JPH068760B2 - Force transducer - Google Patents

Force transducer

Info

Publication number
JPH068760B2
JPH068760B2 JP59020294A JP2029484A JPH068760B2 JP H068760 B2 JPH068760 B2 JP H068760B2 JP 59020294 A JP59020294 A JP 59020294A JP 2029484 A JP2029484 A JP 2029484A JP H068760 B2 JPH068760 B2 JP H068760B2
Authority
JP
Japan
Prior art keywords
force
pressure
present
transducer
sensitive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59020294A
Other languages
Japanese (ja)
Other versions
JPS60164230A (en
Inventor
健一郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP59020294A priority Critical patent/JPH068760B2/en
Publication of JPS60164230A publication Critical patent/JPS60164230A/en
Publication of JPH068760B2 publication Critical patent/JPH068760B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/205Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using distributed sensing elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は力変換器に関し、さらに詳しくは広い力範囲に
わたって動作する力変換器の構成に関するものである。
Description: FIELD OF THE INVENTION The present invention relates to force transducers, and more particularly to the construction of force transducers operating over a wide force range.

(従来技術とその問題点) 近来、産業用ロボットの分野における急速な発展に伴っ
て、触覚等のロボット知覚技術の著しい進歩が見られ
る。これはシリコン等の半導体をはじめ、無機,有機材
料を用いたセンサデバイス技術の急速な発展に支えられ
ているものであり、当該技術を用いた触覚センサへの応
用も試みられている。以下、圧覚,力覚の検出に用いら
れる力変換器の従来例を図と共に説明する。
(Prior art and its problems) With the recent rapid development in the field of industrial robots, remarkable progress has been made in robot perception technology such as tactile sensation. This is supported by the rapid development of sensor device technology using inorganic and organic materials including semiconductors such as silicon, and application to tactile sensors using this technology has also been attempted. Hereinafter, a conventional example of a force transducer used for detecting pressure sense and force sense will be described with reference to the drawings.

第1図に従来の力変換器の構成を示す。当該力変換器
は、導電性ゴム3を挿んでその両面に電極2を接着ある
いは蒸着等で形成し、これを台座4に接着して構成す
る。当該力変換器に力(あるいは、圧力)1が作用する
時、導電性ゴムに圧力が供給され、その結果、当該導電
性ゴムの両端の抵抗値が変化する。従って、当該抵抗値
を電極2を介して外部に取り出し、周知の検出手段を用
いて測定することにより、当該力変換器に印加された力
(あるいは、圧力)を検出することができる。第2図
に、印加力を横軸に、抵抗値の変化量の絶対値を縦軸に
とった時の前記力変換器の特性を示す。同図に示される
ように、印加力の抵抗値の変化量は比例の関係があり、
周知の検出手段を用いて、当該抵抗値より当該印加力を
検出することが可能となる。
FIG. 1 shows the configuration of a conventional force converter. The force transducer is configured by inserting the conductive rubber 3 and forming the electrodes 2 on both surfaces thereof by adhesion or vapor deposition, and adhering the electrodes 2 to the pedestal 4. When force (or pressure) 1 acts on the force transducer, pressure is supplied to the conductive rubber, and as a result, the resistance value at both ends of the conductive rubber changes. Therefore, the force (or pressure) applied to the force transducer can be detected by taking out the resistance value to the outside via the electrode 2 and measuring it using a well-known detecting means. FIG. 2 shows the characteristics of the force converter when the applied force is plotted on the horizontal axis and the absolute value of the amount of change in resistance is plotted on the vertical axis. As shown in the figure, the amount of change in the resistance value of the applied force has a proportional relationship,
It is possible to detect the applied force from the resistance value by using a known detection means.

しかしながら、従来の構成をもつ力変換器においては、
検出可能な印加力が狭い範囲に厳しく制限されていて、
このため応用範囲が限られていた。このため、複数個の
力変換器の中から、前もって検出する力の大きさに応じ
たものを選択して検出箇所に取り付けたり、複数個の力
変換器を該検出する力に応じて順次切換える複雑な検出
手段を用いる等の工夫を必要とした。この結果、従来の
力変換器はコストの増大と操作性の悪さといった欠点を
有していた。
However, in the force transducer having the conventional configuration,
The detectable applied force is strictly limited to a narrow range,
Therefore, the range of application was limited. Therefore, one of a plurality of force transducers that corresponds to the magnitude of the force to be detected in advance is selected and attached to the detection location, or a plurality of force transducers are sequentially switched according to the detected force. It was necessary to devise such as using complicated detection means. As a result, the conventional force transducer has drawbacks such as increased cost and poor operability.

(発明の目的) 本発明の目的は、かかる従来の欠点を除去せしめて広い
範囲にわたる印加力を検出することを可能とする力変換
器の構成を提供することにある。
(Object of the Invention) It is an object of the present invention to provide a structure of a force transducer which can eliminate the above-mentioned conventional defects and detect an applied force over a wide range.

(発明の構成) 上記目的を達成するために、本発明は、第一の力を受け
る受圧部と、前記第一の力を第二の力に加工して感圧素
子に媒介する伝達体と、前記第二の力を電気信号に変換
する前記感圧素子とを備え、前記第二の力が前記第一の
力と非線形の関係になるように前記伝達体の力学的弾性
を変化させるようにしたものである。
(Structure of the Invention) In order to achieve the above object, the present invention provides a pressure-receiving portion that receives a first force, and a transmission body that processes the first force into a second force and mediates the pressure-sensitive element. A pressure-sensitive element for converting the second force into an electric signal, and changing the mechanical elasticity of the transmitter so that the second force has a non-linear relationship with the first force. It is the one.

更に、上記目的を達成するために、本発明は、第一の力
を受ける受圧部と、前記第一の力を第二の力に加工して
感圧素子に媒介する伝達体と、前記第二の力を電気信号
に変換する前記感圧素子とを備え、前記第二の力が前記
第一の力と非線形の関係になるように前記伝達体の力学
的弾性を変化させるようにした力変換器において、複数
個の前記力変換器をアレイ状に配置したものである。
Further, in order to achieve the above object, the present invention provides a pressure receiving portion that receives a first force, a transmitter that processes the first force into a second force, and mediates the pressure sensitive element. A force for converting the second force into an electric signal and changing the mechanical elasticity of the transmitter so that the second force has a non-linear relationship with the first force. In the transducer, a plurality of force transducers are arranged in an array.

(実施例) 以下本発明について実施例を示す図面を参照して説明す
る。
(Example) Hereinafter, the present invention will be described with reference to the drawings illustrating an example.

第3図は本発明の一実施例の断面を概念的に示した図で
ある。図において第1図と同一番号は同一構成要素を示
している。受圧部31に印加された第一の力1は、以下
に述べる構成をとる伝達体5を介して第二の力に加工さ
れ、導電性ゴム等の感圧素子6に力を与える。当該伝達
体5は、円形等の断面形状を持つ押え板38,38と前記受
圧部31を連結して該31に加えられる前記第一の力を当該
38に伝える連結軸39,当該38に接して置かれるばね定数
の異なるばねA32およびB33、該33の一端に接するように
設けられ、かつ、通路穴35を有する止め板34、および前
記38と内壁が接するキャップ37で構成されている。ま
た、内室30,36には、気体,液体等の流体が満されてい
る。なお、前記通路穴35は、一つあるいは複数個設けら
れていて、当該内室30と36を結んでいれば良く、個数及
びその位置は何ら限定されない。例えば、当該キャップ
の側壁に設けられていても良い。前記ばね定数の異なる
ばねは、材料・線径・外径・巻き密度等を変えることに
より実現できる。一方、当該感圧素子の両面には電極2
が取り付けられており、外部の手段を介して、当該6が
応答する電気信号を処理して前記印加力を検出する(図
示せず)。4は台座で前記37と共に本発明の力変換器を
密封する。かかる構成の力変換器では、以下の次第を経
て、受圧部に加えられた第一の力が伝達体によって第二
の力に加工され、当該第二の力が感圧素子に働く。すな
わち、第一の力1が当該受圧部31に加えられ、該39,38
を介して当該32,33に働き、これを変形(すなわち、縮
小あるいは伸長)させて、当該32,33に内力を発生させ
る。同時に、当該伝達体の系には、当該内室30を満す流
体の容積の変化、該6の変形等により新たに力を発生さ
せるが、該力(第二の力)の大きさは、前記第一の力と
該32あるいは33に発生した該内力との差にほぼ等しい。
該30の流体中に発生した当該第二の力は該35を介して該
36を流体全体に伝わり、結局、当該感圧素子を該第二の
力の大きさで加圧する(当該力は前記6の変形の力と釣
り合う)。この時、前記32,33に発生する内方の大きさ
が(本発明の構成において)当該第一の力と非線型の関
係をとるので、前記第二の力も該第一の力と非線型の関
係となる。以上のことを第4図に図示する。同図は、前
記第一の力(図中では印加力と記されている)を横軸
に、前記第二の力(図中では実効力と記されている)を
縦軸にとって、第3図の該33がない時(すなわち、該32
だけでばねが構成される時)の第一の力と第二の力の関
係を(イ)に、また、同図の該32のない(該33だけがあ
る)時の当該関係を(ロ)に、本発明の構成をとる(該32
と33の相方がある)時の当該関係を(ハ)に示す。なお、
第3図の構成では、当該32のばね定数は該33のばね定数
よりも大きい例が示されているが、該32,33の上下の順
序は逆でも良い。第4図の(イ)に見られるように、大き
なばね定数を持つばねのみを使用する時には、第一の力
の大半は当該ばねの内力により費やされ、感圧素子に働
く第二の力は当該第一の力に比較して小さなものとな
る。一方、同図の(ロ)の場合には、小さなばね定数を持
つばねのみが用いられているので、当該第一の力の大部
分が当該第二の力と釣り合う大きさとなる。また、同図
において、領域Iは当該(ロ)のばねがフックの法則に従
い、領域IIで、当該ばねは該フックの法則からはずれ、
領域IIIにおいて当該ばねが飽和に達する次第に対応し
ている。以上のように、(イ)の場合には、該印加力の広
い範囲にわたって、当該力変換器を使用することが可能
であるが、印加力の分解能に劣り、特に当該印加力が小
さい時には出力が小さいという欠点がある。一方、(ロ)
の場合には、該印加力が小さい時にも充分な出力を得る
ことが可能,印加力の分解能が優れている等の利点があ
る反面、大きな印加力に対して当該力変換器を使用でき
ないという欠点がある。前記(イ),(ロ)に対して、本発明
の(ハ)の場合には、前記(イ)および(ロ)の長所があい合さ
って、当該印加力が小さい場合および大きい場合の広い
範囲にわたって当該力変換器を使用することが可能であ
るという利点を持つ。なお、第4図のIIの領域では、当
該第一の力と該第二の力とは比例しないので、信号の処
理手段で適当な近似等の処理を行うか、あるいは、IIの
領域で該力変換器の使用を禁止するか、等の方策が必要
とされるが、それにも関わらず、本発明の有効性は以前
として大きなものである。
FIG. 3 is a view conceptually showing the cross section of one embodiment of the present invention. In the figure, the same numbers as in FIG. 1 indicate the same components. The first force 1 applied to the pressure receiving portion 31 is processed into a second force via the transmitting body 5 having the configuration described below, and gives a force to the pressure sensitive element 6 such as conductive rubber. The transmission body 5 connects the pressing plates 38, 38 having a circular cross-sectional shape with the pressure receiving portion 31, and applies the first force applied to the pressure receiving portion 31.
A connecting shaft 39 for transmitting to 38, springs A32 and B33 having different spring constants placed in contact with the 38, a stop plate 34 provided so as to contact one end of the 33 and having a passage hole 35, and the 38 and the inner wall It is composed of a cap 37 that contacts with. The inner chambers 30 and 36 are filled with fluid such as gas and liquid. The number of the passage holes 35 may be one or plural and may connect the inner chambers 30 and 36, and the number and the position thereof are not limited. For example, it may be provided on the side wall of the cap. The springs having different spring constants can be realized by changing the material, wire diameter, outer diameter, winding density and the like. On the other hand, electrodes 2 are provided on both sides of the pressure sensitive element.
Is mounted and, via external means, processes the electrical signal to which 6 responds to detect the applied force (not shown). A pedestal 4 seals the force transducer of the present invention together with 37. In the force transducer having such a configuration, the first force applied to the pressure receiving portion is processed into the second force by the transmission body through the following steps, and the second force acts on the pressure sensitive element. That is, the first force 1 is applied to the pressure receiving portion 31, and the 39,38
To act on the 32, 33 via (1) and deform (i.e., reduce or extend) the internal force on the 32, 33. At the same time, a new force is generated in the system of the transmitter by a change in the volume of the fluid that fills the inner chamber 30, deformation of the 6 or the like, and the magnitude of the force (second force) is It is approximately equal to the difference between the first force and the internal force generated in the 32 or 33.
The second force generated in the 30 fluids is
36 is transmitted to the entire fluid, and finally the pressure-sensitive element is pressed by the magnitude of the second force (the force is balanced with the deformation force of 6). At this time, since the inner size generated in the 32, 33 has a non-linear relationship with the first force (in the configuration of the present invention), the second force also has a non-linear relationship with the first force. It becomes a relationship. The above is illustrated in FIG. In the figure, the first force (denoted as an applied force in the figure) is plotted on the horizontal axis, and the second force (denoted as an effective force in the figure) is plotted on the vertical axis as a third axis. When the 33 in the figure is missing (ie, the 32
The relationship between the first force and the second force (when the spring is composed of only) is shown in (a), and the relationship when there is no 32 in the figure (only 33 is present) is shown in (b). ), The configuration of the present invention is adopted (the 32
(33) and (33), the relationship is shown in (C). In addition,
In the configuration of FIG. 3, an example is shown in which the spring constant of the 32 is larger than the spring constant of the 33, but the order of the upper and lower sides of the 32, 33 may be reversed. As shown in (a) of FIG. 4, when only a spring having a large spring constant is used, most of the first force is consumed by the internal force of the spring and the second force acting on the pressure sensitive element is used. Is smaller than the first force. On the other hand, in the case of (b) in the same figure, since only a spring having a small spring constant is used, most of the first force has a magnitude balanced with the second force. Further, in the same figure, in region I, the spring of (b) follows Hooke's law, and in region II, the spring deviates from Hooke's law,
Corresponding as soon as the spring reaches saturation in region III. As described above, in the case of (a), it is possible to use the force transducer over a wide range of the applied force, but the resolution of the applied force is inferior, and especially when the applied force is small, the output is output. Has the drawback of being small. On the other hand, (b)
In such a case, it is possible to obtain a sufficient output even when the applied force is small, and there is an advantage that the resolution of the applied force is excellent, but on the other hand, the force transducer cannot be used for a large applied force. There are drawbacks. In contrast to (a) and (b), in the case of (c) of the present invention, the advantages of (a) and (b) are combined, and the applied force is wide when it is small and when it is large. It has the advantage that it is possible to use the force transducer over a range. In the area II of FIG. 4, the first force and the second force are not proportional to each other. Therefore, appropriate approximation processing or the like is performed by the signal processing means or the area II is used. Although measures such as prohibiting the use of force transducers or the like are required, the effectiveness of the present invention is nevertheless great.

