JPH0685857B2 - Reactor for carbon dioxide removal device using ion exchange resin - Google Patents

Reactor for carbon dioxide removal device using ion exchange resin

Info

Publication number
JPH0685857B2
JPH0685857B2 JP61155117A JP15511786A JPH0685857B2 JP H0685857 B2 JPH0685857 B2 JP H0685857B2 JP 61155117 A JP61155117 A JP 61155117A JP 15511786 A JP15511786 A JP 15511786A JP H0685857 B2 JPH0685857 B2 JP H0685857B2
Authority
JP
Japan
Prior art keywords
reactor
exchange resin
ion exchange
carbon dioxide
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61155117A
Other languages
Japanese (ja)
Other versions
JPS6312324A (en
Inventor
裕 鈴木
義雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP61155117A priority Critical patent/JPH0685857B2/en
Publication of JPS6312324A publication Critical patent/JPS6312324A/en
Publication of JPH0685857B2 publication Critical patent/JPH0685857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Gas Separation By Absorption (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は閉鎖空間における環境大気中から炭酸ガスを除
去する装置における反応器の構造に関するものである。
TECHNICAL FIELD The present invention relates to the structure of a reactor in an apparatus for removing carbon dioxide from the ambient atmosphere in a closed space.

第5図は反応器の使用されたイオン交換樹脂を吸収剤と
するCO2除去システムの概概略図である。CO2高濃度の空
気は送風機bでフイルタaを介して吸収される。そし
て、イオン交換樹脂を吸収剤とする反応器dに送られ、
こゝでイオン交換樹脂にCO2を吸収され浄化された空気
は排出される。この場合、反応器dは複数用意され、イ
オン交換樹脂によるるCO2吸収と再生を交互に連続的に
行うようになっている。
FIG. 5 is a schematic diagram of a CO 2 removal system using an ion exchange resin as an absorbent in a reactor. The air having a high concentration of CO 2 is absorbed by the blower b through the filter a. Then, it is sent to a reactor d using an ion exchange resin as an absorbent,
The ion exchange resin absorbs CO 2 and the purified air is discharged. In this case, a plurality of reactors d are prepared so that CO 2 absorption and regeneration by the ion exchange resin are alternately and continuously performed.

さて、何れか1つの反応器dの吸収能力が低下すると、
該反応器dのCO2吸収は停止し、再生用蒸気送入加熱等
による再生の必要がある。再生用蒸気は蒸気発生器eで
発生させ、反応器dに送り込むようになっている。本発
明はこのようなCO2除去システムにおける反応器dの改
良に係るものである。
Now, when the absorption capacity of any one of the reactors d decreases,
The absorption of CO 2 in the reactor d is stopped, and it is necessary to regenerate it by heating with steam for regeneration. Regeneration steam is generated by the steam generator e and sent to the reactor d. The present invention relates to improvement of the reactor d in such a CO 2 removal system.

(従来技術及びその問題点) 閉鎖空間における環境大気中から炭酸ガスCO2を吸収
し、これを除去するため、炭酸ガス吸収剤として弱塩基
性陰イオン交換樹脂を利用した装置は知られている。こ
の装置においては、イオン交換樹脂と炭酸ガスを効果的
に接触させイオン交換反応を促進させるための反応器が
重要な要素となる。この反応器内のイオン交換樹脂は、
適度な熱量を加える事によって或る温度変化を与え、吸
収した炭酸ガスを解離し放出して再生することができ
る。
It absorbs carbon dioxide CO 2 from the ambient air in the (prior art and problems thereof) a closed space, in order to remove this device using a weakly basic anion exchange resin as a carbon dioxide-absorbing agents are known . In this device, a reactor for effectively contacting the ion exchange resin and carbon dioxide gas to promote the ion exchange reaction is an important element. The ion exchange resin in this reactor is
By applying an appropriate amount of heat, a certain temperature change is given, and the absorbed carbon dioxide can be dissociated and released to be regenerated.

従来より、吸収反応器の形式には、第4図(a),
(b),(c)で示すような垂直型、環状型、水平型が
知られている。
Conventionally, the type of absorption reactor is shown in FIG.
Vertical types, annular types, and horizontal types as shown in (b) and (c) are known.

