JPH0684456B2 - Rubber composition - Google Patents

Rubber composition

Info

Publication number
JPH0684456B2
JPH0684456B2 JP62325049A JP32504987A JPH0684456B2 JP H0684456 B2 JPH0684456 B2 JP H0684456B2 JP 62325049 A JP62325049 A JP 62325049A JP 32504987 A JP32504987 A JP 32504987A JP H0684456 B2 JPH0684456 B2 JP H0684456B2
Authority
JP
Japan
Prior art keywords
rubber
liquid
composite
montmorillonite
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62325049A
Other languages
Japanese (ja)
Other versions
JPH01198645A (en
Inventor
健三 福森
有光 臼杵
由継 小島
慈 藤本
紀夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP62325049A priority Critical patent/JPH0684456B2/en
Priority to DE3806548A priority patent/DE3806548C2/en
Priority to US07/164,217 priority patent/US4889885A/en
Publication of JPH01198645A publication Critical patent/JPH01198645A/en
Publication of JPH0684456B2 publication Critical patent/JPH0684456B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,機械的特性,耐油性,耐疲労性及び加工性に
優れたゴム組成物に関するものであり,自動車,航空機
等の各種産業用ゴム素材として応用が可能なものであ
る。
TECHNICAL FIELD The present invention relates to a rubber composition having excellent mechanical properties, oil resistance, fatigue resistance and workability, and is used for various industries such as automobiles and aircraft. It can be applied as a rubber material.

〔従来技術〕[Prior art]

従来より,加硫ゴムの機械的特性を改善する目的で,多
量のカーボンブラック,無機充填剤等の補強剤の配合が
行われている。特にカーボンブラックは,粒子表面に活
性な種々の官能基(カルボキシル基,カルボニル基,フ
ェノール性水酸基,キノン基など)を有するため,加硫
ゴムのマトリックスであるゴム状高分子を構成する高分
子鎖との間に強い相互作用が働き,加硫ゴムに対して著
しい補強効果が現れる(J.B.Donnet,A.Voet,“Carbon B
lack"(1976)Marcel Dekker)。
Conventionally, in order to improve the mechanical properties of vulcanized rubber, a large amount of carbon black and a reinforcing agent such as an inorganic filler have been blended. In particular, since carbon black has various active functional groups (carboxyl group, carbonyl group, phenolic hydroxyl group, quinone group, etc.) on the particle surface, polymer chains that form a rubber-like polymer that is a matrix of vulcanized rubber And strong reinforcement effect on vulcanized rubber appears (JBDonnet, A. Voet, “Carbon B
lack "(1976) Marcel Dekker).

そのため,加硫ゴム用補強剤としてカーボンブラックは
主流として使用されているが,その原料が石油,天然ガ
ス等の有限の資源であること,高充填配合時に配合物の
粘度が急激に上昇し,加工性が大幅に低下することなど
の問題点がある。
For this reason, carbon black is mainly used as a reinforcing agent for vulcanized rubber, but its raw material is a finite resource such as petroleum and natural gas, and the viscosity of the compound rapidly increases during high-filling compounding, There are problems such as a significant reduction in workability.

このカーボンブラック充填系の加工性の問題点を改善す
る手法として,カーボンブラック粒子表面への高分子鎖
のグラフト化等が検討されているが,まだ開発途上の手
法である。
Grafting of polymer chains onto the surface of carbon black particles has been investigated as a method for improving the problem of the workability of the carbon black filling system, but it is still under development.

また,無機充填剤には繊維状,針状,板状,粒状等の様
々な形状のものがあり,補強機能の点では,板状あるい
は針状の如く異形の形状を有する充填剤が球状のカーボ
ンブラックに比べても有利である。
Further, there are various types of inorganic fillers such as fibrous, needle-like, plate-like, and granular, and in terms of the reinforcing function, fillers having irregular shapes such as plate-like or needle-like are spherical. It is also advantageous over carbon black.

