JPH0684516A - Nonaqueous electrolyte secondary cell - Google Patents

Nonaqueous electrolyte secondary cell

Info

Publication number
JPH0684516A
JPH0684516A JP4235875A JP23587592A JPH0684516A JP H0684516 A JPH0684516 A JP H0684516A JP 4235875 A JP4235875 A JP 4235875A JP 23587592 A JP23587592 A JP 23587592A JP H0684516 A JPH0684516 A JP H0684516A
Authority
JP
Japan
Prior art keywords
negative electrode
graphite
plane
battery
ray diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4235875A
Other languages
Japanese (ja)
Inventor
Tsukane Ito
束 伊藤
Kazuo Terashi
和生 寺司
Atsushi Harada
淳 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4235875A priority Critical patent/JPH0684516A/en
Publication of JPH0684516A publication Critical patent/JPH0684516A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve collecting efficiency and the safety of a cell by coating the surface of graphite as negative electrode material with an amorphous coke layer. CONSTITUTION:A nonaqueous electrolyte secondary cell is composed of a positive electrode mainly made of a lithium-containing composite oxide, nonaqueous electrolyte, and a negative electrode. In the negative electrode, the surface of graphite, whose d002 value of a lattice plane, (002) plane, spacing by X-ray diffraction is 3.354A or more and the dimension of a crystal in a C axis is 200Angstrom or more, is coated by an amorphous cake layer, or the coke layer, whose d002 value of the lattice plane, (002) plane, spacing by the X-ray diffraction is 3.43Angstrom or more and the dimension of the crystal in the C axis is 200Angstrom or less. Thereby, it is possible to improve collecting efficiency, and suppress the increase of cell internal pressure accompanying gas generation resulting from electrolyte decomposition, and the like during the process of full charging, and the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液を用いる二
次電池に関するもので、詳しくはその負極材料に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery using a non-aqueous electrolyte solution, and more particularly to a negative electrode material thereof.

【0002】[0002]

【従来の技術】従来、リチウム二次電池において負極活
物質に金属リチウムが広く使用されている。しかしなが
ら、金属リチウム単体を負極活物質として用いる場合、
放電の際にリチウムイオンとなって溶出すると、負極表
面が凹凸状となり、充電の際に、リチウムが表面の凸部
に集中的に電析して樹枝状に成長する結果、樹枝状に成
長したリチウムが正極と接して内部短絡を引き起こした
り、あるいはリチウムが負極表面に苔状に析出して脱落
を起こしたりするため、充放電サイクルによる寿命が極
めて短いという問題点があった。
2. Description of the Related Art Conventionally, metallic lithium has been widely used as a negative electrode active material in lithium secondary batteries. However, when metallic lithium alone is used as the negative electrode active material,
When discharged as lithium ions during discharge, the surface of the negative electrode becomes uneven, and during charging, lithium is intensively electrodeposited on the convex portions of the surface and grows in dendritic form, resulting in dendritic growth. Since lithium contacts the positive electrode to cause an internal short circuit or lithium deposits on the surface of the negative electrode in a moss-like manner and falls off, there is a problem that the life due to charge / discharge cycles is extremely short.

【0003】そこで、負極としてリチウム−アルミニウ
ム等のリチウム合金を使用することが提案された。この
リチウム合金を用いると、リチウムが負極表面状に樹枝
状あるいは苔状に生成することを抑制し、内部短絡や充
放電の繰り返しによる微粉化した負極活物質が負極から
脱落するのを防止して、充放電サイクル特性を向上させ
ることができる。
Therefore, it has been proposed to use a lithium alloy such as lithium-aluminum as the negative electrode. By using this lithium alloy, it is possible to suppress the generation of lithium in a dendritic or mossy form on the surface of the negative electrode, and prevent the finely divided negative electrode active material from falling off from the negative electrode due to repeated internal short circuits and repeated charging and discharging. The charge / discharge cycle characteristics can be improved.

【0004】しかしながら、リチウム−アルミニウム合
金等のリチウム合金は、非常に硬質なので、電極に形成
するために、リチウム合金を曲げたり、巻き取ったりす
ることが困難であり、扁平型等の限られた形状の電池で
しか使用することができないという問題点があった。
However, since a lithium alloy such as a lithium-aluminum alloy is very hard, it is difficult to bend or wind the lithium alloy to form an electrode, and it is limited to a flat type. There is a problem that it can be used only with a shaped battery.

【0005】そこで、さらに上記問題点を解決するため
に、特開昭57−208079号公報、特開昭63−2
4555号公報に可撓性に優れ、充放電サイクルの繰り
返しに伴う苔状のリチウムが電析する恐れがない負極材
料として黒鉛が提案されている。
Therefore, in order to solve the above-mentioned problems, JP-A-57-208079 and JP-A-63-2 are used.
In 4555, graphite is proposed as a negative electrode material which is excellent in flexibility and in which mossy lithium is not likely to be electrodeposited due to repeated charge / discharge cycles.

【0006】しかしながら、負極材料に黒鉛を使用する
場合、黒鉛の自己潤滑性のためと推定される導電芯体界
面との接着性に多少難が有り、集電効率が低下する。
However, when graphite is used as the negative electrode material, there is some difficulty in the adhesion to the interface of the conductive core, which is presumed to be due to the self-lubricating property of graphite, and the current collection efficiency decreases.

【0007】さらに、負極材料に黒鉛を用いた電池で
は、電池が満充電に達したとき、つまり、リチウムイオ
ンをドープした状態では、高温時の熱安定性に欠けるこ
とが多少ある等の問題点があった。
Further, in the battery using graphite as the negative electrode material, there is a problem that the battery is not sufficiently stable at high temperature when the battery is fully charged, that is, in a state where it is doped with lithium ions. was there.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記のよう
な問題点を解決し、集電効率の向上と、満充電時等での
電解液の分解等によるガス発生に伴う電池内圧の上昇を
抑制して、電池の安全性向上を計るものである。
DISCLOSURE OF THE INVENTION The present invention solves the above problems, improves the current collection efficiency, and raises the internal pressure of the battery due to gas generation due to decomposition of the electrolytic solution at the time of full charge and the like. To improve the safety of the battery.