閉鎖空間における環境大気中から炭酸ガスを吸収する装
置における反応器は、吸収作用時には充填樹脂層に適度
な圧縮力を与え、また再生時に例えば水蒸気によって供
給される熱量及び水分によって膨潤する樹脂層の膨張圧
力を吸収する機構が重要となる。ところが炭酸ガス吸収
用に選択したイオン交換樹脂を効果的に利用するために
は、従来型の反応器では何れの場合も、イオン交換樹脂
の収縮及び膨潤は特に制御される事なく自由なイオン交
換樹脂の運動にまかされていた。このため、イオン交換
反応に対して最適な樹脂層の密状態を確保する事が難か
しかった。また、樹脂層の再生に水蒸気による直接加熱
法を採る場合には、樹脂層の膨潤は自由な状態で任意に
膨張し、膨潤後の状態は樹脂層内部が疎状態となり次工
程のCO2ガス吸収時に際して均一なイオン交換反応を期
待するのが難しくなる欠点を持っていた。
The reactor in the device that absorbs carbon dioxide gas from the ambient atmosphere in the closed space provides an appropriate compressive force to the filled resin layer at the time of absorption, and at the time of regeneration, for example, the amount of heat supplied by steam and the resin layer that swells due to moisture. The mechanism for absorbing the expansion pressure is important. However, in order to effectively utilize the ion exchange resin selected for absorption of carbon dioxide gas, the shrinkage and swelling of the ion exchange resin are not particularly controlled in any case in the conventional reactor, and the free ion exchange resin is not controlled. It was entrusted to the movement of the resin. Therefore, it has been difficult to secure the optimal dense state of the resin layer for the ion exchange reaction. Further, when the direct heating method with water vapor is adopted for the regeneration of the resin layer, the swelling of the resin layer is arbitrarily expanded in a free state, and after the swelling, the inside of the resin layer becomes a sparse state and CO 2 gas in the next step. It has a drawback that it is difficult to expect a uniform ion exchange reaction upon absorption.

(発明の目的) 上記従来技術の問題点に鑑み、本発明は反応器に充填
する樹脂の膨潤による膨張圧力及び収縮のための圧縮圧
力を調整できること、再生時の熱損失を少なくするこ
と、同一反応器内で効率良く炭酸ガスを吸収でき、且
つ再生作用も効果的に行なえること、等の点を可能とす
る反応器を提供することにある。
(Object of the Invention) In view of the above problems of the prior art, the present invention is capable of adjusting the expansion pressure due to the swelling of the resin filled in the reactor and the compression pressure for contraction, reducing the heat loss during regeneration, and the same. It is an object of the present invention to provide a reactor capable of efficiently absorbing carbon dioxide gas in the reactor and effectively performing a regeneration action, and the like.

(発明による解決手段) 両端部を内に向って凸の球面スペーサで閉塞された円胴
と、1方の球面スペーサの内方に空間を置いて隔設され
た固定多孔板と、他方の球面スペーサの内方に空間を置
き、上下摺動運動可能に設けた可動多孔板との間に充填
したイオン交換樹脂層と、前記可動多孔板に固着され、
かつ前記1方の球面スペーサに取付けられた軸封装置付
軸受に上下動可能に取付けられたばね調整軸にねじ装置
によりばね力を調整可能に取付けられたばね装置と、前
記球面スペーサの内方空間に通ずる空気入口管、及び浄
化空気出口管よりなることを特徴とする。
(Solution to be Solved by the Invention) A cylinder closed at both ends by convex spherical spacers, a fixed porous plate separated by a space inside one spherical spacer, and the other spherical surface. A space is placed inside the spacer, and an ion-exchange resin layer filled between a movable porous plate provided so as to be vertically slidable and fixed to the movable porous plate,
And a spring device having a spring adjusting shaft mounted on a bearing with a shaft seal device mounted on the one spherical spacer so as to be vertically movable by a screw device so that the spring force can be adjusted, and an inner space of the spherical spacer. It is characterized by comprising an air inlet pipe communicating with it and a purified air outlet pipe.