この層状珪酸塩と高分子物質との組合せは,層状珪酸塩
中の層間有機イオン による触媒効果で層間においてポリアミドの重合が開始
されて,ポリアミドと層状珪酸塩が分子状に分散した複
合体を合成する例(特開昭62-72723,特開昭62-7495
7),あるいは硬化剤を取り込んだ層状珪酸塩の除放作
用によって架橋反応を起こさせて,エポキシの保存安定
性を向上させた例(安達新産業エポハード3000)があ
る。また,極性高分子以外にも,ビニル系高分子におい
て層状珪酸塩の層間でビニル系モノマを効率よく重合
し,層状珪酸塩の層間においてビニル系ポリマが生成
し,かつポリマと層とがイオン結合性を有し,機械的特
性を向上させることが知られている(特願昭62-4963
0)。
The combination of this layered silicate and the polymer substance is An example of synthesizing a composite in which the polyamide and the layered silicate are molecularly dispersed by initiating the polymerization of polyamide between layers by the catalytic effect of (JP-A-62-72723, JP-A-62-7495).
7) Alternatively, there is an example (Adachi Shinsangyo Epohard 3000) in which the storage stability of epoxy is improved by causing a cross-linking reaction by the release action of the layered silicate containing the curing agent. In addition to polar polymers, vinyl-based polymers can be efficiently polymerized between layered silicate layers in vinyl-based polymers to form vinyl-based polymers between layered silicate layers, and the polymer and layer can be ion-bonded. It is known that it has mechanical properties and improves mechanical properties (Japanese Patent Application No. 62-4963).
0).

一方,ゴムと珪酸塩(粘土鉱物)の組合せは,種々の系
(ハードクレー,ソフトクレー,タルクなど)が知られ
ている(川崎仁士,日本ゴム協会誌,59.521(1986))
が,層状珪酸塩における層間での反応性を利用してゴム
と無機充填剤を複合化させ,ゴムの機械的特性を著しく
向上させた例はない。
On the other hand, various combinations of rubber and silicate (clay mineral) are known (hard clay, soft clay, talc, etc.) (Hitoshi Kawasaki, Journal of Japan Rubber Association, 59.521 (1986)).
However, there is no example in which the mechanical properties of rubber are remarkably improved by utilizing the reactivity between layers of layered silicate to form a composite of rubber and an inorganic filler.

また,層状珪酸塩は,親水性でゴムとの間の相互作用が
小さく,ゴムへの分散性に乏しい欠点があり,層状珪酸
塩が均一に分散したゴムが望まれていた。
Further, the layered silicate has a drawback that it is hydrophilic and has a small interaction with rubber and poor dispersibility in the rubber. Therefore, a rubber in which the layered silicate is uniformly dispersed has been desired.

〔発明の目的〕[Object of the Invention]

本発明の目的は,層状珪酸塩がゴム中に均一に分散し
て,機械的特性,耐油性,耐疲労性および加工性に優れ
たゴム組成物を提供することにある。
An object of the present invention is to provide a rubber composition in which a layered silicate is uniformly dispersed in rubber and which is excellent in mechanical properties, oil resistance, fatigue resistance and workability.

〔発明の構成〕[Structure of Invention]

本発明のゴム組成物は,層厚さが7〜12Åの層状珪酸塩
がその層間距離30Å以上で,正電荷を有する基を有する
液状ゴム中に分子状に分散してなる層状珪酸塩と液状ゴ
ムとの複合体と,固体状ゴムとからなり,上記複合体中
の液状ゴムが固体状ゴム中に可溶化していることを特徴
とするものである。
The rubber composition of the present invention comprises a layered silicate having a layer thickness of 7 to 12 Å and a layered silicate having a layer distance of 30 Å or more and having a positively charged group, and molecularly dispersed in the rubber. It is characterized in that it is composed of a composite with rubber and solid rubber, and the liquid rubber in the composite is solubilized in the solid rubber.

〔発明の効果〕〔The invention's effect〕

本発明のゴム組成物は,機械的特性,耐油性,耐疲労性
および加工性に優れている。このようなすくれた効果が
得られるのは以下の理由による。
The rubber composition of the present invention is excellent in mechanical properties, oil resistance, fatigue resistance and workability. The reason why such a blistering effect is obtained is as follows.