【0009】[0009]

【課題を解決するための手段】本発明の非水電解液二次
電池は、リチウム含有複合酸化物を主体とする正極と、
非水電解液と、負極とからなる非水電解液二次電池にお
いて、前記負極は、X線回折による格子面(002)面
の面間隔のd002値が3.354Å以上でC軸方向の結
晶子の大きさが200Å以上の黒鉛の表面を、アモルフ
ァスコークス層またはX線回折による格子面(002)
面の面間隔のd002値が3.43Å以上でC軸方向の結
晶子の大きさが200Å以下のコークス層で被覆したも
のである。
A non-aqueous electrolyte secondary battery of the present invention comprises a positive electrode mainly composed of a lithium-containing composite oxide,
In a non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte and a negative electrode, the negative electrode has a d 002 value of a lattice spacing of (002) planes by X-ray diffraction of 3.354 Å or more and a C-axial direction. Amorphous coke layer or lattice plane by X-ray diffraction (002) on the surface of graphite with crystallite size of 200Å or more
It is covered with a coke layer having a surface spacing d 002 value of 3.43 Å or more and a crystallite size in the C-axis direction of 200 Å or less.

【0010】また、前記アモルファスコークス層または
X線回折による格子面(002)面の面間隔のd002
が3.43Å以上でC軸方向の結晶子の大きさが200
Å以下のコークス層は、還元性雰囲気下でコールタール
ピッチを焼成することにより形成したものである。
The amorphous coke layer or the lattice spacing of the lattice plane (002) by X-ray diffraction has a d 002 value of 3.43 Å or more and a crystallite size in the C-axis direction of 200.
Å The coke layer below is formed by firing coal tar pitch in a reducing atmosphere.

【0011】[0011]

【作用】本発明による非水電解液二次電池では、負極材
料として、黒鉛とコールタールピッチとの混合物を使用
し、黒鉛の表面をアモルファスコークス層あるいはコー
クス層で被覆することによって、負極材料と芯体との接
合性を向上することができるので、集電効率が上がり、
電池特性が向上するものである。
In the non-aqueous electrolyte secondary battery according to the present invention, a mixture of graphite and coal tar pitch is used as a negative electrode material, and the surface of the graphite is coated with an amorphous coke layer or a coke layer to form a negative electrode material. Since the bondability with the core can be improved, the current collection efficiency increases,
The battery characteristics are improved.

【0012】[0012]

【実施例】【Example】

〔実施例1〕負極材料として、天然黒鉛に対してコール
タールピッチを重量比で7:3の割合で混合して、16
0℃で1時間熱混合した後、加圧してペレット状に成形
した。その後、この成形したペレットを磁性ルツボに入
れる。さらに、この磁性ルツボ内に、新たに天然黒鉛を
入れることによって、成形したペレットを外気と遮断し
且つ磁性ルツボ内にアルゴンガスを混入して、アルゴン
雰囲気にした。そして、昇温速度100℃/hで250
℃まで昇温して、4時間焼成した後、再び昇温速度10
0℃/hで50℃昇温して300℃で4時間焼成すると
いう繰り返しを800℃まで行って、黒鉛表面にアモル
ファスコークス層が一様に生成した試料を得た。この試
料を粉砕して、平均粒子径5〜25μmの粉末とし、結
着剤としてあらかじめN−メチル−2−ピロリドンに溶
かしたポリフッ化ビニリデン(PVdF)を固形分とし
て15重量部となるように加え、スラリーとした。この
スラリーを厚さ18μmの銅箔上に両面塗布して、乾燥
後、ローラプレス機により圧延して、負極a1を作製し
た。
[Example 1] As a negative electrode material, coal tar pitch was mixed with natural graphite at a weight ratio of 7: 3 to obtain 16
After heat-mixing at 0 ° C. for 1 hour, pressure was applied to form pellets. Then, the formed pellets are put into a magnetic crucible. Furthermore, by newly inserting natural graphite into this magnetic crucible, the molded pellets were shielded from the outside air, and argon gas was mixed into the magnetic crucible to make an argon atmosphere. And 250 at a temperature rising rate of 100 ° C./h
After heating up to ℃ and firing for 4 hours, heating rate is 10 again.
Repetition of increasing the temperature by 50 ° C. at 0 ° C./h and firing at 300 ° C. for 4 hours was repeated up to 800 ° C. to obtain a sample in which an amorphous coke layer was uniformly formed on the graphite surface. This sample was pulverized into a powder having an average particle size of 5 to 25 μm, and polyvinylidene fluoride (PVdF) previously dissolved in N-methyl-2-pyrrolidone as a binder was added so as to have a solid content of 15 parts by weight. , Into a slurry. This slurry was applied on both surfaces of a copper foil having a thickness of 18 μm, dried, and then rolled by a roller press machine to produce a negative electrode a 1 .

【0013】〔実施例2〕負極材料として、天然黒鉛に
対してコールタールピッチを重量比で7:3の割合で混
合して、160℃で1時間熱混合した後、加圧してペレ
ット状に成形した。その後、この成形したペレットを磁
性ルツボに入れる。さらに、この磁性ルツボ内に、新た
に天然黒鉛を入れることによって、成形したペレットを
外気と遮断し且つ磁性ルツボ内にアルゴンガスを混入し
て、アルゴン雰囲気にした。そして、昇温速度50℃/
hで250℃まで昇温して、8時間焼成した後、再び昇
温速度100℃/hで50℃昇温して300℃で8時間
焼成するという繰り返しを800℃まで行って、黒鉛表
面にX線回折による格子面(002)面の面間隔のd
002値が3.45Å以上、C軸方向の結晶子の大きさが
200Å以下のコークス層が一様に生成した試料を得
た。この試料を粉砕して、平均粒子径5〜25μmの粉
末として、負極材料として用いる以外は、実施例1と同
様にして負極a2を作製した。
Example 2 As a negative electrode material, natural graphite was used.
On the other hand, coal tar pitch was mixed at a weight ratio of 7: 3.
Combine, heat mix at 160 ° C for 1 hour, pressurize and mix.
It was molded into a cot shape. The molded pellets are then magnetized.
Put in a sex crucible. Furthermore, in this magnetic crucible, a new
Pellets formed by inserting natural graphite into
Insulate from the outside air and mix argon gas into the magnetic crucible.
The atmosphere of argon. And the temperature rising rate is 50 ° C /
The temperature was raised to 250 ° C. at h, baked for 8 hours, and then heated again.
Raise 50 ° C at a temperature rate of 100 ° C / h and raise at 300 ° C for 8 hours
Repeated firing up to 800 ° C
Of the lattice plane (002) plane by X-ray diffraction on the plane
002The value is 3.45Å or more, and the crystallite size in the C-axis direction is
A sample with a coke layer of less than 200Å was obtained.
It was This sample is crushed to obtain powder having an average particle size of 5 to 25 μm.
Finally, the same as Example 1 except that it was used as a negative electrode material.
Negative electrode a2Was produced.

【0014】〔比較例1〕負極材料として、平均粒子径
5〜25μm、X線回折における格子面(002)面の
002値が3.35Å、C軸方向の結晶子の大きさが2
290Åの天然黒鉛粉末と、同様の平均粒子径、X線回
折における格子面(002)面のd002値が3.46〜
3.48Å、C軸方向の結晶子の大きさが15〜25Å
のコークスを添加率10%で乾式混合し、結着剤として
あらかじめN−メチル−2−ピロリドンに溶かしたPV
dFを固形分として15重量部となるように加え、スラ
リーとした。このスラリーを厚さ18μmの銅箔上に両
面塗布して、乾燥後、ローラプレス機により圧延して、
負極x1を作製した。
Comparative Example 1 As a negative electrode material, the average particle size is 5 to 25 μm, the d 002 value of the lattice plane (002) plane in X-ray diffraction is 3.35Å, and the size of the crystallite in the C-axis direction is 2.
290 Å natural graphite powder, the same average particle diameter, and the d 002 value of the lattice plane (002) plane in X-ray diffraction of 3.46 to
3.48Å, the crystallite size in the C-axis direction is 15 to 25Å
PV which was dry-mixed with coke of 10% at an addition rate of 10% and previously dissolved in N-methyl-2-pyrrolidone as a binder
dF was added so as to have a solid content of 15 parts by weight to obtain a slurry. This slurry is applied on both sides of a copper foil having a thickness of 18 μm, dried, and then rolled by a roller press machine,
A negative electrode x 1 was produced.

【0015】〔比較例2〕コークスの添加率を20%に
する以外は、比較例1と同様にして、負極x2を作製し
た。
[Comparative Example 2] A negative electrode x 2 was produced in the same manner as in Comparative Example 1 except that the addition rate of coke was 20%.

【0016】〔比較例3〕コークスの添加率を30%に
する以外は、比較例1と同様にして、負極x3を作製し
た。
[Comparative Example 3] A negative electrode x 3 was prepared in the same manner as in Comparative Example 1 except that the addition rate of coke was 30%.

【0017】〔比較例4〕コークスの添加率を40%に
する以外は、比較例1と同様にして、負極x4を作製し
た。
[Comparative Example 4] A negative electrode x 4 was produced in the same manner as in Comparative Example 1 except that the addition rate of coke was 40%.

【0018】〔比較例5〕コークスの添加率を50%に
する以外は、比較例1と同様にして、負極x5を作製し
た。
[Comparative Example 5] A negative electrode x 5 was produced in the same manner as in Comparative Example 1 except that the addition rate of coke was 50%.

【0019】〔比較例6〕コークスの添加率を60%に
する以外は、比較例1と同様にして、負極x6を作製し
た。
[Comparative Example 6] A negative electrode x 6 was produced in the same manner as in Comparative Example 1 except that the addition ratio of coke was 60%.

【0020】〔比較例7〕コークスの添加率を70%に
する以外は、比較例1と同様にして、負極x7を作製し
た。
[Comparative Example 7] A negative electrode x 7 was produced in the same manner as in Comparative Example 1 except that the addition rate of coke was 70%.

【0021】〔比較例8〕負極材料として、平均粒子径
5〜25μm、X線回折における格子面(002)面の
002値が3.35Å、C軸方向の結晶子の大きさが2
290Åの天然黒鉛を用いる以外は、比較例1と同様に
して、負極x8を作製した。
Comparative Example 8 As a negative electrode material, the average particle size was 5 to 25 μm, the d 002 value of the lattice plane (002) plane in X-ray diffraction was 3.35Å, and the size of the crystallite in the C-axis direction was 2.
A negative electrode x 8 was produced in the same manner as in Comparative Example 1 except that 290 Å natural graphite was used.

【0022】〔比較例9〕負極材料として、平均粒子径
5〜25μm、X線回折における格子面(002)面の
002値が3.46〜3.48Å、C軸方向の結晶子の
大きさが15〜25Åの石油系コークスを用いる以外
は、比較例1と同様にして、負極x9を作製した。
[Comparative Example 9] As a negative electrode material, the average particle diameter was 5 to 25 µm, the d 002 value of the lattice plane (002) plane in X-ray diffraction was 3.46 to 3.48Å, and the size of the crystallite in the C-axis direction. A negative electrode x 9 was produced in the same manner as in Comparative Example 1 except that petroleum coke having a size of 15 to 25 Å was used.

【0023】[実験1]各負極について、剥離強度試験
と充放電特性の結果を表1、図1及び図2に示した。
[Experiment 1] The results of the peel strength test and the charge / discharge characteristics of each negative electrode are shown in Table 1 and FIGS.

【0024】[0024]

【表1】 [Table 1]

【0025】充放電特性は、作用極に負極a1、a2、x
4、x8、及びx9をそれぞれ用いて、対極と参照極に
は、金属リチウムを用い、電解液に1mol/dm3
LiPF6、EC/DMC及び1mol/dm3、LiP
6、PC/DMCの二種類を用いて、ビーカセルを組
み立て測定した。図1にEC系の電解液を用いた場合、
図2に、PC系の電解液を用いた場合の充放電特性を示
す。
The charge and discharge characteristics are as follows: negative electrode a 1 , a 2 , x
4 , x 8 , and x 9 , respectively, metal lithium was used for the counter electrode and the reference electrode, and the electrolyte solution was 1 mol / dm 3 ,
LiPF 6 , EC / DMC and 1 mol / dm 3 , LiP
A beaker cell was assembled and measured using two types of F 6 and PC / DMC. When an EC-based electrolyte is used in FIG.
FIG. 2 shows charge / discharge characteristics when a PC-based electrolytic solution is used.

【0026】表1から判るように、負極a1及びa2にお
いては、負極x9以上の接合性が得られた。黒鉛のみを
活物質として使用した負極x8は、剥がれ強度において
最も小さな値を示し、わずかな力でも剥がれるので、細
心の注意を必要とした。
As can be seen from Table 1, in the negative electrodes a 1 and a 2 , a bonding property of negative electrode x 9 or more was obtained. Negative electrode x 8 using only graphite as an active material showed the smallest peel strength and could be peeled off even with a slight force, so careful attention was required.

【0027】次に、図1及び図2から判るように、EC
系の電解液中では、負極x8は理想的な充放電特性を示
しているが、PC系の電解液中では、約1.0V付近か
ら電位が下がらず充電できないことが判る。
Next, as can be seen from FIGS. 1 and 2, EC
In the system electrolyte solution, the negative electrode x 8 exhibits ideal charge / discharge characteristics, but in the PC system electrolyte solution, the potential does not drop from around 1.0 V, indicating that the battery cannot be charged.

【0028】これに対して負極a1及びa2では、EC系
及びPC系どちらの電解液系でも充分な充放電特性を示
している。
On the other hand, the negative electrodes a 1 and a 2 show sufficient charge / discharge characteristics in both EC type and PC type electrolytic solution systems.

【0029】負極a1及びa2においては、接合性も非常
に高く、EC系、PC系の電解液どちらにおいても、非
常に高い放電容量を示している。
The negative electrodes a 1 and a 2 also have a very high bonding property, and have a very high discharge capacity in both EC-based and PC-based electrolytic solutions.

【0030】これは、負極a1及びa2の黒鉛表面に第二
成分であるアモルファスカーボン層あるいはコークス層
が一様に生成したことにより、副反応である電解液の分
解が抑えられたために放電容量が高く、さらに、初期充
放電効率が高かったと考えられる。また、EC系電解液
で満充電した場合、PC系電解液中での加熱によっても
ガス発生が認められなかったのに対して、負極x8はガ
ス発生が認められた。
This is because the amorphous carbon layer or coke layer, which is the second component, was uniformly formed on the graphite surfaces of the negative electrodes a 1 and a 2 , and the decomposition of the electrolytic solution, which is a side reaction, was suppressed. It is considered that the capacity was high and the initial charge / discharge efficiency was high. Further, when fully charged with the EC-based electrolytic solution, no gas generation was observed even by heating in the PC-based electrolytic solution, whereas gas generation was observed with the negative electrode x 8 .

【0031】これより、負極a1及びa2では、満充電に
よる高温時に電解液を分解してガスを発生することを防
止でき、したがって、この負極を電池に組み込んだとき
にガス発生に伴う電池内圧の上昇を抑制することができ
る。
As a result, in the negative electrodes a 1 and a 2 , it is possible to prevent the decomposition of the electrolytic solution at the time of high temperature due to full charge to generate a gas, and therefore, when the negative electrode is incorporated in a battery, the battery generated by the gas generation is prevented. An increase in internal pressure can be suppressed.

【0032】〔実施例3〕市販の四三酸化コバルト(C
34)と炭酸リチウムを原子比1:1になるように充
分混合した後、空気中で600℃で6時間焼成した後に
粉砕混合し、さらに850℃で12時間焼成して、リチ
ウムコバルト複合酸化物LiCoO2を合成し正極活物
質とした。
Example 3 Commercially available cobalt trioxide (C)
o 3 O 4 ) and lithium carbonate were mixed sufficiently so that the atomic ratio was 1: 1 and then calcined in air at 600 ° C. for 6 hours, pulverized and mixed, and further calcined at 850 ° C. for 12 hours to obtain lithium cobalt. A composite oxide LiCoO 2 was synthesized and used as a positive electrode active material.

【0033】上述の正極活物質を85重量部とり、人造
黒鉛粉末8重量部とカーボンブラック2重量部とを充分
混合した後、N−メチル−2−ピロリドンに溶かしたP
VdFを固形分として5重量部となるように加えスラリ
ーとした。
After taking 85 parts by weight of the above-mentioned positive electrode active material, 8 parts by weight of artificial graphite powder and 2 parts by weight of carbon black were thoroughly mixed, and then P dissolved in N-methyl-2-pyrrolidone was used.
VdF was added as a solid content to 5 parts by weight to obtain a slurry.

