JPH0684986B2 - Moving position measuring device - Google Patents

Moving position measuring device

Info

Publication number
JPH0684986B2
JPH0684986B2 JP15663785A JP15663785A JPH0684986B2 JP H0684986 B2 JPH0684986 B2 JP H0684986B2 JP 15663785 A JP15663785 A JP 15663785A JP 15663785 A JP15663785 A JP 15663785A JP H0684986 B2 JPH0684986 B2 JP H0684986B2
Authority
JP
Japan
Prior art keywords
signal
wave
transmitter
receivers
moving position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15663785A
Other languages
Japanese (ja)
Other versions
JPS6217675A (en
Inventor
郁男 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANEI MEDEISU KK
Original Assignee
SANEI MEDEISU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANEI MEDEISU KK filed Critical SANEI MEDEISU KK
Priority to JP15663785A priority Critical patent/JPH0684986B2/en
Publication of JPS6217675A publication Critical patent/JPS6217675A/en
Publication of JPH0684986B2 publication Critical patent/JPH0684986B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超音波を利用して人体又は物体等の各部の移
動位置を3次元的(又は2次元)的に測定する移動位置
測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to a moving position measuring device for three-dimensionally (or two-dimensionally) measuring the moving position of each part of a human body, an object or the like using ultrasonic waves. It is about.

〔従来の技術と問題点〕[Conventional technology and problems]

超音波を利用した位置測定装置は、例えば、人間や動物
の歩行軌跡又は頭、手、足等の各部の動きや位置を測定
する手段として広い応用分野がある。しかも、最近では
より高い精度と高分解能が要求される様になつてきた。
しかし、現在使用されている方式は、パルス状の超音波
を用い、距離に対応した送受波器間の伝播遅延時間の計
測により、対象とする位置を算出し決定するものであ
る。この為、次の様な不都合点があつた。
The position measuring device using ultrasonic waves has a wide application field as a means for measuring the locus of locomotion of humans and animals or the movement and position of each part such as head, hands, and feet. Moreover, recently, higher precision and higher resolution have been demanded.
However, the method currently used is to calculate and determine the target position by using pulsed ultrasonic waves and measuring the propagation delay time between the transducers corresponding to the distance. Therefore, the following inconveniences occurred.

(イ)パルス波を用いているので送受波器や増幅器に広
帯域特性のものが必要で、外部雑音が混入し易く、誤測
定の原因となつていた。
(B) Since pulse waves are used, it is necessary for the transmitter / receiver and the amplifier to have wideband characteristics, and external noise easily mixes in, which is a cause of erroneous measurement.

(ロ)パルス波の遅延時間の計測では、受信波形および
受信レベルの変動の影響が大きいので、測定精度が低か
つた。
(B) In the measurement of the delay time of the pulse wave, the measurement accuracy was low because the fluctuation of the reception waveform and the reception level had a great influence.

(ハ)パルス波の繰り返し周期内では送波器の動きを検
知できないので、送波器の移動に対する分解能が悪く、
連続的な測定が不可能であつた。
(C) Since the movement of the transmitter cannot be detected within the pulse wave repetition period, the resolution with respect to the movement of the transmitter is poor,
Continuous measurement was impossible.

したがつて、本発明は、送波器からパルス波ではなく、
一定周波数の連続した超音波を送信することにより、移
動体の移動位置の測定を可能にすると共に、高い測定精
度と高分解能を有する移動位置測定装置を提供しようと
するものである。
Therefore, the present invention is not a pulse wave from the transmitter,
An object of the present invention is to provide a moving position measuring device that enables the moving position of a moving body to be measured by transmitting continuous ultrasonic waves of a constant frequency and has high measurement accuracy and high resolution.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による移動位置測定装置は、3次元(又は2次
元)空間を移動可能とされた移動体に取付けられた超音
波の連続波信号を送信する単一の送波器(3)と、その
送波器(3)を駆動する一定周波数の発振器(1)と、
その送波器(3)より送信された超音波の連続波信号を
受信するように3次元(又は2次元)空間内の予め設定
された異なる位置にそれぞれ配された3個(又は2個)
の受波器(4),(5),(6)と、送波器(3)が基
準点に位置するときのその送波器(3)及び3個(又は
2個)の受波器(4),(5),(6)との各位置座標
の初期値並びにその送波器(3)及びその3個(又は2
個)の受波器(4),(5),(6)と間の距離の初期
値を設定する初期値設定手段と、3個(又は2個)の受
波器(4),(5),(6)とよりの受信信号に基づく
信号及び発振器(1)よりの発振信号に基づく信号間の
各位相差の変化量を検出し、その検出された各位相差の
変化量及び超音波の連続波信号の伝播速度に基づく速度
値から、3個(又は2個)の受波器(4),(5),
(6)とそれぞれに対する送波器(3)の相対距離変化
量を測定する相対距離変化量測定手段(7),(8),
(9)と、初期値設定手段によって設定された各位置座
標の初期値及び距離の初期値並びに相対距離変化量測定
手段(7),(8),(9)によって測定された各相対
距離変化量とに基づいて、送波器(3)の移動位置座標
を算出する移動位置演算手段(11)とを有し、その移動
位置演算手段(11)の演算結果に基づいて移動体の移動
位置を測定する。
A moving position measuring apparatus according to the present invention includes a single transmitter (3) for transmitting a continuous wave signal of ultrasonic waves attached to a moving body that is movable in a three-dimensional (or two-dimensional) space, and A constant frequency oscillator (1) for driving the transmitter (3),
Three (or two) arranged at different preset positions in the three-dimensional (or two-dimensional) space so as to receive the continuous wave signal of the ultrasonic wave transmitted from the wave transmitter (3)
Receivers (4), (5), (6), and the transmitter (3) and three (or two) receivers when the transmitter (3) is located at the reference point (4), (5), (6) initial value of each position coordinate and its transmitter (3) and its three (or 2)
Initial value setting means for setting the initial value of the distance between the wave receivers (4), (5), and (6), and three (or two) wave receivers (4), (5). ), (6) and the signal based on the received signal and the signal based on the oscillating signal from the oscillator (1), the amount of change in each phase difference is detected, and the amount of change in each detected phase difference and ultrasonic continuity are detected. From the velocity value based on the propagation velocity of the wave signal, three (or two) receivers (4), (5),
(6) and relative distance change amount measuring means (7), (8) for measuring the relative distance change amount of the wave transmitter (3) with respect to each.
(9), the initial value of each position coordinate and the initial value of the distance set by the initial value setting means, and the relative distance change measured by the relative distance change amount measuring means (7), (8), (9). A moving position calculating means (11) for calculating moving position coordinates of the wave transmitter (3) based on the quantity, and the moving position of the moving body based on the calculation result of the moving position calculating means (11). To measure.