層状珪酸塩と,正電荷を有する基を有する液状ゴムとは
直接イオン結合され,更に該液状ゴムと固体状ゴムとの
相溶性が良好であるため,層状珪酸塩がゴム成分中に均
一に分散している。また,加硫ゴムでは,ゴム成分が構
成するゴム網目鎖が珪酸塩層と直接結合することによ
り,界面付近でのゴム網目鎖の分子運動が珪酸塩層によ
り著しく拘束され(界面からナノメータオーダの領
域),機械的特性,および耐溶剤性,耐油性等の膨潤特
性が向上する。
Since the layered silicate and the liquid rubber having a positively charged group are directly ionically bonded and the compatibility between the liquid rubber and the solid rubber is good, the layered silicate is uniformly dispersed in the rubber component. is doing. Further, in the vulcanized rubber, the rubber network chain composed of the rubber component is directly bonded to the silicate layer, so that the molecular motion of the rubber network chain near the interface is significantly restrained by the silicate layer (from the interface to a nanometer order). Area), mechanical properties, and swelling properties such as solvent resistance and oil resistance are improved.

また,層状珪酸塩がゴム成分中に分子状に分散している
ため,カーボンブラックのような球状の充填粒子に比べ
て伸縮変形下でのゴム成分に対する拘束領域が広く,実
質のゴム成分のひずみが増幅されて高い応力を示す。
In addition, since the layered silicate is molecularly dispersed in the rubber component, the constrained region for the rubber component under elastic deformation is wider than that of spherical filled particles such as carbon black, and the strain of the actual rubber component is large. Are amplified and show high stress.

また,層状珪酸塩と液状ゴムとの複合体と固体状ゴムと
の相溶性が良好であるため,加工時には,カーボンブラ
ック充填系の欠点である系全体の粘度上昇が抑制されて
加工しやすくなる。また,液状ゴムと直接結合した層状
珪酸塩の移動が容易であり,該層状珪酸塩の分散性も向
上する。
In addition, since the compatibility of the composite of layered silicate and liquid rubber and the solid rubber is good, during processing, the increase in the viscosity of the entire system, which is a drawback of the carbon black filling system, is suppressed and processing becomes easier. . Further, the layered silicate directly bonded to the liquid rubber can be easily moved, and the dispersibility of the layered silicate is also improved.

また,液状ゴム成分は,非抽出性可塑剤としての役割を
果たし,ジオクチルフタレート(DOP)等の低分子可塑
剤に見られるオイル,ガソリンなどによる抽出化に伴う
低温特性の低下を防ぎ,更に層状珪酸塩の充填に伴う制
振効果と併せて繰り返し変形下におけるエネルギー損失
能(ヒステリシス損失能)を高め,耐疲労性を向上させ
る。すなわち,液状ゴム成分は,未加硫時には加工性改
良剤として働き,加硫時には共加硫する反応性可塑剤と
しての機能を有する。
In addition, the liquid rubber component plays a role as a non-extractable plasticizer, prevents deterioration of low-temperature properties due to extraction with oil, gasoline, etc. found in low molecular weight plasticizers such as dioctyl phthalate (DOP), and further layered In addition to the damping effect associated with the filling of silicate, the energy loss capacity (hysteresis loss capacity) under repeated deformation is increased, and fatigue resistance is improved. That is, the liquid rubber component functions as a processability improver when unvulcanized and has a function as a reactive plasticizer that co-vulcanizes during vulcanization.

〔発明の実施態様〕[Embodiment of the Invention]

以下,本発明の実施態様を説明する。 Hereinafter, embodiments of the present invention will be described.

本実施態様において,層状珪酸塩は,ゴム成分に対し
て,機械的特性,耐油性等を向上させるものであり,層
厚さが7〜12Åのものである。該珪酸塩としては,珪酸
マグネシウム,珪酸アルミニウム等が挙げられ,これら
の珪酸塩層より形成される層状フィロ珪酸鉱物等の粘土
鉱物を用いるのが望ましい。
In the present embodiment, the layered silicate improves mechanical properties, oil resistance and the like with respect to the rubber component, and has a layer thickness of 7 to 12Å. Examples of the silicate include magnesium silicate and aluminum silicate, and it is desirable to use a clay mineral such as a layered phyllosilicate mineral formed from these silicate layers.

この層状フィロ珪酸鉱物としては,モンモリロナイト,
サポナイト,バイデライト,ノントロナイト,ヘクトラ
イト,スティブンサイト等のスメクタイト系やバーミキ
ュライト,ハロイサイトなどがあり,天然のものでも合
成されたものでもよい。上記層状珪酸塩はそれらの1種
または2種以上を用いる。
This layered phyllosilicate mineral is montmorillonite,
There are smectites such as saponite, beidellite, nontronite, hectorite, and stevensite, vermiculite, halloysite, and the like, which may be natural or synthetic. The above layered silicates are used alone or in combination of two or more.

これらの珪酸塩層は,同形イオン置換等により負に帯電
しており,この負電荷の密度や分布などによってその特
性と異なるが,本発明では負電荷一価当たりの層表面の
占有面積が25〜200Å2の珪酸塩層であることが望まし
い。
These silicate layers are negatively charged by isomorphic ion substitution and the like, and have different characteristics depending on the density and distribution of this negative charge, but in the present invention, the occupied area of the layer surface per negative charge is 25. A silicate layer of ~ 200Å 2 is desirable.

また,液状ゴムとは,正電荷を有する基を有するもので
ある。該正電荷を有する基は,液状ゴムの主鎖でも側鎖
にあってもよく,また,それらの末端にあってもよい。
更に,分子内に正電荷を有する基を1個でも,あるいは
2個以上有していてもよい。該液状ゴムとしては,例え
ば,ポリブタジエンあるいはその変成体を主鎖または主
鎖の一部に持ち,分子内にオニウム塩(−M+R1R2R3(こ
こで,Mは, R1,R2,R3は水素原子,アルキル基,アリール基,アリル
基であり同一であっても異なってもよい。))を有する
ゴム等がある。上記液状ゴムはそれらの1種または2種
以上を用いる。なお,液状ゴムと固体状ゴムとの共加硫
性は液状ゴムの分子量に大きく依存し,その共加硫性を
維持するために液状ゴムの分子量は1000以上であること
が望ましい。
The liquid rubber is one having a group having a positive charge. The group having the positive charge may be in the main chain or side chain of the liquid rubber, or may be in the terminal thereof.
Further, it may have one or more groups having a positive charge in the molecule. The liquid rubber has, for example, polybutadiene or a modified product thereof in the main chain or a part of the main chain, and has an onium salt (-M + R 1 R 2 R 3 (where M is R 1 , R 2 and R 3 are a hydrogen atom, an alkyl group, an aryl group or an allyl group and may be the same or different. )) Is included. The said liquid rubber uses 1 type (s) or 2 or more types. The co-vulcanizability of the liquid rubber and the solid rubber largely depends on the molecular weight of the liquid rubber, and the molecular weight of the liquid rubber is preferably 1000 or more in order to maintain the co-vulcanizability.

層状珪酸塩と液状ゴムとの複合体は,層状珪酸塩が液状
ゴム中に分子状に分散してなるものである。珪酸塩層が
分子状に分散することにより,液状ゴムと珪酸塩層とが
イオン結合などの強い相互作用により結合して液状ゴム
が架橋した構造を有する。すなわち,珪酸塩層が層と層
との結合力(ファンデアワール力,静電引力など)を越
えて,一層ごとに完全に分離して単独で存在し,かつそ
の層が有する負電荷と液状ゴム中に存在する正電荷(オ
ニウムイオン)がイオン結合により結合している。
The composite of layered silicate and liquid rubber is composed of layered silicate molecularly dispersed in liquid rubber. When the silicate layer is molecularly dispersed, the liquid rubber and the silicate layer are bonded by a strong interaction such as an ionic bond, so that the liquid rubber is crosslinked. That is, the silicate layer exceeds the bonding force between layers (van der Waal force, electrostatic attraction, etc.) and is completely separated and exists independently for each layer, and the negative charge and liquid state that the layer has Positive charges (onium ions) present in rubber are bound by ionic bonds.

複合体中の珪酸塩層の層間距離は30Å以上とする。この
距離が30Å未満の場合,この複合体は固体状ゴム中に均
一に分散しない。
The interlayer distance between the silicate layers in the composite shall be 30Å or more. When this distance is less than 30Å, the composite does not disperse uniformly in the solid rubber.

ここで,複合体中の層状珪酸塩の含有量は,液状ゴム10
0重量部に対して20〜1000重量部の範囲が望ましい。こ
れは,該含有量が20重量部未満の場合,固体状ゴムと混
練した場合のゴム成分に対する補強性が小さいからであ
る。また,1000重量部を越えた場合,液状ゴムと結合し
ない層状珪酸塩が多くなり,凝集による分散性不良など
の問題点が生じる。
Here, the content of the layered silicate in the composite is 10
A range of 20 to 1000 parts by weight is desirable with respect to 0 parts by weight. This is because when the content is less than 20 parts by weight, the reinforcing property against the rubber component when kneaded with the solid rubber is small. If the amount exceeds 1000 parts by weight, the amount of layered silicate that does not bond with the liquid rubber increases and problems such as poor dispersibility due to aggregation occur.

本実施態様のゴム組成物は,上記複合体中の液状ゴムが
固体状ゴム中に可溶化しているものである。すなわち,
上記複合体の液状ゴム成分と固体状ゴムは相溶性が高
く,10nm以下のオーダで相互の分子鎖が混合する状態が
実現され,均一なゴム相を形成する。
In the rubber composition of the present embodiment, the liquid rubber in the above composite is solubilized in the solid rubber. That is,
The liquid rubber component of the above composite and the solid rubber have a high compatibility, and a state where the mutual molecular chains are mixed in the order of 10 nm or less is realized, and a uniform rubber phase is formed.

固体状ゴムとは,天然ゴム,合成ゴム,熱可塑性エラス
トマーまたはそれらのブレンド物である。ここで,合成
ゴムとしては,イソプレンゴム,クロロプレンゴム,ス
チレンゴム,ニトリルゴム,エチレン−プロピレンゴ
ム,ブタジエンゴム,ブチルゴム,エピクロルヒドリン
ゴム,アクリルゴム,ウレタンゴム,フッ素ゴム,シリ
コーンゴム,エチレン−酢ビゴム,ハイパロン,塩素化
ポリエチレン等,熱可塑性エラストマーとしては,1,2ポ
リブタジエン,スチレン−ブタジエンブロック共重合
体,スチレン−イソプレンブロック共重合体等が挙げら
れる。上記固体状ゴムは,それらの1種または2種以上
を用いる。また,本発明のゴム組成物における液状ゴム
との共加硫性を高めるためにジエン系ゴムであることが
好ましい。
The solid rubber is a natural rubber, a synthetic rubber, a thermoplastic elastomer or a blend thereof. Here, as the synthetic rubber, isoprene rubber, chloroprene rubber, styrene rubber, nitrile rubber, ethylene-propylene rubber, butadiene rubber, butyl rubber, epichlorohydrin rubber, acrylic rubber, urethane rubber, fluorine rubber, silicone rubber, ethylene-vinyl acetate rubber, Examples of thermoplastic elastomers such as Hypalon and chlorinated polyethylene include 1,2 polybutadiene, styrene-butadiene block copolymers and styrene-isoprene block copolymers. As the solid rubber, one type or two or more types thereof are used. Further, in order to enhance the co-vulcanizability with the liquid rubber in the rubber composition of the present invention, diene rubber is preferable.

また,固体状ゴムは,バルクな状態で加硫ゴムにする目
的のため,分子量が10000以上のものを用いるのが望ま
しい。
In addition, it is desirable to use a solid rubber having a molecular weight of 10,000 or more for the purpose of making it a vulcanized rubber in a bulk state.

複合体と固体状ゴムとの配合割合としては,固体状ゴム
100重量部に対して複合体が1〜100重量部となる範囲内
が望ましい。複合体の配合量が1重量部未満では,固体
状ゴムと液状ゴムを含むゴム相に対する層状珪酸塩の補
強性は小さく,また,100重量部を越える場合にはゴム相
における液状ゴム成分の含有量が多くなり,本来の固体
状ゴムの特性(耐油性,耐熱性など)をむしろ低下させ
る。
The compounding ratio of the composite and the solid rubber is
It is desirable that the amount is 1 to 100 parts by weight based on 100 parts by weight of the composite. When the compounding amount of the composite is less than 1 part by weight, the reinforcing property of the layered silicate to the rubber phase containing the solid rubber and the liquid rubber is small, and when it exceeds 100 parts by weight, the liquid rubber component is contained in the rubber phase. As the amount increases, the properties of the original solid rubber (oil resistance, heat resistance, etc.) are rather deteriorated.

なお,本実施態様のゴム組成物は,層状珪酸塩が液状ゴ
ム中に分子状に分散し,この複合体中の液状ゴムを固体
状ゴム中に可溶化させることにより,層状珪酸塩をゴム
組成物中に均一に分散させることができるのである。従
って,逆に層状珪酸塩を固体状ゴム中に分子状に分散さ
せようとしても層状珪酸塩と固体状ゴムとの相溶性が良
好でないために層状珪酸塩が分子状に分散せず,本発明
のような構成には達し得ない。
In the rubber composition of the present embodiment, the layered silicate is molecularly dispersed in the liquid rubber, and the liquid rubber in this composite is solubilized in the solid rubber to give the rubber composition of the layered silicate. It can be uniformly dispersed in the material. Therefore, conversely, even if an attempt is made to disperse the layered silicate molecularly in the solid rubber, the compatibility between the layered silicate and the solid rubber is not good, and therefore the layered silicate is not molecularly dispersed. Such a structure cannot be reached.