【0034】この正極スラリーを長さ355mm、幅4
0mm、厚さ20μmのアルミ箔上に両面塗布して、乾
燥後、ローラープレス機により圧延して、端部にニッケ
ルのリードスポット溶接して、110℃で3時間真空乾
燥処理して、正極板を作製した。
This positive electrode slurry has a length of 355 mm and a width of 4
Both sides are coated on 0 mm thick aluminum foil with a thickness of 20 μm, dried, rolled by a roller press machine, nickel lead spot welding is applied to the ends, and vacuum dried at 110 ° C. for 3 hours to obtain a positive electrode plate. Was produced.

【0035】また、負極a1の端部にニッケルのリード
をスポット溶接して110℃で3時間真空乾燥して、負
極板を作製した。
A nickel lead was spot-welded to the end of the negative electrode a 1 and vacuum dried at 110 ° C. for 3 hours to produce a negative electrode plate.

【0036】上記正極板と負極板とを厚さ25μmの多
孔性ポリプロピレン製セパレータを介して捲回して渦巻
電極体とした。この渦巻電極体をニッケルメッキを施し
た鉄製の外装缶に入れ、電解液を注入した後、ガスケッ
トを介して封口体で外装缶を封口して、円筒型の本発明
電池A1を作製した。
The positive electrode plate and the negative electrode plate were wound around a porous polypropylene separator having a thickness of 25 μm to form a spiral electrode body. The spirally wound electrode body was placed in a nickel-plated iron outer can, and after the electrolytic solution was injected, the outer can was sealed with a sealing body through a gasket to prepare a cylindrical battery A 1 of the invention.

【0037】尚、電解液には、1mol/dm3の濃度
になるようにLiPF6をエチレンカーボネートとジメ
チルカーボネートの混合溶液に溶かしたものを使用し
た。
The electrolyte used was LiPF 6 dissolved in a mixed solution of ethylene carbonate and dimethyl carbonate so as to have a concentration of 1 mol / dm 3 .

【0038】〔実施例4〕負極a2を用いて負極板を作
製する以外は、実施例3と同様にして、本発明電池A2
を作製した。
[0038] Except for making a negative electrode plate with Example 4 anode a 2, in the same manner as in Example 3, the present invention cell A 2
Was produced.

【0039】〔比較例10〕負極x4を用いて負極板を
作製する以外は、実施例3と同様にして、比較電池X1
を作製した。
Comparative Example 10 A comparative battery X 1 was prepared in the same manner as in Example 3 except that the negative electrode plate was prepared using the negative electrode x 4.
Was produced.

【0040】〔比較例11〕負極x8を用いて負極板を
作製する以外は、実施例3と同様にして、比較電池X2
を作製した。
Comparative Example 11 Comparative battery X 2 was prepared in the same manner as in Example 3 except that the negative electrode plate was prepared using negative electrode x 8.
Was produced.

【0041】〔比較例12〕負極x9を用いて負極板を
作製する以外は、実施例3と同様にして、比較電池X3
を作製した。
Comparative Example 12 Comparative battery X 3 was prepared in the same manner as in Example 3 except that the negative electrode plate was prepared using negative electrode x 9.
Was produced.

【0042】[実験2]次に、各電池を用いて、放電容
量の測定を行った。この時の条件は、室温で200mA
の充電電流で電池電圧が4.1Vに達するまで充電した
後、200mAの放電電流で電池電圧が2.75Vにな
るまで放電するものである。この結果を図3に示した。
また、図4は上記一連の充放電を繰り返したサイクル特
性を示すものである。
[Experiment 2] Next, the discharge capacity of each battery was measured. The condition at this time is 200 mA at room temperature.
The battery is charged until the battery voltage reaches 4.1 V with the charging current of 1 and then discharged until the battery voltage reaches 2.75 V with the discharging current of 200 mA. The result is shown in FIG.
Further, FIG. 4 shows cycle characteristics obtained by repeating the series of charging and discharging.

【0043】図3及び図4から、本発明電池A1及びA2
は、比較電池X2と同等の500mA以上の放電容量が
得られている。ここで、比較電池X3では、電池容量は
本発明電池A1及びA2に比べて、非常に低い値になって
いる。さらに、サイクル特性において、比較電池X1
3は、サイクル数が進むに連れて、放電容量が低下し
ているが、本発明電池A1及びA2は、サイクル数が増加
しても初期の放電容量からあまり低下していないことが
判る。
From FIGS. 3 and 4, the batteries A 1 and A 2 of the present invention are shown.
Has a discharge capacity of 500 mA or more, which is equivalent to that of the comparative battery X 2 . Here, the battery capacity of the comparative battery X 3 is much lower than that of the batteries A 1 and A 2 of the invention. Furthermore, in the cycle characteristics, the comparative battery X 1 ~
The discharge capacity of X 3 decreased as the number of cycles increased, but the batteries A 1 and A 2 of the present invention did not decrease much from the initial discharge capacity even if the number of cycles increased. I understand.

【0044】これは、負極における剥がれ強度(接合
性)に関係すると考えられる。比較電池X1のように負
極材料として、ただ単に黒鉛とコークスとを混合させる
だけではなく、本発明電池A1及びA2のように、黒鉛の
表面をアモルファスコークスあるいはコークスで被覆す
ることにより、非常に良好に負極材料と芯体とを接合さ
せることができ、剥がれ強度を向上させることができ
る。
This is considered to be related to the peel strength (bondability) of the negative electrode. By not only simply mixing graphite and coke as a negative electrode material like Comparative Battery X 1 , but also by coating the surface of graphite with amorphous coke or coke as in the batteries A 1 and A 2 of the present invention, The negative electrode material and the core can be bonded very well, and the peel strength can be improved.

【0045】つまり、剥がれ強度が高いことは、充放電
を繰り返しても、芯体と負極材料とが剥がれないので、
放電による集電不良部等がなくなるため、放電容量が低
下しないと考えられる。
That is, the high peeling strength means that the core and the negative electrode material are not peeled off even after repeated charging and discharging.
It is considered that the discharge capacity does not decrease because there is no defective current collection due to discharge.