又、本発明は、かかる移動位置測定装置において、受信
信号に基づく信号はその受信信号のN(2以上の整数)
てい倍の信号であり、発振信号に基づく信号はその発振
信号のNてい倍の信号であり、且つ、超音波の連続波信
号の速度に基づく速度値は、その超音波の連続波信号の
速度の1/N倍にそれぞれ設定される。
Further, according to the present invention, in such a moving position measuring device, a signal based on the received signal is N (integer of 2 or more) of the received signal.
The signal based on the oscillation signal is a signal N times that of the oscillation signal, and the velocity value based on the velocity of the ultrasonic continuous wave signal is the velocity of the ultrasonic continuous wave signal. Is set to 1 / N times.

〔作用〕[Action]

本発明では、3次元(又は2次元)空間を移動可能とさ
れた移動体に超音波の連続波信号を送信する単一の送波
器(3)を取り付ける。その送波器(3)は一定周波数
の発振器(1)によって駆動される。その送波器(3)
より送信された超音波の連続波信号を受信するように3
次元(又は2次元)空間内の予め設定された異なる位置
にそれぞれ3個(又は2個)の受波器(4),(5),
(6)を配する。送波器(3)が基準点に位置するとき
のその送波器(3)及び3個(又は2個)の受波器
(4),(5),(6)との各位置座標の初期値並びに
その送波器(3)及びその3個(又は2個)の受波器
(4),(5),(6)と間の距離の初期値を初期値設
定手段によって設定する。
In the present invention, a single wave transmitter (3) that transmits a continuous wave signal of ultrasonic waves is attached to a moving body that can move in a three-dimensional (or two-dimensional) space. The transmitter (3) is driven by a constant frequency oscillator (1). The wave transmitter (3)
To receive the ultrasonic continuous wave signal transmitted by 3
Three (or two) wave receivers (4), (5), respectively at different preset positions in the three-dimensional (or two-dimensional) space
Place (6). Of the position coordinates of the wave transmitter (3) when the wave transmitter (3) is located at the reference point and the three (or two) wave receivers (4), (5), (6) The initial value and the initial value of the distance between the transmitter (3) and the three (or two) wave receivers (4), (5), (6) thereof are set by the initial value setting means.

相対距離変化量測定手段(7),(8),(9)によっ
て、3個(又は2個)の受波器(4),(5),(6)
よりの受信信号に基づく信号及び発振器(1)よりの発
振信号に基づく信号間の各位相差の変化量を検出し、そ
の検出された各位相差の変化量及び超音波の連続波信号
の伝播速度に基づく速度値から、3個(又は2個)の受
波器(4),(5),(6)とそれぞれに対する送波器
(3)の相対距離変化量を測定する。
Three (or two) wave receivers (4), (5), (6) by the relative distance change amount measuring means (7), (8), (9).
The amount of change in each phase difference between the signal based on the received signal and the signal based on the oscillation signal from the oscillator (1) is detected, and the detected amount of change in each phase difference and the propagation speed of the ultrasonic continuous wave signal are detected. From the velocity value based on the three values, three (or two) receivers (4), (5) and (6) and the relative distance change amount of the transmitter (3) with respect to each of them are measured.