(実施例) 図に基いて説明する。1は反応器Aの円胴で、再生用蒸
気による加熱の際、熱容量を少なくする為極薄で熱伝導
率の低い材料を用いて成形されている。円胴1の上部と
下部は夫々内方に凸の球面スペーサ2a,2bで閉塞されて
いる。3は底部の球面スペーサ2bの上部に小空間13aを
置いて固定された多孔板で、第3図に示す如く多数の極
細の開孔を有している。4は頂部の球面スペーサ2aの下
部空間13bに上下摺動可能に嵌挿された可動多孔板であ
る。可動多孔板4も第3図の平面図にみる如く極細の開
孔を有している。4aは可動多孔板4の周縁に設けたリン
グで、これにより円胴1内を上下摺動運動するとき、円
滑に摺動できるようになっている。5は反応器A内の前
記固定多孔板3と可動多孔板4間に充填されたイオン交
換樹脂である。この樹脂は通称固体アミン樹脂と呼ばれ
る弱塩基性陰イオン交換樹脂が用いられる。
(Example) It demonstrates based on a figure. Reference numeral 1 denotes a cylinder of the reactor A, which is formed of an extremely thin material having a low thermal conductivity in order to reduce the heat capacity when heated by the steam for regeneration. The upper and lower parts of the cylinder 1 are closed by spherical spacers 2a and 2b, which are convex inward. Reference numeral 3 denotes a perforated plate which is fixed above the spherical spacer 2b at the bottom with a small space 13a, and has a large number of fine holes as shown in FIG. Reference numeral 4 denotes a movable porous plate that is vertically slidably fitted in the lower space 13b of the spherical spacer 2a at the top. The movable perforated plate 4 also has fine holes as shown in the plan view of FIG. Reference numeral 4a is a ring provided on the peripheral edge of the movable porous plate 4 so that it can slide smoothly when vertically sliding in the cylinder 1. Reference numeral 5 denotes an ion exchange resin filled between the fixed porous plate 3 and the movable porous plate 4 in the reactor A. As this resin, a weakly basic anion exchange resin commonly called a solid amine resin is used.

6は上部の球面スペーサ2aの外方上部に設けられたばね
装置でこれによりイオン交換樹脂の膨潤及び収縮の際の
圧力を調整することができる。ばね装置6はばね調整軸
7に挿通され、ばね力調整ねじ8によって引張状態でと
りつけられている。ばね調整軸7は可動多孔板4の中心
上に固着9され、球面スペーサ2aの中心部に設けた軸封
装置付軸受10によって垂直に立設されている。
Reference numeral 6 is a spring device provided on the outer upper side of the upper spherical spacer 2a, whereby the pressure at the time of swelling and contraction of the ion exchange resin can be adjusted. The spring device 6 is inserted through a spring adjusting shaft 7 and is attached in a tensioned state by a spring force adjusting screw 8. The spring adjusting shaft 7 is fixedly attached 9 on the center of the movable porous plate 4, and vertically erected by a bearing 10 with a shaft sealing device provided at the center of the spherical spacer 2a.

反応器A内に充填したイオン交換樹脂は、乾燥時(CO2
吸収工程中)及び膨潤時(再蒸気による加熱中)に収縮
と膨張を繰り返す。この時の膨張率は、乾燥時に比べて
約20%程度の大きな値を示し、この膨潤時の膨張圧力を
逃がす工夫が必要になるので、予め樹脂5の充填量に見
合った膨潤量を推定しておき、ばね装置6を選定し反応
器外に装備するものとする。11は処理空気入口管で、再
生時の炭酸ガス出口管を兼ね、円胴1の上部で可動多孔
板4の上部に設けられている。12は浄化空気出口管で、
再生時の再生用蒸気入口管を兼ね、下部の固定多孔板3
の下部に設けられている。
The ion exchange resin filled in the reactor A was dried (CO 2
During the absorption process) and during swelling (during heating with re-steam), contraction and expansion are repeated. The expansion rate at this time shows a large value of about 20% as compared with that at the time of drying, and it is necessary to devise a measure to release the expansion pressure at the time of this expansion. The spring device 6 is selected and installed outside the reactor. Reference numeral 11 denotes a treated air inlet pipe, which also serves as a carbon dioxide gas outlet pipe at the time of regeneration, and is provided on the movable porous plate 4 above the cylinder 1. 12 is a purified air outlet pipe,
Fixed perforated plate 3 at the bottom, which also functions as a steam inlet pipe for regeneration during regeneration
It is provided at the bottom of.

尚、本実施例では円胴上部側に可動多孔板を設け、該多
孔板にバネ装置を固着したが、逆に下部側に可動多孔板
を設け、これにバネ装置を固着しても同効である。ま
た、処理空気入口と浄化空気出口とを逆にしても何ら作
用に変化はない。
In this embodiment, the movable perforated plate is provided on the upper side of the cylinder, and the spring device is fixed to the perforated plate, but conversely, the movable perforated plate is provided on the lower side and the spring device is fixed to the movable perforated plate. Is. Further, even if the treated air inlet and the purified air outlet are reversed, there is no change in the operation.

