JPH0688765B2 - Noble gas refining equipment - Google Patents

Noble gas refining equipment

Info

Publication number
JPH0688765B2
JPH0688765B2 JP61208307A JP20830786A JPH0688765B2 JP H0688765 B2 JPH0688765 B2 JP H0688765B2 JP 61208307 A JP61208307 A JP 61208307A JP 20830786 A JP20830786 A JP 20830786A JP H0688765 B2 JPH0688765 B2 JP H0688765B2
Authority
JP
Japan
Prior art keywords
rare gas
hydrogen
gas
storage material
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61208307A
Other languages
Japanese (ja)
Other versions
JPS6364901A (en
Inventor
孝治 蒲生
良夫 森脇
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61208307A priority Critical patent/JPH0688765B2/en
Publication of JPS6364901A publication Critical patent/JPS6364901A/en
Publication of JPH0688765B2 publication Critical patent/JPH0688765B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、希ガス、即ち周期率第O族に属するヘリウム
(He)、ネオン(Ne)、アルゴン(Ar)、クリプトン
(Kr)、キセノン(Xe)、ラドン(Rn)の精製装置に関
し、詳しくは希ガス中に含まれる酸素、窒素、二酸化炭
素などの不純物成分を水素吸蔵材料を用いて除去する希
ガス精製装置に関する。
TECHNICAL FIELD The present invention relates to a rare gas, that is, helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe) belonging to Group O of the periodic rate. ), And a radon (Rn) purification device, and more particularly, to a rare gas purification device that removes impurity components such as oxygen, nitrogen, and carbon dioxide contained in a rare gas using a hydrogen storage material.

従来の技術 現在、希ガスは半導体、金属、電子、化学などの各種工
業分野において多量に使用されているが、一般に市販品
には種々の不純物ガス成分が含まれており、製品の品質
や信頼製の向上の点から、より高純度のものが要望され
ている。
2. Description of the Related Art Currently, rare gases are used in large amounts in various industrial fields such as semiconductors, metals, electronics, and chemistry, but in general, commercial products contain various impurity gas components, and product quality and reliability are high. From the viewpoint of improvement in manufacturing, higher purity ones are demanded.

従来から、希ガス精製装置としては、吸着法、分離膜
法、拡散法、化学反応法など種々知られている。これら
の中で広く大規模に利用されている装置は、低温吸着法
によるもので、液体窒素などで冷却した吸着剤に原料希
ガスを接触させ、原料希ガス中の不純物(酸素,窒素な
ど)を吸着させて、高純度希ガスを得るもので、純度お
よび回収率の点で優れていることから、圧倒的使用実績
を誇っている。また低温吸着式装置に代わり、常温操作
の可能な圧力スイング式吸着装置や気体分離膜装置も提
案されている。前者は吸着剤に対する気体の吸着率が圧
力によって著しく変わるという特性を利用したものであ
り、一方、後者はモンサント社などによって開発された
特殊な気体分離膜を使用して希ガス精製を行なう装置で
あり、分子の大きさに差があることを利用したものであ
る。
Heretofore, various kinds of rare gas refining apparatuses such as an adsorption method, a separation membrane method, a diffusion method and a chemical reaction method have been known. Among these, the widely used device is based on the low temperature adsorption method, in which the raw material rare gas is brought into contact with an adsorbent cooled with liquid nitrogen or the like, and impurities (oxygen, nitrogen, etc.) in the raw material rare gas are used. Is adsorbed to obtain a high-purity rare gas, which has an overwhelming track record of use because of its excellent purity and recovery rate. Further, in place of the low temperature adsorption type device, a pressure swing type adsorption device and a gas separation membrane device which can be operated at room temperature have been proposed. The former utilizes the characteristic that the adsorption rate of gas with respect to the adsorbent changes significantly with pressure, while the latter is a device for purifying rare gases using a special gas separation membrane developed by Monsanto. Yes, it utilizes the fact that there are differences in the size of the molecules.

発明が解決しようとする問題点 低温吸着式希ガス精製装置においては、液体窒素などの
極低温冷媒や高価な触媒を必要とすることから、希ガス
精製コストが高くつくだけでなく、凍傷などの危険性も
ある。また、吸着剤を冷却するという準備操作に数時間
も要し、操作の煩雑性や処理効率の点でも問題がある。
Problems to be Solved by the Invention In a low temperature adsorption type rare gas refining apparatus, an extremely low temperature refrigerant such as liquid nitrogen and an expensive catalyst are required. There is also a danger. Further, it takes several hours to perform a preparatory operation for cooling the adsorbent, and there is a problem in terms of operation complexity and processing efficiency.