移動位置演算手段(11)によって、初期値設定手段によ
って設定された各位置座標の初期値及び距離の初期値並
びに相対距離変化量測定手段(7),(8),(9)に
よって測定された各相対距離変化量に基づいて、送波器
(3)の移動位置座標を算出する。その移動位置演算手
段(11)の演算結果に基づいて移動体の移動位置が測定
される。
The moving position calculating means (11) measures the initial value of each position coordinate set by the initial value setting means and the initial value of the distance and the relative distance change amount measuring means (7), (8), (9). The moving position coordinate of the wave transmitter (3) is calculated based on each relative distance change amount. The moving position of the moving body is measured based on the calculation result of the moving position calculating means (11).

又、本発明では、かかる移動位置測定装置において、相
対距離変化量測定手段(7),(8),(9)によっ
て、3個(又は2個)の受波器(4),(5),(6)
よりの受信信号のN(2以上の整数)てい倍の信号及び
発振器(1)よりの発振信号のNてい倍の信号の各位相
差の変化量を検出し、その検出された各位相差の変化量
及び超音波の連続波信号の伝播速度に基づく速度値か
ら、3個(又は2個)の受波器(4),(5),(6)
とそれぞれに対する送波器(3)の相対距離変化量を測
定する。
Further, according to the present invention, in such a moving position measuring device, three (or two) wave receivers (4), (5) are provided by the relative distance change amount measuring means (7), (8), (9). , (6)
The amount of change in each phase difference between the signal multiplied by N (an integer greater than or equal to 2) of the received signal and the signal multiplied by N of the oscillation signal from the oscillator (1) is detected, and the detected amount of change in each phase difference is detected. And three (or two) receivers (4), (5), (6) from the velocity value based on the propagation velocity of the ultrasonic continuous wave signal.
And the relative distance change amount of the wave transmitter (3) for each of them is measured.

〔実施例〕〔Example〕

以下、図面を用いて本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の全体を示す構成図である。(1)は、
例えば周波数40kHzの連続波信号を発生する発振器で、
伝送線路(2)を介して3次元の位置Zにある送波器
(3)に接続され、前記連続波信号は送波器(3)より
超音波として空中に送信される。この超音波は、夫々予
め任意の位置に設定された3つの受波器(4),
(5),(6)で受信され、リード線を介して夫夫対応
する相対距離変化測定回路(7),(8),(9)に接
続されている。ここで、送波器(3)と各受波器
(4),(5),(6)の位置及び座標値は図の様な関
係に設定しておくものとする。Z0は送波器(3)の基準
点を示すものである。前記3つの相対距離変化測定回路
(7),(8),(9)は、前記発振器(1)の連続波
信号を基準として前記3つの受波器で受信された音波に
対応した各電気信号の位相変化量を検出することによ
り、送波器(3)と受波器(4),(5),(6)との
間の相対距離変化量r1,r2,r3を算出するものである。
(10)はリセツト回路で、送波器(3)が予め定めた基
準点Z0上に来たとき、相対距離変化測定回路(7),
(8),(9)と位置演算装置(11)にリセツト信号を
加える様になつている(11)は相対距離変化測定回路
(7),(8),(9)の出力r1,r2,r3に基づいて、
送波器(3)の3次元位置を算出する位置演算装置であ
る。
FIG. 1 is a block diagram showing the whole of the present invention. (1) is
For example, with an oscillator that generates a continuous wave signal with a frequency of 40 kHz,
The continuous wave signal is connected to the wave transmitter (3) at the three-dimensional position Z via the transmission line (2), and the continuous wave signal is transmitted to the air as an ultrasonic wave from the wave transmitter (3). The ultrasonic waves are generated by three wave receivers (4), which are set in advance at arbitrary positions.
The signals are received at (5) and (6) and are connected via lead wires to the corresponding relative distance change measuring circuits (7), (8) and (9). Here, the positions and coordinate values of the wave transmitter (3) and the wave receivers (4), (5) and (6) are set to have a relationship as shown in the figure. Z 0 indicates the reference point of the wave transmitter (3). The three relative distance change measuring circuits (7), (8) and (9) are electric signals corresponding to the sound waves received by the three receivers with reference to the continuous wave signal of the oscillator (1). By detecting the amount of phase change of R, the relative distance changes r 1 , r 2 , r 3 between the wave transmitter (3) and the wave receivers (4), (5), (6) are calculated. It is a thing.
Reference numeral (10) is a reset circuit, and when the transmitter (3) comes on a predetermined reference point Z 0 , a relative distance change measuring circuit (7),
The reset signal is applied to (8), (9) and the position calculation device (11). (11) is the output r 1 , r of the relative distance change measuring circuit (7), (8), (9). Based on 2 and r 3 ,
It is a position calculation device for calculating the three-dimensional position of the wave transmitter (3).

次に第1図の動作について説明する。Next, the operation of FIG. 1 will be described.