第5図に前記ばねの形状と異なる他の実施例を示す。51
は単位長当りの巻き数を連続的に変化させて形成したば
ねである。当該ばねを前記第3図の当該32,33のばねに
替えて用いた場合の前記第一の力と第二の力の関係を第
6図に示す。同図の縦・横の軸は第4図と同じである。
このように、第5図の構成をとるばねを前記伝達体の一
部に用いる場合には、当該第一の力と該第二の力の関係
を示す図形が滑らかな曲線となる利点がある。なお、当
該曲線の形状は前記51の巻き密度を変化させることに
より自由に設定できる。
FIG. 5 shows another embodiment different from the shape of the spring. 51
Is a spring formed by continuously changing the number of turns per unit length. FIG. 6 shows the relationship between the first force and the second force when the spring is used instead of the springs 32 and 33 in FIG. The vertical and horizontal axes in the figure are the same as in FIG.
As described above, when the spring having the configuration shown in FIG. 5 is used as a part of the transmission body, there is an advantage that the figure showing the relationship between the first force and the second force becomes a smooth curve. . The shape of the curve can be freely set by changing the winding density of 51.

第7,8,および9図は本発明の他の一実施例を示す図
である。図において、第3図と同一番号は同一構成要素
を示している。第7図において、71は薄い金属板,弾性
ゴム等から成るダイアフラムで受圧部を構成し、第一の
力1に従って、弾性体72,73を変形(圧縮および膨張)
させる。弾弾性体72,73はそれぞれ異なった圧縮率を有
しており、前記第3図の異ったばね定数を持つ該32,33
と同様の役割をしている。また、側壁74は、止め板34と
一体で構成されていても良く、内室36を満す流体が外界
に漏れることを防いでいる。
7, 8 and 9 are views showing another embodiment of the present invention. In the figure, the same numbers as in FIG. 3 indicate the same components. In FIG. 7, reference numeral 71 is a diaphragm made of a thin metal plate, elastic rubber or the like, which constitutes a pressure receiving portion, and the elastic bodies 72, 73 are deformed (compression and expansion) according to the first force 1.
Let The elastoelastic bodies 72 and 73 have different compressibility, and the 32 and 33 having different spring constants shown in FIG.
Plays the same role as. Further, the side wall 74 may be formed integrally with the stopper plate 34 to prevent the fluid filling the inner chamber 36 from leaking to the outside.

第8図は、前記第3図の該32,33に替って、肉厚が滑ら
かに変化する弾性体81を用いたことを特徴とする本発
明の力変換器である。この場合においても、前記第5図
の当該ばね51を用いた場合と同様の特性を与えること
が可能である。
FIG. 8 shows a force transducer of the present invention in which an elastic body 81 whose thickness changes smoothly is used in place of 32 and 33 in FIG. Also in this case, it is possible to provide the same characteristics as in the case of using the spring 51 of FIG.

第9図は、二個のダイアフラム71、および92を用いて
構成したことを特徴とする本発明の力変換器である。91
は側壁で、当該ダイアフラム71,92を分離している。同
図の力変換器に第一の力1が加わる場合、当該ダイアフ
ラム71が変形し、該30,36を満す流体を介して当該感
圧素子6に第2の力を生ずる。当該第一の力が小さい時
には、該第2の力と該第一の力は比例している。しか
し、該第一の力が増大すると、該71の大きな変形を促
し、該71がついに該92と接触し、以後、該71と92が一体
となって変形を始める。かかる場合には、前記第一の力
と前記第2の力の関係は、当該92に生ずる力の大きさの
分だけを先の関係(正比例)より差し引いたものであ
る。第10図に、当該特性を示す。同図の縦・横軸は前記
第4図と同じである。図中の(イ)は、前記71のみで構
成(すなわち、前記92が削除された)した場合の力変
換器の特性で、(ロ)は本発明の構成(第9図)をとる力
変換器の特性を示す。また、図中のIの領域では当該71
のみがIIの領域では当該71と92の双方が変形する次第に
対応している。本実施例においては、当該ダイアフラム
の面積,厚さ,材質,等、あるいは、二個のダイアフラ
ムの距離等を変化させることにより、第10図のIの領
域の大きさ、(ロ)の傾き等を変化させることが可能であ
る。また、前記第4図のIIの領域を削除することも可能
であるという利点もある。
FIG. 9 shows a force transducer of the present invention characterized by being constructed by using two diaphragms 71 and 92. 91
The side wall separates the diaphragms 71 and 92. When the first force 1 is applied to the force transducer of the same figure, the diaphragm 71 is deformed, and a second force is generated in the pressure sensitive element 6 via the fluid filling the 30, 36. When the first force is small, the second force and the first force are proportional. However, when the first force increases, the large deformation of the 71 is promoted, the 71 finally contacts the 92, and thereafter, the 71 and 92 start to deform together. In such a case, the relationship between the first force and the second force is obtained by subtracting only the magnitude of the force generated in the 92 from the above relationship (direct proportion). Figure 10 shows the characteristics. The vertical and horizontal axes in the figure are the same as those in FIG. In the figure, (a) is the characteristic of the force converter in the case where it is configured with only the 71 (that is, the 92 is deleted), and (b) is the force conversion having the configuration of the present invention (FIG. 9). The characteristics of the container are shown. In the area I in the figure,
Only in the area of II, both 71 and 92 correspond to the deformation. In this embodiment, by changing the area, thickness, material, etc. of the diaphragm, or the distance between the two diaphragms, the size of the area I in FIG. Can be changed. There is also an advantage that the area II in FIG. 4 can be deleted.