以上炭酸ガスの除去装置用として説明したが、必ずしも
これに限らず、イオン交換樹脂等の化学的薬剤を利用し
たガス分離(たとえばNOx,SOx,NH3,一酸化炭素ガス,そ
の他)に用いる反応器とか、大気中の悪臭の原因となる
化学成分の吸収、除去装置用の反応器にも応用すること
が可能である。
Although the above description has been made for a carbon dioxide gas removal device, the invention is not limited to this, but a reaction used for gas separation (for example, NOx, SOx, NH 3 , carbon monoxide gas, etc.) using a chemical agent such as an ion exchange resin. It can also be applied to reactors and reactors for absorbing and removing chemical components that cause offensive odors in the atmosphere.

(作用) a)炭酸ガスの吸収工程: CO2を多量に含有した処理空気は、処理空気入口管11よ
り導入される。処理空気は、イオン交換樹脂層5を通過
中にCO2が吸収、除去され反応器下部の浄化空気出口管1
2より反応器A外に出る。CO2吸収工程中にあっては、ば
ね装置6により適当な圧力でイオン交換樹脂層5が可動
多孔板4を介し加圧状態に保たれる。或る時間経過後、
樹脂層5内でのCO2の吸収能力が低下した状況を検知
し、樹脂層5の再生工程に入る。
(Operation) a) Carbon dioxide absorption step: Treated air containing a large amount of CO 2 is introduced from the treated air inlet pipe 11. The treated air absorbs and removes CO 2 while passing through the ion exchange resin layer 5, and the purified air outlet pipe 1 at the bottom of the reactor 1
Go out of reactor A from 2. During the CO 2 absorption step, the ion exchange resin layer 5 is kept under pressure by the spring device 6 through the movable porous plate 4 at an appropriate pressure. After a certain time,
The state where the CO 2 absorption capacity in the resin layer 5 has decreased is detected, and the process of regenerating the resin layer 5 is started.

b)樹脂の再生工程: 再生用水蒸気入口12より水蒸気を供給し、イオン交換樹
脂層5の下部より加熱する。水蒸気で加熱する際に水分
も樹脂層5内に同時に供給される。熱が樹脂層5の上部
に達する間に吸収工程中に捕捉されていたCO2ガスは樹
脂層5より解離され、上方方に向って放出される。樹脂
層5は供給される水分によって膨潤し、体積が増加する
が、膨張圧力は可動多孔板4及びばね装置6によって逃
がされる。又再生時は反応器Aの上部空間13a内にほぼ1
00%濃度のCO2ガスが滞留する事になるが、円胴1の頂
部は内に向って凸の球面スペーサ2aで閉塞し、上部空間
の容積が小さいのでCO2の滞留量も少なくなるようにな
っている。同様に反応器下部を上方に向って凸の球面ス
ペーサ2bで閉塞しているので、蒸気入口12から供給され
る再生用水蒸気の滞留量もできるだけ少なくするように
構成されている。
b) Resin regeneration step: Steam is supplied from the regeneration steam inlet 12 to heat from the lower part of the ion exchange resin layer 5. Moisture is also supplied into the resin layer 5 at the same time when heating with steam. While the heat reaches the upper portion of the resin layer 5, the CO 2 gas trapped during the absorption process is dissociated from the resin layer 5 and released upward. The resin layer 5 swells due to the supplied water and its volume increases, but the expanding pressure is released by the movable porous plate 4 and the spring device 6. Also, during regeneration, almost 1 in the upper space 13a of the reactor A
CO 2 gas with a concentration of 00% will be retained, but the top of the cylinder 1 is closed by a spherical spacer 2 a that is convex inward, and the volume of the upper space is small, so the amount of CO 2 retained is also small. It has become. Similarly, since the lower part of the reactor is closed by a spherical spacer 2b which is convex upward, the retention amount of the steam for regeneration supplied from the steam inlet 12 is configured to be as small as possible.