(a).測定を行う領域に3次元座標を設定し、送波器
(3)の基準点Z0及び3つの受波器(4),(5),
(6)の予め設定した位置Z1,Z2,Z3の座標値Z0(0,b,
0)、Z1(a,0,0)、Z2(−a,0,0)及びZ3(0,c,0)を位
置演算装置(11)内の例えばRAM等のメモリー(図示せ
ず)に記憶させておき、またこれらの各座標値より送波
器(3)の基準点と各受波器間の距離R1,R2,R3も演算
して既知の量として上記メモリーに記憶しておくものと
する。
(A). The three-dimensional coordinates are set in the measurement area, the reference point Z 0 of the transmitter (3) and the three receivers (4), (5),
Coordinate value Z 0 (0, b, of position Z 1 , Z 2 , Z 3 set in advance in (6)
0), Z 1 (a, 0,0), Z 2 (−a, 0,0) and Z 3 (0, c, 0) are stored in a memory (such as RAM) in the position calculation device (11) (not shown). The distances R 1 , R 2 , and R 3 between the reference point of the transmitter (3) and the receivers are also calculated from these coordinate values, and the above values are stored in the memory as known values. Shall be stored in.

(b).発振器(1)より伝送線路(2)を介して送ら
れた一定周波数の連続波信号は、送波器(3)より超音
波として空中に送信され、3つの受波器で受信される。
受信された超音波は電気信号に変換されてリード線を介
し、夫々相対距離変化測定回路(7),(8),(9)
へ送られる。
(B). A continuous wave signal of a constant frequency sent from the oscillator (1) via the transmission line (2) is transmitted to the air as ultrasonic waves by the wave transmitter (3) and received by the three wave receivers.
The received ultrasonic waves are converted into electric signals and passed through the lead wires, and the relative distance change measuring circuits (7), (8), and (9), respectively.
Sent to.

(c).相対距離変化測定回路(7),(8),(9)
では、受波器(4),(5),(6)からの電気信号の
位相が送波器(3)の移動に伴つて変化するので、これ
を検出して送波器(3)と各受波器間の相対距離変化量
r1,r2,r3を算出し出力する。尚、これら回路の構成に
ついては第2図に示し詳細については後述する。
(C). Relative distance change measurement circuit (7), (8), (9)
Then, the phases of the electric signals from the wave receivers (4), (5), and (6) change as the wave transmitter (3) moves. Change in relative distance between each receiver
Calculates r 1 , r 2 and r 3 and outputs them. The configuration of these circuits is shown in FIG. 2 and the details will be described later.

(d).算出された相対距離変化量r1,r2,r3は位置演
算装置(11)に送られる。ここでこれら各値と、前述の
予め記憶された送波器(3)の基準点及び各受波器の位
置Z0,Z1,Z2,Z3の座標値と基準点Z0と受波器(4),
(5),(6)間の距離R1,R2,R3を基にして演算を行
い、送波器(3)の任意の3次元位置Zが求められる。
(D). The calculated relative distance changes r 1 , r 2 , r 3 are sent to the position calculation device (11). Here, these values, the previously stored reference point of the transmitter (3) and the coordinate values of the positions Z 0 , Z 1 , Z 2 , Z 3 of the respective receivers and the reference point Z 0 are received. Wave instrument (4),
Arithmetic is performed based on the distances R 1 , R 2 and R 3 between (5) and (6) to obtain an arbitrary three-dimensional position Z of the wave transmitter (3).

次に、第2図で前述の相対距離変化測定回路(7),
(8),(9)について詳細に説明する。尚、各回路は
同一構成のため、(7)のみについて説明する。
Next, in FIG. 2, the relative distance change measuring circuit (7) described above,
(8) and (9) will be described in detail. Since each circuit has the same configuration, only (7) will be described.

(12)は増幅器で、送波器(3)の送信波に応じた受波
器(4)の出力信号e1を増幅する。(13)は一方のNて
い倍回路で、増幅器(12)の出力信号e′1の周波数を
N倍に高めるものである。(14)は発振器(1)からの
出力信号e0の周波数をN倍する他方のNてい倍回路であ
る。(15)は90°移相回路でNてい倍回路(14)の出力
信号eNの位相を90°シフトさせる。(16)及び(18)は
掛算器で、一方の掛算器(16)はNてい倍回路(13)及
び(14)の出力信号e′1NとeNを乗算し、他方の掛算器
(18)はNてい倍回路(13)の出力信号e′1Nと90°移
相回路(15)の出力信号e′Nを乗算する。(17)及び
(19)はローパスフィルタで掛算器(16)とローパスフ
イルタ(17)で一方の相関回路(上側点線内)を構成
し、掛算器(18)とローパスフイルタ(19)で他方の相
関回路(下側点線内)を構成している。(20)及び(2
1)は上記2つの相関回路の出力信号波形を整形する波
形整形回路で夫々アツプダウンカウンタ(22)に接続さ
れている。このアツプダウンカウンタ(22)の出力はD/
A変換器(23)に加えられ、このD/A変換器(23)から、
送波器(3)の動きによる相対距離変化量r1が出力され
る。
(12) is an amplifier that amplifies the output signal e 1 of the wave receiver (4) according to the transmitted wave of the wave transmitter (3). (13) at one of the N Tei fold circuit it is intended to increase the output signal e '1 frequency amplifier (12) to N times. (14) is the other N multiplication circuit that multiplies the frequency of the output signal e 0 from the oscillator (1) by N times. (15) is a 90 ° phase shift circuit for shifting the phase of the output signal e N of the N multiplication circuit (14) by 90 °. (16) and (18) are multipliers, one multiplier (16) multiplies the output signals e'1N and e N of the N multiplier circuits (13) and (14), and the other multiplier (18) ) Multiplies the output signal e'1N of the N multiplication circuit (13) by the output signal e'N of the 90 ° phase shift circuit (15). (17) and (19) are low-pass filters that form one correlation circuit (inside the upper dotted line) with the multiplier (16) and the low-pass filter (17), and the multiplier (18) and the low-pass filter (19) with the other. The correlation circuit (inside the lower dotted line) is configured. (20) and (2
Reference numeral 1) is a waveform shaping circuit for shaping the output signal waveforms of the above two correlation circuits, each of which is connected to the up-down counter (22). The output of this up-down counter (22) is D /
This D / A converter (23) is added to the A converter (23),
The relative distance change amount r 1 due to the movement of the wave transmitter (3) is output.

第2図の相対距離変化測定回路(7)の動作について説
明する。
The operation of the relative distance change measuring circuit (7) in FIG. 2 will be described.

発振器(1)からの連続波信号を基準とする出力信号e0
は e0=E0cosωt (1) で表すことができ、受波器(4)の出力信号e1を入力し
て増幅器(12)で増幅された出力信号e′1は、 で表される。ここでυは音波の伝搬速度、Rは送波器
(3)と受波器(4)との距離を示す。(2)式に於い
て分解能を高めるために、Nてい倍回路(13)で周波数
をN倍(N=2以上の整数)すれば、ω/υ=2π/λ
(λ:超音波の波長)であるから、その出力信号e′1N
は、 となる。
Output signal e 0 based on the continuous wave signal from the oscillator (1)
Can be expressed by e 0 = E 0 cosωt (1), and the output signal e ′ 1 amplified by the amplifier (12) by inputting the output signal e 1 of the receiver (4) is It is represented by. Here, υ is the propagation velocity of the sound wave, and R is the distance between the wave transmitter (3) and the wave receiver (4). In order to improve the resolution in the formula (2), if the frequency is multiplied by N (N = integer of 2 or more) by the N multiplication circuit (13), ω / υ = 2π / λ
(Λ: wavelength of ultrasonic wave), its output signal e ′ 1N
Is Becomes

発振器(1)の連続波信号の出力信号e0の周波数をNて
い倍回路(14)でN倍した出力信号eNは、 eN=E0cosNωt (4) で表され、この出力信号を90°移相回路(15)に加える
と、その出力信号e′Nは、 e′N=E0sinNωt (5) となる。(4)式及び(5)式で表される出力信号と、
(3)式の出力信号との相関をとつて、一方の出力信号
をEc、他方の出力信号Esとすれば が得られる。(6)式及び(7)式の は平均を示す。この平均化は2つの相関回路内のローパ
スフイルタ(17)及び(1)で行われる。ここで(6)
式及び(7)式を組み合わせると となる。これは、送波器(3)と受波器(4)との距離
Rが するごとに1回転するベクトルを表しており、Rが増加
なら左回り、減少なら右回りの回転ベクトルである。よ
つてこのベクトルの位相変化を検出すれば送受波器間の
相対距離変化量が得られることになる。実際には、第2
図に示す如く、2つの相関回路の出力信号Ec及びEsを波
形整形回路(20)及び(21)でパルス化してアツプダウ
ンカウンタ(22)で計数し、この計数出力信号をD/A変
換器(23)でアナログ信号に変換されて出力される。こ
のアナログ信号出力は送波器(3)と受波器(4)間の
距離Rが するごとに1ステツプずつ増減する。従つて、送波器
(3)をその基準点Z0上に置いて、アツプダウンカウン
タ(22)と第1図の位置演算装置(11)をリセツト回路
(10)の出力でリセツトされることにより、D/A変換器
(23)の出力が上記基準点Z0を始点として送波器(3)
と受波器(4)間の相対距離変化量r1を表わすことにな
る。同様にして他の2つの相対距離変化測定回路
(8),(9)からも、送波器(3)の基準点Z0を始点
とした夫々の相対距離変化量r2及びr3が得られる。
Output signal e N the frequency of the output signal e 0 of the continuous wave signal by N times with N Tei times circuit (14) of the oscillator (1) is represented by e N = E 0 cosNωt (4 ), the output signal When applied to the 90 ° phase shift circuit (15), its output signal e ′ N becomes e ′ N = E 0 sinNωt (5). Output signals represented by the equations (4) and (5),
If one output signal is E c and the other output signal E s is obtained by correlating with the output signal of the equation (3), Is obtained. Of equation (6) and equation (7) Indicates the average. This averaging is performed by the low pass filters (17) and (1) in the two correlation circuits. Here (6)
Combining equation and equation (7) Becomes This is because the distance R between the wave transmitter (3) and the wave receiver (4) is It represents a vector that makes one rotation each time, and is a counterclockwise rotation vector when R increases and a clockwise rotation vector when R decreases. Therefore, if the phase change of this vector is detected, the relative distance change amount between the transmitter and the receiver can be obtained. In fact, the second
As shown in the figure, the output signals E c and E s of the two correlation circuits are pulsed by the waveform shaping circuits (20) and (21) and counted by the up-down counter (22). The converter (23) converts the analog signal and outputs the analog signal. This analog signal output has a distance R between the wave transmitter (3) and the wave receiver (4). Each step increases or decreases by one step. Therefore, the transmitter (3) is placed on the reference point Z 0 , and the up-down counter (22) and the position calculation device (11) of FIG. 1 are reset by the output of the reset circuit (10). Causes the output of the D / A converter (23) to start from the above-mentioned reference point Z 0 as the starting point (3)
And the relative distance change r 1 between the wave receiver and the wave receiver (4). Similarly, from the other two relative distance change measuring circuits (8) and (9), the relative distance change amounts r 2 and r 3 starting from the reference point Z 0 of the wave transmitter (3) are obtained. To be

前述の如く、各相対距離変化測定回路(7),(8),
(9)ではNてい倍回路(13),(14)を使用すること
により各受波器(4),(5),(6)からの電気信号
の周波数がN倍になりその結果、相対距離変化量の測定
分解能もN倍に高められる。例えば、発振器(1)の発
振周波数;=40kHz、空気の音速;υ=340m/sのと
き、λ(波長)=8.5m/mとなるから、N=4とすればそ
の分解能はλの1/4、すなわち約2m/mが得られる。
As described above, the relative distance change measuring circuits (7), (8),
In (9), the frequency of the electric signal from each of the wave receivers (4), (5) and (6) is multiplied by N by using the N multiplication circuit (13) and (14), and as a result, The measurement resolution of the distance change amount is also increased N times. For example, when the oscillation frequency of the oscillator (1) is 40 kHz and the speed of sound of air is υ = 340 m / s, λ (wavelength) is 8.5 m / m. Therefore, if N = 4, the resolution is 1 of λ. / 4, or about 2 m / m is obtained.

以上説明した様に、送波器(3)の基準点Z0を始点とす
る送波器(3)と3つの受波器(4),(5),(6)
との間の相対距離変化量r1,r2,r3が測定されたので、
これらの各値から送波器(3)の3次元位置Zを算出す
る手順を以下に示す。送波器(3)が基準点Z0にあると
きは3つの受波器(4),(5),(6)迄の距離は、
既知の量として、 R1=|Z1−Z0| (9) R2=|Z2−Z0| (10) R3=|Z3−Z0| (11) の様に計算により求められる。これらの値は予め位置演
算装置(11)内のメモリーに記憶しておく。次に送波器
(3)が基準点Z0からある点Zへ移動したとき、その後
の送波器と夫々の受波器間の相対距離変化量r1,r2,r3
は夫々、 r1=|Z−Z1|−R1 (12) r2=|Z−Z2|−R2 (13) r3=|Z−Z3|−R3 (14) で表されるから、上式(12),(13),(14)に各々座
標値を代入すれば次式が得られる。
As described above, the transmitter (3) starting from the reference point Z 0 of the transmitter (3) and the three receivers (4), (5), (6)
Since the relative distance changes r 1 , r 2 , r 3 between and are measured,
The procedure for calculating the three-dimensional position Z of the wave transmitter (3) from these respective values is shown below. When the wave transmitter (3) is at the reference point Z 0 , the distance to the three wave receivers (4), (5), (6) is
As a known quantity, R 1 = | Z 1 −Z 0 | (9) R 2 = | Z 2 −Z 0 | (10) R 3 = | Z 3 −Z 0 | (11) To be These values are stored in advance in the memory in the position calculation device (11). Next, when the wave transmitter (3) moves from the reference point Z 0 to a certain point Z, the relative distance changes r 1 , r 2 , r 3 between the wave transmitter and the respective wave receivers thereafter.
Are represented by r 1 = | Z−Z 1 | −R 1 (12) r 2 = | Z−Z 2 | −R 2 (13) r 3 = | Z−Z 3 | −R 3 (14) Therefore, by substituting the coordinate values into the above equations (12), (13) and (14), the following equation is obtained.

(x−a)2+y2+z2=(R1+r12 (15) (x+a)2+y2+z2=(R2+r22 (16) x2+y2+(z−c)2=(R3+r32 (17) よつて、上式(15),(16),(17)から送波器(3)
の3次元位置Zの座標値x,y,zは次式により求められ
る。
(X-a) 2 + y 2 + z 2 = (R 1 + r 1 ) 2 (15) (x + a) 2 + y 2 + z 2 = (R 2 + r 2 ) 2 (16) x 2 + y 2 + (z-c) 2 = (R 3 + r 3 ) 2 (17) Therefore, from the above equations (15), (16), (17), the transmitter (3)
The coordinate values x, y, z of the three-dimensional position Z of are calculated by the following equation.

これら式(18),(19),(20)に基づき送波器(3)
の位置を算出する装置が第1図の位置演算装置(11)と
して示されている。この位置演算装置(11)は、例え
ば、マイクロコンピューターを用いれば容易に実施可能
で、リセツト回路(10)からの信号により、送波器
(3)が基準点Z0上に来たことを知り、相対距離変化測
定回路(7),(8),(9)の出力信号r1,r2,r
3と、予め記憶させておいた送受波路の各座標値及び所
要値とから送波器の3次元位置Zを演算する。
Based on these equations (18), (19), (20), the wave transmitter (3)
The device for calculating the position of is shown as the position calculation device (11) in FIG. This position calculation device (11) can be easily implemented by using, for example, a microcomputer, and knows that the transmitter (3) has come to the reference point Z 0 by the signal from the reset circuit (10). , Output signals r 1 , r 2 , r of the relative distance change measuring circuits (7), (8), (9)
3, calculates the three-dimensional position Z of transmitters and a respective coordinate values and required values for transmission and reception waveguide which had been previously stored.

尚、上記説明では受波器を3個使用して、送波器(3)
の位置を3次元的に求めたが、受波器を2個にした場合
は2次元位置(平面位置)が求められることは勿論であ
る。
In the above description, three wave receivers are used, and the wave transmitter (3) is used.
Although the position of 3 is obtained three-dimensionally, it is needless to say that the two-dimensional position (plane position) is obtained when the number of wave receivers is two.

また、伝送線路(2)を使用する代わりに、テレメータ
方式で無線によつて発振器(1)の連続波信号を送波器
(3)に伝送することもできる。
Instead of using the transmission line (2), the continuous wave signal of the oscillator (1) can be wirelessly transmitted to the wave transmitter (3) by a telemeter method.

〔発明の効果〕〔The invention's effect〕

以上説明した通り、本発明によれば次の如き種種の顕著
な効果が得られる。
As described above, according to the present invention, the following remarkable effects of various kinds can be obtained.

(イ)送信信号はパルス波でなく、一定周波数の連続波
信号を使用しているので、増幅器は狭帯域のものを使用
でき、外来雑音の影響を受けにくく、高いS/N比を以て
移動体の移動位置を測定することができる。
(A) Since the transmission signal is not a pulse wave but a continuous wave signal with a constant frequency, a narrow band amplifier can be used, is less susceptible to external noise, and has a high S / N ratio for moving objects. The moving position of can be measured.

(ロ)一定周波数の連続波信号を使用した位相変化によ
る測定を行つているため、受信レベルの変動の影響は小
さく、高精度に移動位置のができる。
(B) Since the measurement is performed by the phase change using the continuous wave signal of the constant frequency, the influence of the fluctuation of the reception level is small, and the moving position can be accurately moved.

(ハ)送波器の動きに対する情報が連続的に得られ分解
能も高い。
(C) Information on the movement of the transmitter is continuously obtained and the resolution is high.

(ニ)3個(又は2個)の受波器よりの受信信号及び発
振器よりの発振信号をそれぞれNてい倍してから、その
間の各位相差の変化量を検出することによって、各相対
距離変化量の測定分解能がN倍に高められる。
(D) Each relative distance change is detected by multiplying the received signals from the three (or two) wave receivers and the oscillation signal from the oscillator by N, and then detecting the amount of change in each phase difference therebetween. The measurement resolution of the quantity is increased N times.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の好適な実施例の概要を示すブロツク
図、第2図は第1図の相対距離変化測定回路の詳細な構
成を示すブロツク図である。 (3)……送波器、(4)〜(6)……受波器、(7)
〜(9)……相対距離変化測定回路、(10)……リセツ
ト回路、(11)……位置演算装置、(13),(14)……
Nてい倍回路、(15)……90°移相回路、(22)……ア
ツプダウンカウンタ、(23)……D/A変換器。
FIG. 1 is a block diagram showing an outline of a preferred embodiment of the present invention, and FIG. 2 is a block diagram showing a detailed configuration of the relative distance change measuring circuit of FIG. (3) ... Transmitter, (4) to (6) ... Receiver, (7)
~ (9) …… Relative distance change measurement circuit, (10) …… Reset circuit, (11) …… Position calculation device, (13), (14) ……
N multiplier circuit, (15) …… 90 ° phase shift circuit, (22) …… Up-down counter, (23) …… D / A converter.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】3次元(又は2次元)空間を移動可能とさ
れた移動体に取付けられた超音波の連続波信号を送信す
る単一の送波器と、 該送波器を駆動する一定周波数の発振器と、 該送波器より送信された超音波の連続波信号を受信する
ように上記3次元(又は2次元)空間内の予め設定され
た異なる位置にそれぞれ配された3個(又は2個)の受
波器と、 上記送波器が基準点に位置するときの該送波器及び上記
3個(又は2個)の受波器の各位置座標の初期値並びに
該送波器及び該3個(又は2個)の受波器間の距離の初
期値を設定する初期値設定手段と、 上記3個(又は2個)の受波器よりの受信信号に基づく
信号及び上記発振器よりの発振信号に基づく信号間の各
位相差の変化量を検出し、該検出された各位相差の変化
量及び上記超音波の連続波信号の伝播速度に基づく速度
値から、上記3個(又は2個)の受波器それぞれに対す
る上記送波器の相対距離変化量を測定する相対距離変化
量測定手段と、 上記初期値設定手段によって設定された上記各位置座標
の初期値及び上記距離の初期値並びに上記相対距離変化
量測定手段によって測定された上記各相対距離変化量と
に基づいて、上記送波器の移動位置座標を算出する移動
位置演算手段とを有し、 該移動位置演算手段の演算結果に基づいて上記移動体の
移動位置を測定するようにしたことを特徴とする移動位
置測定装置。
1. A single transmitter for transmitting a continuous wave signal of an ultrasonic wave, which is attached to a moving body capable of moving in a three-dimensional (or two-dimensional) space, and a constant drive for driving the transmitter. A frequency oscillator and three (or two) arranged respectively at different preset positions in the three-dimensional (or two-dimensional) space so as to receive the ultrasonic continuous wave signal transmitted from the transmitter. 2) wave receivers, initial values of position coordinates of the wave transmitters and the 3 (or 2) wave receivers when the wave transmitters are located at a reference point, and the wave transmitters And initial value setting means for setting an initial value of the distance between the three (or two) wave receivers, a signal based on a received signal from the three (or two) wave receivers, and the oscillator Change amount of each phase difference between the signals based on the oscillating signal is detected, and the change amount of each detected phase difference and the ultrasonic wave Relative distance change amount measuring means for measuring the relative distance change amount of each of the three (or two) receivers from the velocity value based on the propagation velocity of the continuous wave signal, and the initial value Based on the initial value of each position coordinate set by the setting means and the initial value of the distance, and each relative distance change amount measured by the relative distance change amount measuring means, the moving position coordinate of the transmitter. And a moving position calculating means for calculating the moving position, and the moving position measuring device measures the moving position of the moving body based on the calculation result of the moving position calculating means.
【請求項2】上記受信信号に基づく信号は、該受信信号
のN(2以上の整数)てい倍の信号であり、上記発振信
号に基づく信号は該発振信号のNてい倍の信号であり、
且つ、上記超音波の連続波信号の速度に基づく速度値
は、該超音波の連続波信号の速度の1/N倍であることを
特徴とする特許請求の範囲第1項記載の移動位置測定装
置。
2. A signal based on the received signal is a signal that is N (integer of 2 or more) times the received signal, and a signal based on the oscillation signal is a signal that is N times the oscillation signal.
The moving position measurement according to claim 1, wherein the velocity value based on the velocity of the ultrasonic continuous wave signal is 1 / N times the velocity of the ultrasonic continuous wave signal. apparatus.
JP15663785A 1985-07-16 1985-07-16 Moving position measuring device Expired - Lifetime JPH0684986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15663785A JPH0684986B2 (en) 1985-07-16 1985-07-16 Moving position measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15663785A JPH0684986B2 (en) 1985-07-16 1985-07-16 Moving position measuring device

Publications (2)

Publication Number Publication Date
JPS6217675A JPS6217675A (en) 1987-01-26
JPH0684986B2 true JPH0684986B2 (en) 1994-10-26

Family

ID=15632021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15663785A Expired - Lifetime JPH0684986B2 (en) 1985-07-16 1985-07-16 Moving position measuring device

Country Status (1)

Country Link
JP (1) JPH0684986B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103832905A (en) * 2012-11-20 2014-06-04 日立电梯(中国)有限公司 Position detection device for elevator cab

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186328A (en) * 1992-12-21 1994-07-08 Fujitsu Ltd Ultrasonic range-finding device
JP2018028435A (en) * 2014-12-25 2018-02-22 三菱電機株式会社 Frequency converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103832905A (en) * 2012-11-20 2014-06-04 日立电梯(中国)有限公司 Position detection device for elevator cab

Also Published As

Publication number Publication date
JPS6217675A (en) 1987-01-26

Similar Documents

Publication Publication Date Title
JPH0560555B2 (en)
Figueroa et al. A method for accurate detection of time of arrival: Analysis and design of an ultrasonic ranging system
JPH02102477A (en) Ultrasonic distance measuring instrument
JPH0684986B2 (en) Moving position measuring device
JPH0569192B2 (en)
JPH06186328A (en) Ultrasonic range-finding device
JP3117372B2 (en) Ultrasonic distance measuring device
JPS56124072A (en) Optical wave distance measurement instrument
JPH0262991A (en) Doppler radar device
JPH0319510B2 (en)
JPH09318607A (en) Method and device for measuring bulk wave velocity or thickness
JPH0452694Y2 (en)
RU2066852C1 (en) Method of finding of distribution of sound velocity in liquids downwards over depth
JP2016161363A (en) Optical coordinate measurement device
JPH0323049B2 (en)
JPH067132B2 (en) Ultrasonic velocity measuring device, ultrasonic sonic velocity measuring device and ultrasonic velocity / flow direction / sonic velocity measuring device
JPH03130689A (en) Pulse type ultrasonic distance measuring apparatus
JPS62266480A (en) System for measuring distance with ultrasonic wave and transmitter therefor
JPS6365897B2 (en)
SU1749705A1 (en) Hydroacoustic apparatus for determining sound speed and angle of inclination of soil
JPS61243308A (en) Three-dimensional position measuring instrument
JPS5983075A (en) Speed sensor
JPH01263514A (en) Acoustic wave measuring system
JPS6398507A (en) Apparatus for measuring linearly moving distance
JPS6342757B2 (en)