第11図は本発明の他の一実施例を示した図である。図中
で第9図と同一番号は同一構成要素を示している。本発
明の力変換器は、第9図に示した実施例を一次元、ある
いは二次元的にアレイ状に配置したことを特徴とするも
のである。同図では、前記第9図の実施例の力変換器を
基本として構成したが、これに限るものではなく、一般
に第1の力である印加力1と感圧素子6に働く第2の力
の関係を非線型にする伝達体を備えた構成をとる力変換
器を必要に応じて多種類あるいは複数個、配列すれば良
い。本実施例においては、広い範囲に分布した力(ある
いは圧力)、すべり覚、等の検出が可能であり、高い精
度でもって圧覚センサが実現できる。
FIG. 11 is a view showing another embodiment of the present invention. In the figure, the same numbers as in FIG. 9 indicate the same components. The force transducer of the present invention is characterized in that the embodiment shown in FIG. 9 is arranged one-dimensionally or two-dimensionally in an array. In the figure, the force transducer of the embodiment of FIG. 9 is basically constructed, but the present invention is not limited to this. Generally, the applied force 1 which is the first force and the second force acting on the pressure sensitive element 6 are used. A plurality of types or a plurality of force transducers having a configuration including a transmission body that makes the relationship of (3) non-linear may be arranged as necessary. In the present embodiment, it is possible to detect a force (or pressure) distributed over a wide range, a slip sensation, etc., and a pressure sensor can be realized with high accuracy.

以上、本発明について実施例を挙げ詳細な説明を行っ
た。なお、第3,5,7,および8図に示される実施例
では、伝達体の構成要素であるばね,ゴム等の弾性体に
おいて、当該部分を生じる変位が荷重の増大に対して飽
和する結果、当該全体の弾性定数が増加する現象を利用
している。一方、第9および11の実施例では、荷重の増
大につれてダイアフラムが重なり合い、該ダイアフラム
の剛性が増大することを利用している。また、前記感圧
素子として、前記導電性ゴムの外に、感圧半電体,圧電
素子,ストレンゲージ,貼付型圧力センサ,感圧有機材
料,シリコンダイアフラム型圧力センサ、シリコン等の
半導体から成る電界効果型トランジスタのゲート領域に
無機,有機,ハイブリッド材料から成る圧電体物質を設
けてなる周知の構造のピエゾFET、等を用いた成、ば
ね,ダイアフラム,弾性ゴム等の弾性体を複数層積み重
ねてなる伝導体の構成、前記弾性体以外に材料非線型の
特性を持つ材料よりなる伝達体の構成、前記感圧素子に
力を加える種々の構成、電気信号を処理する周知の技
術、等も本発明に含まれる範囲である。
The present invention has been described in detail above with reference to the embodiments. In the embodiments shown in FIGS. 3, 5, 7, and 8, in the elastic bodies such as springs and rubbers, which are the constituent elements of the transmission body, the displacement generated at that portion is saturated with the increase of the load. , The phenomenon that the elastic constant of the whole is increased is utilized. On the other hand, in the ninth and eleventh embodiments, the fact that the diaphragms overlap with each other as the load increases and the rigidity of the diaphragms increases is utilized. Further, as the pressure sensitive element, in addition to the conductive rubber, a pressure sensitive semi-electric body, a piezoelectric element, a strain gauge, a stick pressure sensor, a pressure sensitive organic material, a silicon diaphragm pressure sensor, and a semiconductor such as silicon are used. Piezo FET with a well-known structure in which a piezoelectric substance made of an inorganic, organic or hybrid material is provided in the gate region of a field effect transistor, and a plurality of elastic bodies such as springs, diaphragms and elastic rubbers are stacked. The structure of a conductor made of a material other than the elastic body, the structure of a transmitter made of a material having a non-linear characteristic of the material, various structures for applying a force to the pressure-sensitive element, a well-known technique for processing an electric signal, etc. This is a range included in the present invention.

さらに、上記実施例の力変換器の特性は、ばね定数,圧
縮率,ダイアフラムの剛性,等組み合わされた構成要素
の機械的物質定数に依存する。したがって、検出する力
の範囲,分解能,等の仕様に応じて、上記構成,物質定
数,等を変化させて最適設計を行うと良い。また、前記
内室を満す流体等の熱膨張の効果を補償する周知の技術
の使用も本発明に含まれる。
In addition, the characteristics of the force transducer of the above embodiment depend on the mechanical constants of the combined components, such as spring constant, compressibility, diaphragm stiffness, etc. Therefore, it is advisable to perform the optimum design by changing the above-mentioned configuration, material constants, etc. according to the specifications of the range of force to be detected, resolution, etc. Also included in the invention is the use of known techniques to compensate for the effects of thermal expansion of the fluid filling the interior chamber.

(発明の効果) 以上、本発明によれば、小さな力をはじめとして比較的
大きな力を含む広大な範囲にわたって、該力(あるいは
圧力)を検出することが可能な力変換器を提供すること
が可能となる。本発明による特性の飛躍的向上は、触覚
制御技術の発展に著しく寄与し、その効果は大きいもの
である。
(Effects of the Invention) As described above, according to the present invention, it is possible to provide a force converter capable of detecting a force (or pressure) over a vast range including a relatively large force including a small force. It will be possible. The dramatic improvement of the characteristics according to the present invention significantly contributes to the development of the tactile control technology, and its effect is great.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の力変換器で、第2図はその特性を示す図
である。第3図に本発明の力変換器の構成を示し、その
特性を第4図に示す。第5図は本発明の変形例で、その
特性を第6図に示す。第7,8,9図は本発明の他の実
施例で、第9図の実施例の特性を第10図に示す。ま
た、第11図は本発明の他の一実施例である。 図中の記号の説明 1…印加力,2…電極,3…導電性ゴム, 4…台座,5…伝導体,30…内室, 31…受圧部,32…ばねA,33…ばねB, 34…止め板,35…通路穴,36…内室, 37…キャップ,38…押え板,39…連結軸, 6…感圧素子、51…ばね,71…ダイアフラム, 72,73…弾性ゴム,74…側 室, 81…弾性体,91…側室,92…ダイアフラム,
FIG. 1 is a conventional force converter, and FIG. 2 is a diagram showing its characteristics. FIG. 3 shows the configuration of the force converter of the present invention, and its characteristics are shown in FIG. FIG. 5 shows a modification of the present invention, the characteristics of which are shown in FIG. FIGS. 7, 8 and 9 show another embodiment of the present invention, and the characteristics of the embodiment of FIG. 9 are shown in FIG. FIG. 11 shows another embodiment of the present invention. Explanation of symbols in the figure 1 ... Applied force, 2 ... Electrode, 3 ... Conductive rubber, 4 ... Pedestal, 5 ... Conductor, 30 ... Inner chamber, 31 ... Pressure receiving part, 32 ... Spring A, 33 ... Spring B, 34 ... Stop plate, 35 ... Passage hole, 36 ... Inner chamber, 37 ... Cap, 38 ... Holding plate, 39 ... Connecting shaft, 6 ... Pressure sensitive element, 51 ... Spring, 71 ... Diaphragm, 72, 73 ... Elastic rubber, 74 ... Side chamber, 81 ... Elastic body, 91 ... Side chamber, 92 ... Diaphragm,