【0046】さらに、図3の放電特性より、本発明電池
では、放電末期に電池電圧が徐々に低下していくことか
ら、比較電池X2では困難であった、残存容量の検出が
容易にできるようになった。
Further, according to the discharge characteristics of FIG. 3, in the battery of the present invention, the battery voltage gradually decreases at the end of discharge, so that it is possible to easily detect the remaining capacity, which was difficult for the comparative battery X 2. It became so.

【0047】[0047]

【発明の効果】負極材料として、X線回折による格子面
(002)面の面間隔のd002値が3.354Å以上で
C軸方向の結晶子の大きさが200Å以上の黒鉛の表面
を、アモルファスコークス層またはX線回折による格子
面(002)面の面間隔のd00 2値が3.43Å以上で
C軸方向の結晶子の大きさが200Å以下のコークスで
被覆したことにより、高電圧、高容量を有し、且つ負極
材料と芯体との接合性が高いために、集電効率等に優れ
た非水電解液二次電池が得られる。
EFFECT OF THE INVENTION As a negative electrode material, a graphite surface having a d 002 value of the lattice spacing (002) plane of 3.354 Å or more by X-ray diffraction and a crystallite size in the C-axis direction of 200 Å or more, by d 00 2 values of spacing of lattice plane (002) plane by an amorphous coke layer or X-ray diffraction is the size of the C-axis direction of crystallites more 3.43Å were coated with the following coke 200 Å, a high voltage A non-aqueous electrolyte secondary battery having a high capacity and a high bonding property between the negative electrode material and the core can provide a non-aqueous electrolyte secondary battery excellent in current collection efficiency and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】EC系電解液中における充放電特性を示す図で
ある。
FIG. 1 is a diagram showing charge / discharge characteristics in an EC-based electrolytic solution.

【図2】PC系電解液中における充放電特性を示す図で
ある。
FIG. 2 is a diagram showing charge / discharge characteristics in a PC-based electrolytic solution.

【図3】本発明電池と比較電池の放電特性を示す図であ
る。
FIG. 3 is a diagram showing discharge characteristics of a battery of the present invention and a comparative battery.

【図4】本発明電池と比較電池のサイクル特性を示す図
である。
FIG. 4 is a diagram showing cycle characteristics of the battery of the present invention and a comparative battery.

【符号の説明】[Explanation of symbols]

1、a2・・・・負極 x1〜x9・・・・負極 A1、A2・・・・本発明電池 X1〜X3・・・・比較電池a 1 , a 2 ... Negative electrode x 1 to x 9 ... Negative electrode A 1 , A 2 ... Inventive battery X 1 to X 3 ... Comparative battery

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年5月10日[Submission date] May 10, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】[0009]

【課題を解決するための手段】本発明の非水電解液二次
電池は、リチウム含有複合酸化物を主体とする正極と、
非水電解液と、負極とからなる非水電解液二次電池にお
いて、前記負極は、X線回折による格子面(002)面
の面間隔のd002値が3.354Å以上でC軸方向の結
晶子の大きさが200Å以上の黒鉛の表面を、アモルフ
ァスカーボン層またはX線回折による格子面(002)
面の面間隔のd002値が3.43Å以上でC軸方向の結
晶子の大きさが200Å以下のコークス層で被覆したも
のである。
A non-aqueous electrolyte secondary battery of the present invention comprises a positive electrode mainly composed of a lithium-containing composite oxide,
In a non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte and a negative electrode, the negative electrode has a d 002 value of a lattice spacing of (002) planes by X-ray diffraction of 3.354 Å or more and a C-axial direction. the size of the crystallite surface of the above graphite 200 Å, Amorufu
Carbon layer or lattice plane by X-ray diffraction (002)
It is covered with a coke layer having a surface spacing d 002 value of 3.43 Å or more and a crystallite size in the C-axis direction of 200 Å or less.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】また、前記アモルファスカーボン層または
X線回折による格子面(002)面の面間隔のd002
が3.43Å以上でC軸方向の結晶子の大きさが200
Å以下のコークス層は、還元性雰囲気下でコールタール
ピッチを焼成することにより形成したものである。
Also, the d 002 value of the interplanar spacing between the amorphous carbon layer or the lattice plane (002) plane by X-ray diffraction is 3.43 Å or more and the size of the crystallite in the C-axis direction is 200
Å The coke layer below is formed by firing coal tar pitch in a reducing atmosphere.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】[0011]

【作用】本発明による非水電解液二次電池では、負極材
料として、黒鉛とコールタールピッチとの混合物を使用
し、黒鉛の表面をアモルファスカ−ボン層あるいはコー
クス層で被覆することによって、負極材料と芯体との接
合性を向上することができるので、集電効率が上がり、
電池特性が向上するものである。
In the non-aqueous electrolyte secondary battery according to the present invention, a mixture of graphite and coal tar pitch is used as a negative electrode material, and the surface of graphite is coated with an amorphous carbon layer or a coke layer to form a negative electrode. Since the bondability between the material and the core can be improved, the current collection efficiency increases,
The battery characteristics are improved.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】[0012]

【実施例】 〔実施例1〕負極材料として、天然黒鉛に対してコール
タールピッチを重量比で7:3の割合で混合して、16
0℃で1時間熱混合した後、加圧してペレット状に成形
した。その後、この成形したペレットを磁性ルツボに入
れる。さらに、この磁性ルツボ内に、新たに天然黒鉛を
入れることによって、成形したペレットを外気と遮断し
且つ磁性ルツボ内にアルゴンガスを混入して、アルゴン
雰囲気にした。そして、昇温速度100℃/hで250
℃まで昇温して、4時間焼成した後、再び昇温速度10
0℃/hで50℃昇温して300℃で4時間焼成すると
いう繰り返しを800℃まで行って、黒鉛表面にアモル
ファスカーボン層が一様に生成した試料を得た。この試
料を粉砕して、平均粒子径5〜25μmの粉末とし、結
着剤としてあらかじめN−メチル−2−ピロリドンに溶
かしたポリフッ化ビニリデン(PVdF)を固形分とし
て15重量部となるように加え、スラリーとした。この
スラリーを厚さ18μmの銅箔上に両面塗布して、乾燥
後、ローラプレス機により圧延して、負極a1を作製し
た。
Example 1 As a negative electrode material, coal tar pitch was mixed with natural graphite at a weight ratio of 7: 3 to prepare 16
After heat-mixing at 0 ° C. for 1 hour, pressure was applied to form pellets. Then, the formed pellets are put into a magnetic crucible. Furthermore, by newly inserting natural graphite into this magnetic crucible, the molded pellets were shielded from the outside air, and argon gas was mixed into the magnetic crucible to make an argon atmosphere. And 250 at a temperature rising rate of 100 ° C./h
After heating up to ℃ and firing for 4 hours, heating rate is 10 again.
0 ° C. / h repeatedly that firing 50 ° C. heated for 4 hours at 300 ° C. at a go to 800 ° C., Cupid graphite surface
A sample in which the fas carbon layer was uniformly formed was obtained. This sample was pulverized into a powder having an average particle size of 5 to 25 μm, and polyvinylidene fluoride (PVdF) previously dissolved in N-methyl-2-pyrrolidone was added as a binder so that the solid content was 15 parts by weight. , Into a slurry. This slurry was applied on both surfaces of a copper foil having a thickness of 18 μm, dried, and then rolled by a roller press machine to produce a negative electrode a 1 .

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0044[Correction target item name] 0044

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0044】これは、負極における剥がれ強度(接合
性)に関係すると考えられる。比較電池X1のように負
極材料として、ただ単に黒鉛とコークスとを混合させる
だけではなく、本発明電池A1及びA2のように、黒鉛の
表面をアモルファスカーボンあるいはコークスで被覆す
ることにより、非常に良好に負極材料と芯体とを接合さ
せることができ、剥がれ強度を向上させることができ
る。
This is considered to be related to the peel strength (bondability) of the negative electrode. By not only simply mixing graphite and coke as a negative electrode material like Comparative Battery X 1 , but also by coating the surface of graphite with amorphous carbon or coke as in the batteries A 1 and A 2 of the present invention, The negative electrode material and the core can be bonded very well, and the peel strength can be improved.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0047[Correction target item name] 0047

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0047】[0047]

【発明の効果】負極材料として、X線回折による格子面
(002)面の面間隔のd002値が3.354Å以上で
C軸方向の結晶子の大きさが200Å以上の黒鉛の表面
を、アモルファスカーボン層またはX線回折による格子
面(002)面の面間隔のd00 2値が3.43Å以上で
C軸方向の結晶子の大きさが200Å以下のコ−クスで
被覆したことにより、高電圧、高容量を有し、且つ負極
材料と芯体との接合性が高いために、集電効率等に優れ
た非水電解液二次電池が得られる。
EFFECT OF THE INVENTION As a negative electrode material, a graphite surface having a d 002 value of the lattice spacing (002) plane of 3.354 Å or more by X-ray diffraction and a crystallite size in the C-axis direction of 200 Å or more, The amorphous carbon layer or the lattice spacing (002) plane by X-ray diffraction having a d 00 2 value of 3.43 Å or more and a crystallite size in the C-axis direction of 200 Å or less is coated with coke. A non-aqueous electrolyte secondary battery having a high voltage and a high capacity, and having a high bonding property between the negative electrode material and the core can provide a non-aqueous electrolyte secondary battery excellent in current collection efficiency and the like.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウム含有複合酸化物を主体とする正
極と、非水電解液と、負極とからなる非水電解液二次電
池において、前記負極は、X線回折による格子面(00
2)面の面間隔のd002値が3.354Å以上でC軸方
向の結晶子の大きさが200Å以上の黒鉛の表面を、ア
モルファスコークス層またはX線回折による格子面(0
02)面の面間隔のd002値が3.43Å以上でC軸方
向の結晶子の大きさが200Å以下のコークス層で被覆
したものであることを特徴とした非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode containing a lithium-containing composite oxide as a main component, a non-aqueous electrolyte, and a negative electrode, wherein the negative electrode has a lattice plane (00) by X-ray diffraction.
2) The surface of graphite having a d 002 value of the surface spacing of 3.354 Å or more and a crystallite size in the C-axis direction of 200 Å or more is used as an amorphous coke layer or a lattice plane (0
02) A non-aqueous electrolyte secondary battery characterized by being coated with a coke layer having a d 002 value of the interplanar spacing of 3.43 Å or more and a crystallite size in the C-axis direction of 200 Å or less.
【請求項2】 前記アモルファスコークス層またはX線
回折による格子面(002)面の面間隔のd002値が
3.43Å以上でC軸方向の結晶子の大きさが200Å
以下のコークス層が、還元性雰囲気下でコールタールピ
ッチを焼成することにより形成されていることを特徴と
する請求項1記載の非水電解液二次電池。
2. The amorphous coke layer or the lattice spacing (002) plane obtained by X-ray diffraction has a d 002 value of 3.43 Å or more and a crystallite size in the C-axis direction of 200 Å.
The non-aqueous electrolyte secondary battery according to claim 1, wherein the following coke layer is formed by firing coal tar pitch in a reducing atmosphere.
JP4235875A 1992-09-03 1992-09-03 Nonaqueous electrolyte secondary cell Pending JPH0684516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4235875A JPH0684516A (en) 1992-09-03 1992-09-03 Nonaqueous electrolyte secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4235875A JPH0684516A (en) 1992-09-03 1992-09-03 Nonaqueous electrolyte secondary cell

Publications (1)

Publication Number Publication Date
JPH0684516A true JPH0684516A (en) 1994-03-25

Family

ID=16992542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4235875A Pending JPH0684516A (en) 1992-09-03 1992-09-03 Nonaqueous electrolyte secondary cell