(発明の効果) イオン交換樹脂層が下部の固定多孔板と上部の可動多孔
板との間に充填され、かつ可動多孔板が頂部の球面スペ
ーサと貫通するばね調整軸7に取付けた所定係数を有す
るばね装置で押圧されているので、樹脂層が適当に加圧
され、樹脂層で被処理空気が片流れするのを防ぐことが
できる。又イオン交換樹脂の膨潤及び収縮時の圧力をね
じ装置8を上下動することにより調整することができる
ので、CO2の吸収性能と再生性能に適した圧力で加圧す
ることができ、しかもばね装置6が反応器Aの外に置か
れたので、これの加熱に要する熱量を節約できる。
(Effect of the invention) The ion exchange resin layer is filled between the lower fixed perforated plate and the upper movable perforated plate, and the movable perforated plate has a predetermined coefficient attached to the top spherical spacer and the spring adjusting shaft 7 penetrating therethrough. Since it is pressed by the spring device, the resin layer is appropriately pressed, and it is possible to prevent the air to be treated from flowing in one direction in the resin layer. Further, since the pressure at the time of swelling and contraction of the ion exchange resin can be adjusted by moving the screw device 8 up and down, it is possible to pressurize at a pressure suitable for CO 2 absorption performance and regeneration performance, and further, the spring device. Since 6 was placed outside reactor A, the amount of heat required to heat it could be saved.

円胴の頂部を球面スペーサで閉塞したので、イオン交換
樹脂層上部の空間を小さくでき、CO2再生時はこゝに滞
留するCO2を極力少なくできる。
Since the top portion of the circular cylinder was closed by the spherical spacers can be reduced space of the ion exchange resin layer upper, CO 2 during reproduction can minimize the CO 2 staying in thisゝ.

円胴の頂部と底部を球面スペーサで閉塞したので、処理
空気を入口管11から送入するとき、球面で渦流を生じ適
度に分散し、樹脂層内に送られ、反応が効果的に行われ
る。又再生用蒸気を入口管12から送るときも、球面スペ
ーサで渦流を生じ、これ又適度に分散され、樹脂層に均
等に送られ、再生工程を効果的に行うことができる。
Since the top and bottom of the cylinder are closed by the spherical spacers, when the process air is introduced from the inlet pipe 11, a vortex flow is generated on the spherical surface and dispersed appropriately, and it is sent into the resin layer, and the reaction is effectively performed. . Also, when the regeneration steam is sent from the inlet pipe 12, a vortex flow is generated in the spherical spacers, which is also appropriately dispersed and evenly sent to the resin layer, so that the regeneration process can be effectively performed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る反応器の縦断面図。 第2図は第1図の上面図で半分のみ示す。 第3図は可動多孔板の平面図で半分のみ示す。 第4図は従来型吸収反応器の例を示す。 第5図はイオン交換樹脂を吸収剤としたCO2除去システ
ムの概略図。 図において; A……反応器 1……円胴、2a,2b……球面スペーサ 3……固定多孔板、4……可動多孔板 4a……摺動リング、5……イオン交換樹脂層 6……ばね装置、7……ばね調整軸 8……ばね力調整ねじ、9……固着部 10……軸封装置付軸受、11……処理空気入口管 12……浄化空気出口管、13a,13b……空間
FIG. 1 is a longitudinal sectional view of a reactor according to the present invention. FIG. 2 shows only a half of the top view of FIG. FIG. 3 is a plan view of the movable perforated plate, only half of which is shown. FIG. 4 shows an example of a conventional absorption reactor. Figure 5 is a schematic diagram of a CO 2 removal system that uses an ion exchange resin as an absorbent. In the figure: A ... Reactor 1 ... Cylinder, 2a, 2b ... Spherical spacer 3 ... Fixed perforated plate, 4 ... Movable perforated plate 4a ... Sliding ring, 5 ... Ion exchange resin layer 6 ... … Spring device, 7 …… Spring adjusting shaft 8 …… Spring force adjusting screw, 9 …… Fixed part 10 …… Bearing with shaft sealing device, 11 …… Processed air inlet pipe 12 …… Purified air outlet pipe, 13a, 13b ……space