また、圧力スイング式は回収率が最高でも70%と低く、
回収率を上げようとすると、精製希ガスの純度が低くな
るという問題がある。また上記の二方法は、共に多量の
精製において、はじめてそれらの特長を生かせる方法で
あって、少量の場合は設備が複雑化し、価格も相対的に
高くなる。
In addition, the pressure swing type has a low recovery rate of 70% at maximum,
If the recovery rate is increased, there is a problem that the purity of the refined rare gas becomes low. Further, both of the above-mentioned two methods are the methods that can utilize these features for the first time in a large amount of purification, and when the amount is small, the equipment becomes complicated and the price becomes relatively high.

一方、気体分離膜装置は、まだ開発段階で、精製純度が
低いという難点があり、将来も99.999%以上の純度を得
ることは困難であると考えられる。
On the other hand, the gas separation membrane device is still in the development stage, and there is a problem that the purification purity is low, and it is considered difficult to obtain a purity of 99.999% or more in the future.

本発明は、上記の事情に鑑み、常温操作が可能であり、
システムが簡単で、操作も容易、しかも低温吸着式装置
に匹適する高純度の希ガスを、ガス量の多少にかかわら
ず、迅速に高回収率で得ることのできる希ガス精製装置
を提供することを目的とするものである。
In view of the above circumstances, the present invention can be operated at room temperature,
To provide a rare gas purifying device which has a simple system, is easy to operate, and is capable of promptly obtaining a high-purity rare gas suitable for a low temperature adsorption type device with a high recovery rate regardless of the amount of gas. The purpose is.

問題点を解決するための手段 本発明は希ガス中の不純物の吸着除去剤として、極めて
有効な水素吸蔵材料を用いる。
Means for Solving Problems The present invention uses an extremely effective hydrogen storage material as an adsorbent / removal agent for impurities in a rare gas.

作用 水素吸蔵材料が水素含有濃度の低い水素拡散相領域、い
わゆる水素平衡圧−組成等温線のプラトー域(α相とβ
相と共存域)に達するまでのα相領域の状態にある時、
希ガス中に含まれる酸素や窒素などの不純物ガス成分に
対する吸着能力が最大になる。
Action Hydrogen diffusion material has a low hydrogen content concentration in the hydrogen diffusion phase region, so-called hydrogen equilibrium pressure-composition isotherm plateau region (α phase and β
When it is in the state of the α phase region until it reaches the phase and coexistence region),
The adsorption capacity for impurity gas components such as oxygen and nitrogen contained in the rare gas is maximized.