Country Status (1)

Country Link
JP (1) JPH0684516A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10149822A (en) * 1996-11-20 1998-06-02 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US5919589A (en) * 1996-03-05 1999-07-06 Canon Kabushiki Kaisha Rechargeable battery
US5965296A (en) * 1996-05-23 1999-10-12 Sharp Kabushiki Kaisha Nonaqueous secondary battery and a method of manufacturing a negative electrode active material
WO2000013245A1 (en) * 1998-08-27 2000-03-09 Nec Corporation Nonaqueous electrolyte secondary cell, method for manufacturing the same, and carbonaceous material composition
US6040092A (en) * 1995-12-25 2000-03-21 Sharp Kabushiki Kaisha Nonaqueous secondary battery
WO2003049912A1 (en) * 2001-12-12 2003-06-19 Arkray, Inc. Method and implement for opening hole in soft material
JP2005317550A (en) * 2004-04-29 2005-11-10 ▲寧▼波杉杉新材料科技有限公司 Manufacturing method of negative electrode material of natural graphite lithium ion battery
JP2005317549A (en) * 2004-04-29 2005-11-10 ▲寧▼波杉杉新材料科技有限公司 Manufacturing method of negative electrode material of artificial graphite lithium ion battery
EP1652250A1 (en) * 2003-07-22 2006-05-03 Byd Company Limited Improved graphite granules and their method of fabrication
US7074521B2 (en) 1999-02-24 2006-07-11 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and method of preparing same
JP2007103382A (en) * 2006-12-08 2007-04-19 Mitsubishi Chemicals Corp Negative electrode material for lithium secondary battery and negative electrode sheet manufactured of this
JP2009029677A (en) * 2007-07-27 2009-02-12 Sumitomo Metal Ind Ltd Graphite powder and manufacturing method
CN113228351A (en) * 2019-01-04 2021-08-06 昭和电工材料株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040092A (en) * 1995-12-25 2000-03-21 Sharp Kabushiki Kaisha Nonaqueous secondary battery
US5919589A (en) * 1996-03-05 1999-07-06 Canon Kabushiki Kaisha Rechargeable battery
US5965296A (en) * 1996-05-23 1999-10-12 Sharp Kabushiki Kaisha Nonaqueous secondary battery and a method of manufacturing a negative electrode active material
JPH10149822A (en) * 1996-11-20 1998-06-02 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2000013245A1 (en) * 1998-08-27 2000-03-09 Nec Corporation Nonaqueous electrolyte secondary cell, method for manufacturing the same, and carbonaceous material composition
US6803150B1 (en) 1998-08-27 2004-10-12 Nec Corporation Nonaqueous electrolyte secondary cell, method for manufacturing the same, and carbonaceous material composition
US7074521B2 (en) 1999-02-24 2006-07-11 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and method of preparing same
WO2003049912A1 (en) * 2001-12-12 2003-06-19 Arkray, Inc. Method and implement for opening hole in soft material
EP1652250A4 (en) * 2003-07-22 2007-10-17 Byd Co Ltd Improved graphite granules and their method of fabrication
EP1652250A1 (en) * 2003-07-22 2006-05-03 Byd Company Limited Improved graphite granules and their method of fabrication
JP2005317549A (en) * 2004-04-29 2005-11-10 ▲寧▼波杉杉新材料科技有限公司 Manufacturing method of negative electrode material of artificial graphite lithium ion battery
JP2005317550A (en) * 2004-04-29 2005-11-10 ▲寧▼波杉杉新材料科技有限公司 Manufacturing method of negative electrode material of natural graphite lithium ion battery
JP2007103382A (en) * 2006-12-08 2007-04-19 Mitsubishi Chemicals Corp Negative electrode material for lithium secondary battery and negative electrode sheet manufactured of this
JP4595931B2 (en) * 2006-12-08 2010-12-08 三菱化学株式会社 Negative electrode material for lithium secondary battery and negative electrode sheet produced therefrom
JP2009029677A (en) * 2007-07-27 2009-02-12 Sumitomo Metal Ind Ltd Graphite powder and manufacturing method
CN113228351A (en) * 2019-01-04 2021-08-06 昭和电工材料株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
CN110892565B (en) Positive electrode active material, method for producing same, and positive electrode for lithium secondary battery and lithium secondary battery comprising same
JP4461498B2 (en) Nonaqueous electrolyte secondary battery and negative electrode thereof
EP0808798B1 (en) Nonaqueous secondary battery and a method of manufacturing a negative electrode active material
US6555268B1 (en) Negative electrode for secondary cell, negative plate for secondary cell, and secondary cell comprising the same
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JP7451728B2 (en) Positive electrode active material precursor for secondary batteries, positive electrode active material, and lithium secondary batteries containing the same
JPH1040914A (en) Manufacture of nonaqueous secondary battery and negative pole active substance
JPH0684516A (en) Nonaqueous electrolyte secondary cell
JP2023513027A (en) Positive electrode active material precursor for secondary battery, positive electrode active material, and lithium secondary battery containing the same
JP5279567B2 (en) Nonaqueous electrolyte secondary battery
JP3440638B2 (en) Non-aqueous electrolyte secondary battery
JP4482953B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP3443227B2 (en) Non-aqueous electrolyte battery
JP4441935B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and battery using the same
JP2002367602A (en) Nonaqueous electrolyte secondary cell
JP7357994B2 (en) Method for producing positive electrode active material for secondary batteries
JP4723830B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JPH06349493A (en) Secondary battery
JP3618492B2 (en) Battery electrode material and secondary battery
JPH0684515A (en) Nonaqueous electrolyte secondary cell
JP3055892B2 (en) Lithium secondary battery
JP3052660B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3568247B2 (en) Non-aqueous electrolyte secondary battery
JP3144832B2 (en) Non-aqueous solvent secondary battery