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】第一の力を受ける受圧部と、前記第一の力
を第二の力に加工して感圧素子に媒介する伝達体と、前
記第二の力を電気信号に変換する前記感圧素子とを備
え、前記第二の力が前記第一の力と非線形の関係になる
ように前記伝達体の力学的弾性を変化させるようにした
ことを特徴とする力変換器。
1. A pressure-receiving portion that receives a first force, a transmitter that processes the first force into a second force and mediates the pressure-sensitive element, and converts the second force into an electric signal. A force transducer comprising: the pressure-sensitive element, wherein the mechanical elasticity of the transmitter is changed so that the second force has a non-linear relationship with the first force.
【請求項2】第一の力を受ける受圧部と、前記第一の力
を第二の力に加工して感圧素子に媒介する伝達体と、前
記第二の力を電気信号に変換する前記感圧素子とを備
え、前記第二の力が前記第一の力と非線形の関係になる
ように前記伝達体の力学的弾性を変化させるようにした
力変換器において、複数個の前記力変換器をアレイ状に
配置したことを特徴とする力変換器。
2. A pressure receiving portion that receives a first force, a transmission body that processes the first force into a second force and mediates the pressure sensitive element, and converts the second force into an electric signal. A force transducer comprising: the pressure-sensitive element, wherein the second force is configured to change the mechanical elasticity of the transmitter so that the second force has a non-linear relationship with the first force. A force transducer characterized in that the transducers are arranged in an array.
JP59020294A 1984-02-07 1984-02-07 Force transducer Expired - Lifetime JPH068760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59020294A JPH068760B2 (en) 1984-02-07 1984-02-07 Force transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59020294A JPH068760B2 (en) 1984-02-07 1984-02-07 Force transducer

Publications (2)

Publication Number Publication Date
JPS60164230A JPS60164230A (en) 1985-08-27
JPH068760B2 true JPH068760B2 (en) 1994-02-02

Family

ID=12023140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59020294A Expired - Lifetime JPH068760B2 (en) 1984-02-07 1984-02-07 Force transducer

Country Status (1)

Country Link
JP (1) JPH068760B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999004233A1 (en) * 1997-07-15 1999-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Contact sensor assembly
US7334489B2 (en) * 2005-08-10 2008-02-26 Custom Sensors & Technologies, Inc. Dual rate force transducer
JP5571482B2 (en) * 2010-07-02 2014-08-13 太陽誘電株式会社 Treading force sensor and electric assist vehicle using the same
DE102010031063A1 (en) 2010-07-07 2012-01-12 Robert Bosch Gmbh A sensor device for a pedal and method for providing information regarding an operation of a pedal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912125B2 (en) * 1978-06-26 1984-03-21 工業技術院長 Pressure sensor
JPS57198839A (en) * 1981-06-01 1982-12-06 Nissan Motor Co Ltd Pressure sensor

Also Published As

Publication number Publication date
JPS60164230A (en) 1985-08-27

Similar Documents

Publication Publication Date Title
JP3431603B2 (en) Pressure sensor
JP5748567B2 (en) Hermetically sealed pressure sensing device
US8443676B2 (en) Pressure sensor for hydraulic media in motor vehicle brake systems
JP2839607B2 (en) A pressure sensor for detecting pressure in the combustion chamber of an internal combustion engine
CA2088741A1 (en) Capacitive strain gauge
JPH0248851B2 (en)
JP2001033332A (en) Relative pressure sensor
JPH068760B2 (en) Force transducer
JPS5921497B2 (en) pressure measuring device
JPS6348296B2 (en)
US3210993A (en) Electromechanical transducer utilizing poisson ratio effects
JP2019168456A (en) Pressure sensor
JPH05248977A (en) Pressure sensor
US6272927B1 (en) Hermetically sealed pressure sensing device
JPH06265430A (en) Cylinder inner pressure sensor
US5621178A (en) Piezoelectric sensor system
SU901856A1 (en) Force pickup
JPS586901B2 (en) Saatsu Oudousouchi
JPH04370726A (en) Semiconductor pressure sensor
JPS5930447Y2 (en) pressure gauge
JPH08136380A (en) Pressure sensor
JPS6344747Y2 (en)
JP3022142U (en) pressure switch
SU414503A1 (en) SENSOR FOR MEASURING PRESSURE IN MASSIFFERENT BODIES
JPS6042351Y2 (en) pressure gauge

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term