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】両端部を内に向って凸の球面スペーサで閉
塞された円胴と、1方の球面スペーサの内方に空間を置
いて隔設された固定多孔板と、他方の球面スペーサの内
方に空間を置き、上下摺動運動可能に設けた可動多孔板
との間に充填したイオン交換樹脂層と、前記可動多孔板
に固着され、かつ前記1方の球面スペーサに取付けられ
た軸封装置付軸受に上下動可能に取付けられたばね調整
軸にねじ装置によりばね力を調整可能に取付けられたば
ね装置と、前記球面スペーサの内方空間に通ずる処理空
気入口管及び浄化空気出口管よりなることを特徴とする
イオン交換樹脂による炭酸ガス除去装置用反応器。
1. A cylinder closed at both ends by convex spherical spacers, a fixed perforated plate separated by a space inside one spherical spacer, and the other spherical spacer. An ion-exchange resin layer filled between a movable perforated plate which is vertically movable in a space and is fixed to the movable perforated plate, and is attached to the one spherical spacer. From a spring device which is attached to a bearing with a shaft seal device so as to be movable up and down so that the spring force can be adjusted by a screw device, and a treated air inlet pipe and a purified air outlet pipe which communicate with the inner space of the spherical spacer. A reactor for a carbon dioxide gas removing device using an ion exchange resin, which is characterized in that
JP61155117A 1986-07-03 1986-07-03 Reactor for carbon dioxide removal device using ion exchange resin Expired - Fee Related JPH0685857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61155117A JPH0685857B2 (en) 1986-07-03 1986-07-03 Reactor for carbon dioxide removal device using ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61155117A JPH0685857B2 (en) 1986-07-03 1986-07-03 Reactor for carbon dioxide removal device using ion exchange resin

Publications (2)

Publication Number Publication Date
JPS6312324A JPS6312324A (en) 1988-01-19
JPH0685857B2 true JPH0685857B2 (en) 1994-11-02

Family

ID=15598948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61155117A Expired - Fee Related JPH0685857B2 (en) 1986-07-03 1986-07-03 Reactor for carbon dioxide removal device using ion exchange resin

Country Status (1)

Country Link
JP (1) JPH0685857B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9266051B2 (en) 2005-07-28 2016-02-23 Carbon Sink, Inc. Removal of carbon dioxide from air
CN102441319A (en) 2006-03-08 2012-05-09 环球研究技术有限公司 Air collector with functionalized ion exchange membrane for capturing ambient CO2
US7708806B2 (en) 2006-10-02 2010-05-04 Global Research Technologies, Llc Method and apparatus for extracting carbon dioxide from air
WO2008131132A1 (en) 2007-04-17 2008-10-30 Global Research Technologies, Llc Capture of carbon dioxide (co2) from air
CA2715874C (en) 2008-02-19 2019-06-25 Global Research Technologies, Llc Extraction and sequestration of carbon dioxide
PT2532760T (en) * 2011-06-06 2020-06-25 Atotech Deutschland Gmbh Device and method for recovering nickel from a nickel plating bath fluid
JP6394361B2 (en) * 2014-12-17 2018-09-26 栗田工業株式会社 Ion exchange resin tower
CA3091524A1 (en) 2018-02-16 2019-08-22 Carbon Sink, Inc. Fluidized bed extractors for capture of co2 from ambient air

Also Published As

Publication number Publication date
JPS6312324A (en) 1988-01-19

Similar Documents

Publication Publication Date Title
US5139668A (en) Hollow fiber bundle element
US4314828A (en) Method and system for regenerating dehumidifier for use in charcoal adsorber
JP2000502289A (en) Renewable solid amine absorbent
JPH0685857B2 (en) Reactor for carbon dioxide removal device using ion exchange resin
JPH0251655B2 (en)
EP0434219B1 (en) Hollow fiber bundle element
KR20020003518A (en) Method for regeneration of electrically conductive adsorbents loaded with organic substances
KR20210054631A (en) Continuous moving­bed CO2 capture system with vaccum desorption
US3507051A (en) Regeneration process
US3498024A (en) Method and apparatus for gas decontamination
JP5470671B2 (en) Desiccant air conditioner
CA2023054C (en) Hollow fiber bundle element for an adsorber
JPH0127770B2 (en)
JPS61101229A (en) Dehumidification apparatus
JPS55152522A (en) Regenerating method for desiccant in gas dehumidifier
SU1088766A1 (en) Apparatus for drying gases
WO1995024958A1 (en) Method and apparatus for separating gas
JPS6349223A (en) Reversible heating and regeneration type dehumidifier by pressurized gas
JPH0578369B2 (en)
JPS62298425A (en) Reversible heating regeneration type dehumidifier for pressurized gas
JP2783302B2 (en) Adsorption separation method for specific gas components
SU1079272A1 (en) Adsorber
JPH0523542A (en) Harmful gas removing apparatus
JPS6349224A (en) Reversible heating and regeneration type dehumidifier by pressurized gas
JPH0220288B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees