に、高温待機運転時等においても、給水系配管に層化流
動現象が発生するのを、以下に述べる作用により防止す
ることができる。
With such a configuration, it is possible to prevent the stratified flow phenomenon from occurring in the water supply system piping not only during the reactor startup operation but also during the high temperature standby operation and the like, by the action described below.

すなわち、高温待機運転時等に給水配管内の給水流量が
異常低下し、或いは給水加熱器以降の給水配管に上下温
度差が生じると、給水系,冷却材浄化系,給水再循環系
に設けたインターロツクが作動して、給水系の給水止め
弁及び冷却材浄化系の分岐配管における遠隔操作弁の夫
々1つのみが弁開状態となり、給水系及び冷却材浄化系
が一系統運転される。その結果、給水系配管の1本のみ
に給水及び冷却材浄化系戻り水が集中して流れるので、
運転中の給水配管の給水流量が層化流動現象を発生させ
ない程度(例えば定格給水量の4%以上)に増大し層化
流動現象の発生を防止する。
That is, if the feed water flow rate in the feed water pipe decreases abnormally during high-temperature standby operation, or if there is a vertical temperature difference in the feed water pipe after the feed water heater, the water supply system, coolant purification system, and water supply recirculation system are installed. The interlock operates and only one of the water supply stop valve of the water supply system and the remote control valve in the branch pipe of the coolant purification system is opened, and the water supply system and the coolant purification system are operated in one system. As a result, the water supply and the coolant purification system return water concentrate on only one of the water supply system pipes,
The supply flow rate of the water supply pipe during operation is increased to such an extent that the stratified flow phenomenon does not occur (for example, 4% or more of the rated water supply amount) to prevent the stratified flow phenomenon.

また、再循環系止め弁が弁開制御されるので、給水配管
と給水再循環系が共用する配管内にも、充分な給水が循
環して流れる。
Further, since the recirculation stop valve is controlled to be opened, sufficient water can be circulated and circulated in the pipe commonly used by the water supply pipe and the water recirculation system.

従つて、給水系配管の各箇所に層化流動現象が発生する
のを防止することができる。
Therefore, it is possible to prevent the stratified flow phenomenon from occurring in each part of the water supply system pipe.

また、原子炉起動時,停止時,高温待機運転時に、給水
系・冷却材浄化系を一系統運転させて、給水流量の異常
低下を防止することができるので、原子炉圧力容器の給
水ノズル部に給水流量低下により生じる周期的逆流現象
の発生をも防止することができる。
In addition, when the reactor is started up, shut down, or in high-temperature standby operation, one system of the water supply system / coolant purification system can be operated to prevent an abnormal decrease in the water supply flow rate. Further, it is possible to prevent the occurrence of the periodic backflow phenomenon caused by the decrease in the water supply flow rate.

〔発明の実施例〕Example of Invention

本発明の一実施例を第1図ないし第3図に基づき説明す
る。
An embodiment of the present invention will be described with reference to FIGS.

第1図は本発明の一実施例を示す給水装置の系統図を示
すもので、本実施例の給水装置は、既述した第4図の従
来の給水装置を改良したものであり、第4図に示す符号
と同一符号は同一部分を示すものである。
FIG. 1 is a system diagram of a water supply system showing an embodiment of the present invention. The water supply system of this embodiment is an improvement of the conventional water supply system of FIG. The same reference numerals as those shown in the drawings indicate the same parts.

第1図において、給水系Aは、沸騰水型の原子炉圧力容
器1→主蒸気ライン2→タービン開閉弁4→タービン5
→復水器6→給水分岐配管7,7′→給水ポンプ8,
8′→給水加熱器10,10′→給水配管28,28′
→原子炉圧力容器1より構成されている。また主蒸気ラ
イン2には、蒸気流量計3が設置され、蒸気流量計3が
検出した蒸気量を給水流量制御ユニツト23が演算し、
その蒸気量に応じて、給水系分岐配管7,7′に設けた
流量調節弁9,9′を制御して給水流量を調節してい
る。
In FIG. 1, the water supply system A is a boiling water reactor pressure vessel 1 → main steam line 2 → turbine on-off valve 4 → turbine 5
→ condenser 6 → water supply branch pipe 7, 7 '→ water supply pump 8,
8 '→ feed water heater 10, 10' → feed pipe 28, 28 '
→ It consists of the reactor pressure vessel 1. Further, a steam flow meter 3 is installed in the main steam line 2, and the feed water flow rate control unit 23 calculates the amount of steam detected by the steam flow meter 3,
In accordance with the amount of steam, the flow rate control valves 9 and 9'provided in the water supply system branch pipes 7 and 7'are controlled to regulate the flow rate of water supply.

21は蒸気ライン2から分岐して設けたタービンバイパ
ス弁であり、タービンバイパス弁21は高温待機運転時
にタービン開閉弁4と切換わつて開くものである。
Reference numeral 21 denotes a turbine bypass valve provided by branching from the steam line 2, and the turbine bypass valve 21 is opened by switching to the turbine opening / closing valve 4 during high temperature standby operation.

給水系Aの給水配管28,28′の夫々には、流量計1
1,11、給水系止め弁(電動弁)12a,12b、逆止
弁13,13、隔離弁(PCPV外)14,14、隔離
弁(PCPV内)15,15、給水ノズル部16,16
等が配設されている。また、給水系分岐配管7には、給
水加熱器10の出口側配管7aの上部温度と下部温度を
検出する上部温度計26、下部温度計27とが設置され
ている。
Each of the water supply pipes 28, 28 'of the water supply system A has a flow meter 1
1, 11, water supply system stop valves (motorized valves) 12a, 12b, check valves 13, 13, isolation valves (outside PCPV) 14, 14, isolation valves (inside PCPV) 15, 15, water supply nozzles 16, 16
Etc. are provided. The water supply system branch pipe 7 is provided with an upper thermometer 26 and a lower thermometer 27 for detecting the upper temperature and the lower temperature of the outlet side pipe 7a of the water heater 10.

そして、流量計11,11及び上部温度計26,下部温
度計27の検出値は、後述するインターロツク制御ユニ
ツト30に入力される。
Then, the detected values of the flowmeters 11, 11 and the upper thermometer 26 and the lower thermometer 27 are input to an interlock control unit 30 described later.

25′は給水系Aの給水系分岐配管7,7′の下流側に
設けた給水再循環系であり、給水再循環系25′には、
給水再循環系止め弁25が設置されている。
Reference numeral 25 'denotes a water supply recirculation system provided downstream of the water supply system branch pipes 7 and 7'of the water supply system A. The water supply recirculation system 25' includes:
A water supply recirculation stop valve 25 is installed.

冷却材浄化系Bは、原子炉圧力容器1→再生熱交換器
(管側)17→非再生熱交換器18→冷却材浄化系ポン
プ19→ろ過脱塩装置20→再生熱交換器(胴側)17
→分岐配管29,29′→給水系配管28,28′の合
流部よりなるもので、分岐管29,29′の夫々に遠隔
操作弁(電動弁)24a,24bが配設されている。
The coolant purification system B includes a reactor pressure vessel 1 → regeneration heat exchanger (tube side) 17 → non-regeneration heat exchanger 18 → coolant purification system pump 19 → filter desalination device 20 → regeneration heat exchanger (body side). ) 17
-> Branch pipes 29, 29 '-> Constituting parts of water supply system pipes 28, 28', and remote control valves (motorized valves) 24a, 24b are provided in each of the branch pipes 29, 29 '.

なお、冷却材浄化系Bは、原子炉圧力容器1からの冷却
材を再生熱交換器(管側)17で冷却し、ろ過脱塩装置
20で浄化した後に、再生熱交換器(胴側)17で再加
熱して給水配管28,28′側に送るものである。
In the coolant purification system B, the coolant from the reactor pressure vessel 1 is cooled by the regenerative heat exchanger (pipe side) 17 and purified by the filter desalting device 20, and then the regenerated heat exchanger (body side). It is reheated at 17 and sent to the water supply pipes 28, 28 '.

30は、インターロツク制御ユニツトであり、インター
ロツク制御ユニツト30は、第2図及び第3図に示すよ
うに、給水系配管28,28′の給水流量が規定値より
低下したり(流量計11で検出)或いは給水加熱器10
の出口流体温度差が規定値より大きくなる(温度計2
6,27で検出)と、冷却材浄化系の遠隔操作弁24a
(或いは24b)を弁閉制御し、また給水再循環系止め
弁25を弁開制御するものである。更にインターロツク
制御ユニツト30は原子炉起動時,通常運転時,停止時
に遠隔操作弁24a,24b、給水系止め弁12a,1
2b、再循環系止め弁25を適宜に開閉操作する機能を
有するものである。
Reference numeral 30 denotes an interlock control unit. As shown in FIG. 2 and FIG. 3, the interlock control unit 30 reduces the water supply flow rate of the water supply system pipes 28, 28 'below a specified value (flowmeter 11 Detection) or feed water heater 10
The outlet fluid temperature difference of becomes larger than the specified value (thermometer 2
6 and 27), and a remote control valve 24a for the coolant purification system.
(Or 24b) is controlled to be closed, and the feed water recirculation stop valve 25 is controlled to be opened. Further, the interlock control unit 30 includes a remote control valve 24a, 24b and a water supply system stop valve 12a, 1 at the time of reactor startup, normal operation, and shutdown.
2b, it has a function of appropriately opening and closing the recirculation system stop valve 25.

なお、図中、22は原子炉水位計、31は発電機、32
は冷却材浄化系ブロークダウンである。
In the figure, 22 is a reactor water level gauge, 31 is a generator, and 32 is a generator.
Is a coolant purification system broken down.

次に本実施例の動作を説明する。Next, the operation of this embodiment will be described.

原子炉起動時においては、〔発明の背景〕の項で既述し
たように、原子炉圧力容器1は昇温昇圧過程にあり、給
水系Aでは、原子炉1から主蒸気ライン2を介してター
ビン5に供給される蒸気量が少ない状態にある。その結
果、復水器6から給水配管7,7′を流れる給水は、流
量制御ユニツト23及び流量調整弁9,9′を介して少
流量に制御され、また給水加熱器10,10′が給水を
充分に加熱しないので低温(約30℃)状態で給水が給
水配管28,28′を流れる。
At the time of starting the reactor, as already described in the section of [Background of the Invention], the reactor pressure vessel 1 is in the temperature rising / pressurizing process, and in the water supply system A, from the reactor 1 via the main steam line 2. The amount of steam supplied to the turbine 5 is small. As a result, the feed water flowing from the condenser 6 through the feed water pipes 7 and 7'is controlled to a small flow rate through the flow rate control unit 23 and the flow rate adjusting valves 9 and 9 ', and the feed water heaters 10 and 10' are fed. Is not heated sufficiently, the feed water flows through the feed pipes 28, 28 'at a low temperature (about 30 ° C).

他方、冷却材浄化系Bは原子炉起動時に既に運転状態に
あるが、原子炉起動時には、原子炉圧力容器1が完全に
通常運転に至るまで、インターロツク制御ユニツト30
が遠隔操作弁24a,24bを制御し、遠隔操作弁24
aを弁閉制御し、遠隔操作弁24b側を開状態のままに
しておく。
On the other hand, the coolant purification system B is already in operation at the time of starting the reactor, but at the time of starting the reactor, the interlock control unit 30 is operated until the reactor pressure vessel 1 is completely in normal operation.
Controls the remote control valves 24a and 24b, and the remote control valve 24
The valve a is controlled to be closed, and the remote control valve 24b side is left open.

従つて、原子炉圧力容器1から冷却材浄化系Bを通る冷
却材浄化系戻り水は、遠隔操作弁24b側の分岐管29
を介して給水配管28に集中して流れる。このようにし
て、1本の分岐配管29を介して冷却材浄化系戻り水を
給水系配管28b側にまとめて流すと、給水系配管28
側に定格給水流量の4%以上が流れる。
Therefore, the coolant purification system return water that passes through the coolant purification system B from the reactor pressure vessel 1 is divided into the branch pipe 29 on the remote control valve 24b side.
Through the water supply pipe 28. In this way, when the coolant purifying system return water is collectively flowed to the water supply system pipe 28b side through one branch pipe 29, the water supply system pipe 28
4% or more of the rated water supply flow to the side.

その結果、給水配管28の流れに乱れが生じて冷却材浄
化系戻り水と給水系の給水が充分に混り合い層化流動現
象の発生が防止される。
As a result, the flow in the water supply pipe 28 is disturbed, and the return water of the coolant purification system and the water supply of the water supply system are sufficiently mixed to prevent the stratified flow phenomenon from occurring.

なお、原子炉圧力容器1が通常運転に入ると、原子炉圧
力容器1の蒸気発生量の増加に比例して、給水系Aにお
ける給水流量も定格流量となるために、インターロツク
制御ユニツト30が遠隔操作弁24aを遠隔操作弁24
bと共に開制御し、給水系A及び冷却材浄化系Bを通常
の運転モードに戻す。
When the reactor pressure vessel 1 enters the normal operation, the feed water flow rate in the feed water system A also becomes the rated flow rate in proportion to the increase in the amount of steam generated in the reactor pressure vessel 1, so that the interlock control unit 30 operates. The remote control valve 24a is replaced with the remote control valve 24.
Open control is performed together with b, and the water supply system A and the coolant purification system B are returned to the normal operation mode.

原子炉1の高温待機運転時には、制御棒が挿入されるの
で、残留熱により発生する少量の蒸気が、原子炉圧力容
器1→主蒸気ライン2→タービンバイパス弁21を経て
復水合6で凝縮される。次いで凝縮水が給水系分岐配管
7,7′→給水ポンプ8,8′→給水加熱器10,1
0′→給水配管28,28′を経て原子炉圧力容器1に
供給される。
Since the control rod is inserted during the high temperature standby operation of the reactor 1, a small amount of steam generated by the residual heat is condensed in the condensate 6 through the reactor pressure vessel 1 → the main steam line 2 → the turbine bypass valve 21. It Next, the condensed water is the water supply system branch pipes 7, 7 '→ water supply pumps 8, 8' → water supply heaters 10, 1.
It is supplied to the reactor pressure vessel 1 through 0 ′ → water supply pipes 28, 28 ′.

この場合、蒸気は復水器6で凝縮され、給水加熱器1
0,10′の加熱機能が充分に作動しないので、給水加
熱器10,10′から出る給水は、約30℃の低温とな
る。また、給水ポンプ8,8′から送出される給水は、
炉水位を保持するように調整されるが、原子炉圧力容器
1の蒸気発生量が少ないので、その補充給水量は少な
い。他方、給水加熱器10,10′の出口側配管7a,
7a′及び給水系分岐配管28,28′には、既存の高
温水が存在し、この高温水と給水系分岐配管7,7′か
らの低温・少流量の給水が合流する。
In this case, the steam is condensed in the condenser 6, and the feed water heater 1
Since the heating function of 0,10 'does not operate sufficiently, the feed water from the feed water heater 10,10' has a low temperature of about 30.degree. The water supplied from the water supply pumps 8 and 8'is
Although it is adjusted so as to maintain the reactor water level, since the amount of steam generated in the reactor pressure vessel 1 is small, the amount of supplementary water supply is small. On the other hand, the outlet side pipes 7a of the feed water heaters 10 and 10 ',
Existing high-temperature water exists in the 7a 'and the water supply system branch pipes 28, 28', and this high-temperature water joins the low-temperature, small flow rate supply water from the water supply system branch pipes 7, 7 '.

そして、この場合に給水配管28,28′の給水流量が
異常低下したり、或いは給水加熱器10の出口側配管7
aに上下温度差が生じると、流量計11或いは温度計2
6,27を介してインターロツク制御ユニツト30に検
出値が入力される。その結果、インターロツク制御回路
30が給水再循環系止め弁25を弁開制御し、同時に給
水配管28′の給水系止め弁12a(或いは12b)と
冷却材浄化系Bの分岐配管29′の遠隔操作弁24a
(或いは24b)を弁閉制御し、給水配管28及び冷却
材浄化系Bの分岐配管29側のみを弁開状態とする。
In this case, the water supply flow rate of the water supply pipes 28, 28 'is abnormally reduced, or the outlet side pipe 7 of the water supply heater 10 is connected.
When a temperature difference between the upper and lower sides occurs in a, the flow meter 11 or the thermometer 2
The detected value is input to the interlock control unit 30 via 6, 27. As a result, the interlock control circuit 30 controls the opening of the water supply recirculation system stop valve 25, and at the same time, the water supply system stop valve 12a (or 12b) of the water supply pipe 28 'and the branch pipe 29' of the coolant purification system B are remote. Operating valve 24a
(Or 24b) is controlled to be closed, and only the water supply pipe 28 and the branch pipe 29 side of the coolant purification system B are opened.

このようにして、給水再循環系25′と共用される給水
系分岐配管7,7′には、給水再循環系止め弁25の弁
開制御により定格給水流量の4%以上の給水が流れ、給
水加熱器10,10′の出口配管7a,7a′に層化流
動現象が生じるのを防止する。また、給水配管28のみ
が一系統運転され、給水配管28に定格給水流量の4%
以上の給水が集中して流れ、給水配管28内の高温水と
低温水が充分に混ざり合い、給水配管28内に層化流動
現象の発生するのを未然に防止する。更に給水配管28
の冷却材浄化系戻り水との合流部Oでは、冷却材浄化系
の分岐配管29を介して冷却材浄化系戻り水の全てが流
れるので、給水配管28の合流部O以降にも定格給水流
量の4%以上の給水が流れ、合流部O以降に層化流動現
象が発生するのを防止する。なお、給水配管28′,冷
却材浄化系の分岐配管29′側は弁閉制御されているの
で、休止状態にあり、層化流動現象は発生しない。
In this manner, the water supply system branch pipes 7 and 7'also shared with the water supply recirculation system 25 'are supplied with 4% or more of the rated water supply flow rate by controlling the valve opening of the water supply recirculation system stop valve 25. It prevents the stratified flow phenomenon from occurring in the outlet pipes 7a, 7a 'of the feed water heaters 10, 10'. Further, only one system of the water supply pipe 28 is operated, and the water supply pipe 28 is 4% of the rated water supply flow rate.
The above-mentioned water supply flows in a concentrated manner, the high temperature water and the low temperature water in the water supply pipe 28 are sufficiently mixed, and the stratified flow phenomenon is prevented from occurring in the water supply pipe 28. Further water supply pipe 28
At the confluence portion O with the coolant purifying system return water, all the coolant purifying system return water flows through the branch pipe 29 of the coolant purifying system. 4% or more of the water supply flows to prevent the stratified flow phenomenon from occurring after the merging portion O. Since the water supply pipe 28 'and the branch pipe 29' of the coolant purifying system are controlled to be closed, they are in a rest state and the stratified flow phenomenon does not occur.

また、原子炉起動時、停止時、高温待機運転時に給水流
量が低下した時には、冷却材浄化系の分岐配管29(或
いは29′)及び給水系の給水配管28(或いは2
8′)のみを運転させて、給水配管28に定格給水流量
の4%以上の給水を流すことができるので、給水側の流
体圧力の押込力を大きくして給水ノズル部16における
周期的逆流現象の発生を防止し、給水ノズル部16に周
期的壁温変動現象が発生するのを防止する。
Further, when the feed water flow rate decreases at the time of reactor startup, shutdown, and high temperature standby operation, the coolant purification system branch pipe 29 (or 29 ') and the water supply system feed pipe 28 (or 2)
8 ') is operated to supply 4% or more of the rated water supply flow rate to the water supply pipe 28. Therefore, the pushing force of the fluid pressure on the water supply side is increased to cause the periodic backflow phenomenon in the water supply nozzle section 16. And the periodic wall temperature fluctuation phenomenon is prevented from occurring in the water supply nozzle portion 16.

従つて、本実施例によれば、給水系システムの大きな設
計変更を伴なわずに、原子炉起動時,停止時,高温待機
運転時に生じやすい給水配管の各所の層化流動現象及び
壁温変動現象の発生を防止し、層化流動現象を原因とす
る給水配管の熱応力疲労の発生を防止することができる
ので、原子力プラントの信頼性及び安全性の向上化を図
り得る。
Therefore, according to the present embodiment, stratified flow phenomena and wall temperature fluctuations at various points in the water supply pipe that are likely to occur during reactor startup, shutdown, and high temperature standby operation without major design changes to the water supply system. Since it is possible to prevent the occurrence of the phenomenon and the occurrence of thermal stress fatigue of the water supply pipe due to the stratified flow phenomenon, it is possible to improve the reliability and safety of the nuclear power plant.

〔発明の効果〕〔The invention's effect〕

以上のように、本発明によれば、原子炉起動時、高温待
機運転時等に生じやすい給水系配管の層化流動現象を防
止して給水配管の熱応力疲労を防止することができるの
で、信頼性及び安全性の高い原子炉の給水装置を提供す
ることができる。
As described above, according to the present invention, it is possible to prevent the thermal stress fatigue of the water supply pipe by preventing the stratified flow phenomenon of the water supply pipe that is likely to occur at the time of reactor startup, high temperature standby operation, etc. It is possible to provide a reliable and safe reactor water supply device.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す原子炉給水装置の系統
図、第2図は上記実施例に用いるインターロツク制御ユ
ニツトの動作説明図、第3図は第2図のインターロツク
制御ユニツトのロジツク図、第4図は従来の原子炉給水
装置の一例を示す系統図である。 A…給水系、B…冷却材浄化系、1…原子所圧力容器、
6…給水源(復水器)、8,8′…給水ポンプ、10,
10′…給水加熱器、11…給水流量検知手段(流量
計)、12a,12b…給水止め弁(電動弁)、17…
再生熱交換器、18…非再生熱交換器、20…ろ過脱塩
装置、24a,24b…遠隔操作弁(電動弁)、25…
給水再循環系止め弁(電動弁)、26,27…給水配管
の上下温度差検知手段(温度計)、7,7′,7a,7
a′,28,28′…給水配管、29,29′…冷却材
浄化系の分岐配管、30…インターロツク制御ユニツ
ト。
FIG. 1 is a system diagram of a reactor water supply system showing an embodiment of the present invention, FIG. 2 is an operation explanatory view of an interlock control unit used in the above embodiment, and FIG. 3 is an interlock control unit of FIG. FIG. 4 is a system diagram showing an example of a conventional reactor water supply system. A ... water supply system, B ... coolant purification system, 1 ... atomic pressure vessel,
6 ... Water source (condenser), 8, 8 '... Water pump 10,
Reference numeral 10 '... Feed water heater, 11 ... Feed water flow rate detection means (flow meter), 12a, 12b ... Water feed stop valve (motorized valve), 17 ...
Regeneration heat exchanger, 18 ... Non-regeneration heat exchanger, 20 ... Filtration and desalination device, 24a, 24b ... Remote control valve (motorized valve), 25 ...
Water supply recirculation system stop valve (motorized valve), 26, 27 ... Vertical temperature difference detecting means (thermometer) for water supply pipe, 7, 7 ', 7a, 7
a ', 28, 28' ... Water supply pipe, 29, 29 '... Coolant purification system branch pipe, 30 ... Interlock control unit.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】複数系統の給水配管に給水ポンプ,給水加
熱器を介して原子炉圧力容器に給水を供給する給水系
と、前記給水配管から分岐して給水の一部を給水源に戻
す給水再循環系と、原子炉圧力容器から取水した冷却材
を再生熱交換器,ろ過脱塩装置,分岐配管を介して前記
給水系の各給水配管に合流させる冷却材浄化系とを備え
た給水装置において、前記冷却材浄化系の各分岐配管に
は遠隔操作弁を夫々配設して、原子炉起動運転時に、こ
れらの遠隔操作弁が一つの弁を除いて弁閉制御されるよ
うに設定してなることを特徴とする原子炉の給水装置。
1. A water supply system for supplying water to a reactor pressure vessel via water supply pumps and water heaters to a plurality of water supply pipes, and water supply for branching a portion of the water supply to a water supply source. A water supply device including a recirculation system and a coolant purification system that joins the coolant taken from the reactor pressure vessel to each water supply pipe of the water supply system via a regenerative heat exchanger, a filter desalting device, and a branch pipe. In the above, in each of the branch pipes of the coolant purification system, remote control valves are respectively provided, and the remote control valves are set to be closed except for one valve at the time of reactor startup operation. A water supply device for a nuclear reactor characterized by:
【請求項2】複数系統の給水配管に給水ポンプ,給水加
熱器を設置して原子炉圧力容器に給水を供給する給水系
と、前記給水配管から分岐して給水の一部を給水源に戻
す給水再循環系と、原子炉圧力容器から取水した冷却材
を再生熱交換器,ろ過脱塩装置,分岐配管を介して前記
給水系の各給水配管に合流させる冷却材浄化系とを備え
た装置において、前記冷却材浄化系の各分岐配管には遠
隔操作弁を夫夫配設して、原子炉起動運転時に、これら
の遠隔操作弁が一つの弁を除いて弁閉制御されるように
設定し、更に前記給水系,前記冷却材浄化系,前記給水
再循環系には、前記給水系の給水配管を通過する給水流
量の異常低下或いは該給水配管の上下温度差のいずれか
一方或いは双方を検知した時に、前記給水系の各給水配
管に配設した給水系止め弁及び前記冷却材浄化系の分岐
配管に配設した前記遠隔操作弁をこれらの給水系止め弁
及び遠隔操作弁の夫々一つを除いて弁閉制御して、これ
らの給水系及び冷却材浄化系を一系統運転させるインタ
ーロツクと、前記給水再循環系に配設した給水再循環系
止め弁を弁開制御するインターロツクとを設けてなるこ
とを特徴とする原子炉の給水装置。
2. A water supply system for supplying water to a reactor pressure vessel by installing a water supply pump and a water supply heater in a plurality of water supply pipes, and a part of the water supply branched from the water supply pipes to return to a water supply source. Apparatus including a water supply recirculation system and a coolant purification system that joins the coolant taken from the reactor pressure vessel to each water supply pipe of the water supply system through a regenerative heat exchanger, a filter desalting device, and a branch pipe In the above, each branch pipe of the coolant purification system is provided with a remote control valve, and these remote control valves are controlled to be closed except for one valve during the reactor startup operation. Further, in the water supply system, the coolant purification system, and the water supply recirculation system, either one or both of an abnormal decrease in the flow rate of the water supply passing through the water supply pipe of the water supply system or a vertical temperature difference of the water supply pipe is provided. Water supply placed in each water supply pipe of the water supply system when detected The stop valve and the remote control valve arranged in the branch pipe of the coolant purification system are controlled to be closed except one of the water supply system stop valve and the remote control valve, respectively, and the water supply system and the coolant are controlled. A reactor water supply system comprising an interlock for operating a single purification system and an interlock for controlling the valve opening of a water supply recirculation system stop valve arranged in the water supply recirculation system.
JP60255571A 1985-11-14 1985-11-14 Reactor water supply Expired - Lifetime JPH068915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60255571A JPH068915B2 (en) 1985-11-14 1985-11-14 Reactor water supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60255571A JPH068915B2 (en) 1985-11-14 1985-11-14 Reactor water supply