実施例 まず、初めに水素吸蔵材料の特性について説明する。水
素吸蔵材料に水素を吸蔵させると、結晶格子の体積が膨
張し、逆に水素を放出させると収縮する。これを数回繰
返すと、自ら微粉化し表面積が増大する。この現象は、
活性な面が表に出てくるという効果とあいまって、原料
希ガス中の不純物除去剤としては、まことに好都合であ
る。さらにこの水素吸蔵材料は、その内部に吸蔵した水
素の量によってガスの吸着能が異なる。一般に水素吸蔵
材料は、一定温度の下で、第3図のような水素含有量と
平衡圧との関係を示す。図に示すように、前記材料が水
素を吸蔵しはじめると、まず水素が格子中に拡散したα
相含有領域に入る。ここでは印加水素にほぼ比例して
水素圧が上昇する。次いで、すべての相がα相になった
点を終て水素含有量がいくら増大しても平衡圧はほとん
ど変化しないα相とβ相の共存域(いわゆるプラトー
域)に入る。その後、金属水素化物のβ相を経て、い
くら水素を加えても、これ以上、材料中には含有しえな
い領域に入る。なお、この反応は可逆的であり、水素
放出時は、前記過程の逆を進む。これら3種類の領域
,,にある材料について原料希ガス中の不純物ガ
ス成分に対する吸着効果を調べた。その代表的結果を第
2図に示す。なお、同図はTi−Mn係合金を用い、常温
(約20℃)のもと窒素ガスに対して調べたもので、α
相,(α+β)組,β相は、水素含有状態の貴示し、ま
た同程度に微粉化された水素を含有しない完全脱水素材
料の吸着効果も示している。なお、吸着効果は、不純物
ガスの種類,温度,粉末の平均寸法などによって異なる
ものの、試みたすべての条件下で第4図に示した水素含
有相による効果の違いに大きな変化は見られなかった。
Examples First, the characteristics of the hydrogen storage material will be described. When the hydrogen storage material stores hydrogen, the volume of the crystal lattice expands, and conversely, when hydrogen is released, the crystal contracts. When this is repeated several times, it is pulverized by itself and the surface area increases. This phenomenon is
Combined with the effect that the active surface appears on the surface, it is very convenient as an impurity removing agent in the raw material rare gas. Furthermore, this hydrogen storage material has a different gas adsorption capacity depending on the amount of hydrogen stored therein. Generally, the hydrogen storage material shows the relationship between the hydrogen content and the equilibrium pressure as shown in FIG. 3 under a constant temperature. As shown in the figure, when the material starts to occlude hydrogen, first the hydrogen diffuses into the lattice α
Enter the phase-containing region. Here, the hydrogen pressure rises almost in proportion to the applied hydrogen. Next, the equilibrium pressure enters the coexistence region (so-called plateau region) in which the equilibrium pressure hardly changes regardless of how much the hydrogen content increases, ending at the point where all the phases are in the α phase. After that, through the β phase of the metal hydride, no matter how much hydrogen is added, it enters a region that cannot be contained in the material any more. This reaction is reversible, and the above process is reversed when hydrogen is released. The adsorption effect on the impurity gas component in the raw material rare gas was investigated for the materials in these three types of regions. The representative results are shown in FIG. In addition, the figure shows the results of using Ti-Mn engagement metal and investigating against nitrogen gas at room temperature (about 20 ° C).
The phase, (α + β) pair, β phase show nobleness of hydrogen-containing state, and also show the adsorption effect of hydrogenated completely dehydrogenated material which is comminuted to the same degree. Although the adsorption effect varies depending on the type of the impurity gas, the temperature, the average size of the powder, etc., no significant change was observed in the difference in the effect due to the hydrogen-containing phase shown in FIG. 4 under all the conditions tried. .

第4図から明らかなように、水素拡散相(α相)状態に
ある水素吸蔵材料が最も不純物ガスの吸着量および平均
的吸着速度の点で優れており、次いで完全脱水素したも
の、(α+β)相,β相の順である。この傾向を示す理
由は水素で飽和したβ相では、材料の各粒子表面で、不
純物中の一部の酸素が水素と反応して水を形成し、この
水が固体表面に付着して、新たな不純物ガスに対する材
料の吸着効果を妨害し、また結晶格子中にトラップされ
た高濃度の水素原子が、各格子の外膜を形成して、酸素
や窒素の吸着材との結合を妨げるものと思われる。また
(α+β)相でも前記妨害作用が、程度の差こそあれ、
依然として存在する。また完全脱水素ガス材料は、使用
初期は非常に優れた吸着効果を示すものの、時間と共に
作用効果が低下する。その理由は、固体表面に強固な安
定層(例えば、Ti系合金の場合Ti2Niなど)を形成し、
この層が後続の希ガス中の不純物ガスの固体粒内部への
侵入を妨げ、吸着効果に悪影響を及ぼすと考えられる。
一方、α相状態にあるものは、固体中に拡散固溶した水
素原子が強固な安定層の形成を防ぎ、その結果、不純物
ガスは、粒塊の間隙をぬって、次々と活性な金属表面に
到着し得るため、吸着剤としての利用効率がほぼ100%
となり、全吸着量も多い。
As is clear from FIG. 4, the hydrogen storage material in the hydrogen diffusion phase (α phase) state was the most excellent in terms of the amount of adsorbed impurity gas and the average adsorption rate, and then the one completely dehydrogenated, (α + β ) Phase, then β phase. The reason for this tendency is that, in the β phase saturated with hydrogen, some oxygen in the impurities reacts with hydrogen to form water on the surface of each particle of the material, and this water adheres to the solid surface, and It interferes with the adsorption effect of the material on various impurity gases, and the high concentration of hydrogen atoms trapped in the crystal lattice forms the outer film of each lattice and prevents the binding of oxygen and nitrogen with the adsorbent. Seem. Also in the (α + β) phase, the disturbing effect, to some extent,
Still exists. Further, the completely dehydrogenated gas material exhibits a very excellent adsorption effect in the initial stage of use, but the action effect decreases with time. The reason is that a solid stable layer (for example, Ti 2 Ni in the case of Ti-based alloy) is formed on the solid surface,
It is considered that this layer hinders the subsequent penetration of the impurity gas in the rare gas into the inside of the solid particles and adversely affects the adsorption effect.
On the other hand, in the α-phase state, the hydrogen atoms diffused and solid-dissolved in the solid prevent the formation of a stable stable layer, and as a result, the impurity gas penetrates the gaps between the agglomerates and the metal surface is activated one after another. The efficiency of use as an adsorbent is almost 100%
Therefore, the total adsorption amount is large.

次いで、水素吸蔵材料の種類による吸着効果について述
べる。比較対象として、とりあげた材料は、Ti単体、Zr
単体、Ti(またはZr)‐Fe系,Ti(またはZr)‐Mn系,Ti
(またはZr)−Cr系,Ti(またはZr)‐V系,Ti(または
Zr)‐Ni系、などのTi(または(Zr)系合金,La単体,La
-Ni系,Ce−Ni系、La−Co系、Ce−Co系、Mm−Ni系,Mm−C
o系,Md−Ni系,Nd−Co系などの稀土類系合金、Mg−Ni系,
Mg−Cu系などのMg系合金,そしてCa−Ni系、Pd系、V−
Nd系、などであり、種々の実験の結果、Ti(またはZr)
系合金が不純物吸着効果が最も良好で、中でもTi(また
はZr)−Mn系は、反応速度の点で、特に優れていた。
Next, the adsorption effect depending on the type of hydrogen storage material will be described. For comparison, the materials taken are Ti alone and Zr.
Simple substance, Ti (or Zr) -Fe system, Ti (or Zr) -Mn system, Ti
(Or Zr) -Cr system, Ti (or Zr) -V system, Ti (or
Ti (or (Zr) -based alloy such as Zr) -Ni system, La simple substance, La
-Ni system, Ce-Ni system, La-Co system, Ce-Co system, Mm-Ni system, Mm-C
rare earth alloys such as o, Md-Ni, Nd-Co, Mg-Ni,
Mg-based alloys such as Mg-Cu, Ca-Ni, Pd, V-
Nd, etc., and various experimental results, Ti (or Zr)
The system alloys had the best effect of adsorbing impurities, and the Ti (or Zr) -Mn system was particularly excellent in terms of reaction rate.

また活性炭、モレキュラーシーブ,粉末木炭、ケイ酸マ
グネシウム、シリカゲルと水素吸蔵材料との混合物体の
作用効果を調べた結果、これらの混合体は特に水分(H2
O)の除去作用に優れた効果を示した。
In addition, as a result of investigating the action and effect of a mixed substance of activated carbon, molecular sieve, powdered charcoal, magnesium silicate, silica gel and a hydrogen storage material, it was found that these mixtures had a particularly high moisture content (H 2
It showed an excellent effect of removing O).

さらに、本材料を装置に組込む際の処理について調べた
結果、初期の水素活性化処理の際の形状保持すなわち吸
着剤エレメントの強度の点で、Cu,NiあるいはAlを表面
にメッキし、これを固めた成形体が、特に特性上優れ、
またデバイスとして組込んだ時の構成形状としては、平
板状構造とすることが最も簡便で、製造コスト面でも有
利であることがわかった。
Furthermore, as a result of investigating the process of incorporating this material into the apparatus, Cu, Ni or Al was plated on the surface in terms of shape retention during the initial hydrogen activation process, that is, strength of the adsorbent element, and The compacted body is particularly excellent in characteristics,
Further, it has been found that a flat plate-like structure is the simplest constitutional shape when incorporated as a device, and is advantageous in terms of manufacturing cost.

(実施例1) NiメッキしTiMn1.5合金の粉末10gを板状に成形し、常温
(約20℃)で3回水素吸蔵・放出を繰返した後、α相す
なわちTiMn1.5H0.1に保った。これを第1図の断面概略
図に示したように、上下を多孔性フィルタ2,3で押さえ
て保持し、インライン型の分析用の希ガス精製装置を構
成した。1は板状の水素吸蔵材料、4は原料アルゴンガ
ス、5は精製された高純度アルゴンガス、6はガス導入
弁、7はガス取出弁、8は装置の外壁、9は多孔性フィ
ルタ、2,3を支持するための内壁である。同装置を用い
て市販の原料アルゴンガスを流した結果、精製可能な最
大のアルゴンガス流量は500ml/g・mmであり、その時の
純度は原料アルゴンガスの不純物濃度、例えば酸素5Vol
ppm、窒素10Volppmに対して、本装置を通過したあとの
出口の不純物濃度は、酸素1volppm、窒素5volppmであっ
た。すなわち、原料ガスの純度4ナインのものが本装置
によって5ナインに高純度化された。
(Example 1) Ni-plated 10 g of TiMn 1.5 alloy powder was molded into a plate shape, and after repeating hydrogen absorption and desorption three times at room temperature (about 20 ° C.), the α phase, that is, TiMn 1.5 H 0.1 was maintained. As shown in the schematic cross-sectional view of FIG. 1, the upper and lower sides were pressed and held by the porous filters 2 and 3 to form an in-line type rare gas purification device for analysis. 1 is a plate-shaped hydrogen storage material, 4 is raw material argon gas, 5 is purified high-purity argon gas, 6 is a gas introduction valve, 7 is a gas extraction valve, 8 is an outer wall of the apparatus, 9 is a porous filter, 2 It is an inner wall for supporting 3 and 3. As a result of flowing a commercially available raw material argon gas using the same apparatus, the maximum flow rate of argon gas that can be purified is 500 ml / g ・ mm, and the purity at that time is the impurity concentration of the raw material argon gas, for example, oxygen 5 vol.
With respect to ppm and 10 Volppm of nitrogen, the impurity concentration at the outlet after passing through this device was 1 volppm of oxygen and 5 volppm of nitrogen. That is, the raw material gas having a purity of 4 nines was highly purified to 5 nines by this apparatus.

(実施例2) 水素吸蔵材料として、ZrMn合金を選び第2図に示した断
面概略図のように装置内部に収納した。合金重量は1Kg
である。常温(約20℃)で、水素吸蔵・放出を3回繰返
し、平均粉粒を約0.2μmに調整した後、α相すなわち
水素化物の組成ZrMnH0.08に保持した。ついで、ガス導
入弁13を開いて、市販のヘリウムガスを希ガス導入管1
4、多孔性フィルタ12を経て、ガス導入口6から導入し
た。この原料ヘリウムガスの不純物濃度は、酸素5volpp
m,窒素20Volppmを含む、4ナインのものであった。希ガ
ス取出し弁17を開き、希ガス取出し口18から得られた精
製ヘリウム中の不純物濃度を測定した結果、酸素1Volpp
m,窒素5Volppmであり、精製されたヘリウム純度は5ナ
インが達成された。図中、11は水素吸蔵材料、25は装置
の外壁、19は精製希ガスである。
(Example 2) A ZrMn alloy was selected as a hydrogen storage material and housed in the apparatus as shown in the schematic sectional view of FIG. Alloy weight is 1 kg
Is. At normal temperature (about 20 ° C.), hydrogen absorption / desorption was repeated three times to adjust the average particle size to about 0.2 μm, and then the α phase, that is, the hydride composition ZrMnH 0.08 was maintained. Then, open the gas introduction valve 13 to introduce commercially available helium gas into the rare gas introduction pipe 1
4. The gas was introduced through the gas inlet 6 through the porous filter 12. The impurity concentration of this raw material helium gas is 5 volpp oxygen.
It was a 4-nine product containing m and 20 Volppm of nitrogen. The rare gas extraction valve 17 was opened, and the impurity concentration in the purified helium obtained from the rare gas extraction port 18 was measured.
m, nitrogen was 5 Volppm, and a purified helium purity of 5 nine was achieved. In the figure, 11 is a hydrogen storage material, 25 is an outer wall of the device, and 19 is a purified rare gas.

なお、上記不純物ガスの濃度分析には、柳本製作所製の
HIDガスクロマトグラフを使用した。また、実施例1お
よび2に関し、他の不純物ガス、例えば一酸化炭素(C
o),二酸化炭素(Co2),メタン(CH4),水(H2O)
などに対しても、同様に、精製ガス中の不純物濃度は、
原料ガス中の値の半分以下になり、本発明に係る水素吸
蔵材料は、優れた精製効果を有することを確認した。
In addition, the above-mentioned impurity gas concentration analysis was performed by Yanagimoto Seisakusho.
A HID gas chromatograph was used. Further, regarding Examples 1 and 2, other impurity gas such as carbon monoxide (C
o), carbon dioxide (Co 2 ), methane (CH 4 ), water (H 2 O)
Similarly, the impurity concentration in the purified gas is
It was confirmed that the hydrogen storage material according to the present invention had an excellent refining effect, since it was less than half the value in the raw material gas.

発明の効果 本発明に係る希ガス精製装置は、常温で使用することが
出来、その構造も簡単であるため精製コストは少なくて
すみ、また吸着速度が速いため大量の希ガスを連続的に
精製することが出来る。さらに、精製ガス量の規模の大
小を問わないため、研究開発用から、量産ライン用ま
で、あらゆる分野で使用でき、得られる希ガスの純度も
極めて高いものである。
EFFECTS OF THE INVENTION The rare gas purification device according to the present invention can be used at room temperature, and its structure is simple, so that the purification cost is low, and since the adsorption rate is fast, a large amount of rare gas can be continuously purified. You can do it. Further, since the amount of purified gas does not matter, it can be used in all fields from research and development to mass production lines, and the purity of the rare gas obtained is extremely high.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の希ガス精製装置の断面概略
構成図、第2図本発明の異なる実施例の希ガス精製装置
の断面概略構成図、第3図は代表的な水素吸蔵材料の圧
力−組成等温線図、第4図は水素含有相の不純物吸着効
果の特性図である。 1,11……水素吸蔵材料(吸着剤)、2,3,12……多孔性フ
ィルタ。
FIG. 1 is a schematic sectional view of a rare gas purifying apparatus according to an embodiment of the present invention, FIG. 2 is a schematic sectional view of a rare gas purifying apparatus according to another embodiment of the present invention, and FIG. 3 is a typical hydrogen storage device. The pressure-composition isotherm diagram of the material and FIG. 4 are characteristic diagrams of the impurity adsorption effect of the hydrogen-containing phase. 1,11 …… Hydrogen storage material (adsorbent), 2,3,12 …… Porous filter.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】水素含有濃度が低い水素拡散相(金属水素
化物のα相)領域にある水素吸蔵材料を、主たる不純物
の吸着除去剤として用いたことを特徴とする希ガス精製
装置。
1. A rare gas purifying apparatus characterized in that a hydrogen storage material in a hydrogen diffusion phase region (α phase of metal hydride) having a low hydrogen content concentration is used as an adsorption / removal agent for main impurities.
【請求項2】水素吸蔵材料が、Ti(チタン)あるいはZr
(ジルコン)を少なくとも含有することを特徴とする特
許請求の範囲第1項記載の希ガス精製装置。
2. The hydrogen storage material is Ti (titanium) or Zr.
The rare gas refining apparatus according to claim 1, which contains at least (zircon).
【請求項3】不純物の吸着除去剤が、活性炭,モレキュ
ラシーブ,粉末木炭,ケイ酸マグネシウム,シリカゲル
から選ばれた1つ以上の吸着剤と水素吸蔵材料との混合
体からなることを特徴とする特許請求の範囲第1項記載
の希ガス精製装置。
3. A patent characterized in that the adsorbent / scavenger for impurities is a mixture of one or more adsorbents selected from activated carbon, molecular sieve, powdered charcoal, magnesium silicate and silica gel and a hydrogen storage material. The rare gas refining apparatus according to claim 1.
【請求項4】水素吸蔵材料がCu(銅)あるいはNi(ニッ
ケル)を表面にメッキした粉末の成形体からなることを
特徴とする特許請求の範囲第1項記載の希ガス精製装
置。
4. The rare gas purifying apparatus according to claim 1, wherein the hydrogen storage material is a powder compact having a surface plated with Cu (copper) or Ni (nickel).
【請求項5】不純物の吸着除去剤が粉末を固めた板状構
造を有することを特徴とする特許請求の範囲第1項記載
の希ガス精製装置。
5. The rare gas purifying apparatus according to claim 1, wherein the adsorbing and removing agent for impurities has a plate-like structure in which powder is solidified.
JP61208307A 1986-09-04 1986-09-04 Noble gas refining equipment Expired - Lifetime JPH0688765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61208307A JPH0688765B2 (en) 1986-09-04 1986-09-04 Noble gas refining equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61208307A JPH0688765B2 (en) 1986-09-04 1986-09-04 Noble gas refining equipment

Publications (2)

Publication Number Publication Date
JPS6364901A JPS6364901A (en) 1988-03-23
JPH0688765B2 true JPH0688765B2 (en) 1994-11-09

Family

ID=16554086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61208307A Expired - Lifetime JPH0688765B2 (en) 1986-09-04 1986-09-04 Noble gas refining equipment

Country Status (1)

Country Link
JP (1) JPH0688765B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03126607A (en) * 1989-10-09 1991-05-29 Matsushita Electric Ind Co Ltd Method for refining rare gas
DE4005695A1 (en) * 1990-02-20 1991-08-29 Hydrid Wasserstofftech CHEMICAL SORROW-METAL ALLOY AND GAS PURIFICATION METHOD
US6068683A (en) * 1993-05-20 2000-05-30 The Regents Of The University Of California Apparatus for separating and collecting hydrogen gas
US6299670B1 (en) 1999-06-10 2001-10-09 Saes Pure Gas, Inc. Integrated heated getter purifier system
US6521192B1 (en) * 1999-08-06 2003-02-18 Saes Pure Gas, Inc. Rejuvenable ambient temperature purifier
JP4084523B2 (en) * 2000-03-10 2008-04-30 大陽日酸株式会社 Anesthesia equipment using xenon
KR100727487B1 (en) 2005-11-14 2007-06-13 삼성전자주식회사 Particle adsorption chamber and particle sampling apparatus and particle sampling method
FR2971614A1 (en) * 2011-02-11 2012-08-17 Tn Int DEVICE FOR TRAPPING FLAMMABLE GASES PRODUCED BY RADIOLYSIS OR THERMOLYSIS IN A CONTAINMENT ENCLOSURE
ES2959408T3 (en) * 2013-06-14 2024-02-26 Usw Commercial Services Ltd Synthesis and hydrogen storage properties of manganese hydrides
CN106547009A (en) * 2015-09-23 2017-03-29 福建宁德核电有限公司 A kind of nuclear power plant's gaseous effluent85The detection method and equipment of K
CN106371130A (en) * 2016-08-23 2017-02-01 福建宁德核电有限公司 Monitoring system of krypton-85 in airborne effluent from nuclear facilities
JP6816339B2 (en) * 2017-10-31 2021-01-20 株式会社神戸製鋼所 Deoxidizing method of titanium material
CN113877313B (en) * 2021-10-25 2022-06-17 上海杰视医疗科技有限公司 Purification device and purification method for medical perfluoropropane

Also Published As

Publication number Publication date
JPS6364901A (en) 1988-03-23

Similar Documents

Publication Publication Date Title
Gamo et al. Life properties of Ti Mn alloy hydrides and their hydrogen purification effect
JPH0688765B2 (en) Noble gas refining equipment
JPS5953201B2 (en) Hydrogen gas purification method
CA2137792C (en) Process for the removal of gaseous impurities from a stream of hydrogen
US5489327A (en) Process for purifying hydrogen gas
JPH02116607A (en) Method and device for removing impurity gas from inert gas and for guaranteeing that hydrogen content is at very low level
JPH08508968A (en) An improved method for the removal of gaseous impurities from hydrogen streams
US6017502A (en) Hydrogen purification using metal hydride getter material
US6521192B1 (en) Rejuvenable ambient temperature purifier
US4358429A (en) Oxygen stabilized zirconium vanadium intermetallic compound
JPH03126607A (en) Method for refining rare gas
JPS621566B2 (en)
US4215008A (en) Rare earth-containing alloys and method for purification of hydrogen gas therewith
Roberts et al. A method of surface analysis and its application to reduced nickel powder
Boffito et al. A new Zr-based alloy for tritium recovery from tritiated water
JPS6313925B2 (en)
JPS6348802B2 (en)
JPS6230127B2 (en)
JPS5953202B2 (en) Hydrogen gas purification equipment
JP3292995B2 (en) Gas purification method and apparatus
US4749558A (en) Method of separating and purifying hydrogen
JPS6020323B2 (en) Nitrogen gas purification method
JPH0468291B2 (en)
JPS6313924B2 (en)
US20130276771A1 (en) Method of generating thermal energy