Publications (2)

Publication Number Publication Date
JPS62123396A JPS62123396A (en) 1987-06-04
JPH068915B2 true JPH068915B2 (en) 1994-02-02

Family

ID=17280564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60255571A Expired - Lifetime JPH068915B2 (en) 1985-11-14 1985-11-14 Reactor water supply

Country Status (1)

Country Link
JP (1) JPH068915B2 (en)

Also Published As

Publication number Publication date
JPS62123396A (en) 1987-06-04

Similar Documents

Publication Publication Date Title
JPH04302902A (en) Supercritical boiler with separator for cycle operation and recirculating pump
JPH0631814B2 (en) Variable delay device for reactor trip
JPH068915B2 (en) Reactor water supply
JPH044481B2 (en)
JP2001091689A (en) Starting method for supercritical pressure light water- cooled reactor
JPH09126409A (en) Method and device for temperature control of feed-water heater
JP2614350B2 (en) Feed water heater drain pump up system
JP7303554B2 (en) hot water system
JPH0663607B2 (en) Turbine plant with feedwater heater drain injection device
JP3759083B2 (en) Steam turbine plant
JPH02264893A (en) Method of controlling nuclear power plant
JPS6010597B2 (en) Reactor coolant purification system
JPS604439B2 (en) How to operate a nuclear reactor plant
JPH04270995A (en) Purification system of nuclear reactor coolant
JP2000046994A (en) Device for preventing pump for reactor coolant purification system from tripping
JPS6228692A (en) Method of operating nuclear-reactor coolant purification system
JPS6093205A (en) Method and device for controlling dry heater system of generating plant
JP3392563B2 (en) Circulation heater for control rod drive system
JPH08101297A (en) Water supply system for nuclear reactor
SU1097811A1 (en) Power unit dearatorless regeneration system
JPS59105598A (en) Feedwater control device
JP2927860B2 (en) Feed water heater for reactor
JPH0679069B2 (en) Reactor residual heat removal device
JPH06105314B2 (en) Reactor coolant purification system
JPS62287192A (en) Purge water feeder for nuclear reactor inside circulating pump