また,本実施態様のゴム組成物には,必要に応じて,層
状珪酸塩の補強効果をさらに高めるために,カーボンブ
ラックを添加してもよい。このカーボンブラックとして
は,SAF(ASTM名N110),ISAF(N220),HAF(N330),FEF
(N550),GPF(N660),SRF(N770)等の各種等級のもの
が挙げられる。カーボンブラックの添加量としては,固
体状ゴム100重量部に対して0〜100重量部の範囲内が望
ましく,更に望ましくは0〜70重量部の範囲内がよい。
カーボンブラックの配合量が100重量部を越えると,ゴ
ム組成物の粘度が高くなり,上記の複合体による加工性
の改善の効果(粘度の低下)が小さくなる。
If necessary, carbon black may be added to the rubber composition of the present embodiment in order to further enhance the reinforcing effect of the layered silicate. As this carbon black, SAF (ASTM name N110), ISAF (N220), HAF (N330), FEF
(N550), GPF (N660), SRF (N770) and other grades are listed. The amount of carbon black added is preferably in the range of 0 to 100 parts by weight, more preferably 0 to 70 parts by weight, based on 100 parts by weight of the solid rubber.
When the blending amount of carbon black exceeds 100 parts by weight, the viscosity of the rubber composition becomes high, and the effect of improving the processability (decrease in viscosity) by the above composite becomes small.

また,本実施態様のゴム組成物には,カーボンブラック
の他,必要に応じて受酸剤,老化防止剤等のゴム組成物
に通常添加される配合剤を添加してもよい。
In addition to carbon black, compounding agents that are usually added to rubber compositions such as acid acceptors and antioxidants may be added to the rubber composition of this embodiment, if necessary.

本実施態様のゴム組成物を加硫する場合,使用する加硫
剤,加硫促進剤としては,硫黄や過酸化物等の固体状ゴ
ムに対して適するものを用いるのがよい。また,加硫方
法としては,各種加硫成形機を利用する方法がある。
When the rubber composition of the present embodiment is vulcanized, the vulcanizing agent and vulcanization accelerator used may be those suitable for solid rubber such as sulfur and peroxide. As a vulcanization method, there is a method of using various vulcanization molding machines.

本実施態様のゴム組成物を製造する方法としては,以下
に示すように,層状珪酸塩と液状ゴムとの複合体を形成
し,その後該複合体中の液状ゴム成分を固体状ゴム中に
可溶化させる方法がある。
As a method for producing the rubber composition of the present embodiment, as shown below, a composite of layered silicate and liquid rubber is formed, and then the liquid rubber component in the composite is added to the solid rubber. There is a method of solubilizing.

層状珪酸塩と液状ゴムとの複合体の形成方法としては,
例えばまず層状珪酸塩により構成されている粘土鉱物を
水中で5重量%以下の濃度で均一に分散させ,それとは
別に正電荷を有する基を有する液状ゴムを,水に溶解す
る極性溶媒あるいは該極性溶媒と水との混合溶媒中で20
重量%以下の濃度で分散させる。攪拌容器中で両者を混
合し,激しく攪拌して均一溶液とする。このとき,乾燥
状態での層状珪酸塩と液状ゴムの配合重量比は,1:0.1か
ら1:5の割合となるようにすることが望ましい。この水
を含む混合溶媒中に分散した層状珪酸塩/液状ゴム複合
体を吸引ろ過あるいは加圧ろ過により集め,50℃〜100℃
で予備乾燥した後80℃〜150℃で真空乾燥する。ここ
で,用いる層状珪酸塩としては,陽イオンの交換容量が
50〜200ミリ当量/100gのものを使用するのがよい。該容
量が200ミリ当量/100gを越える場合,珪酸塩層の層間の
結合力が強固なため複合体中での珪酸塩層の層間距離が
30Å以上になりにくい。また,50ミリ当量/100g未満の場
合,層間に入り得る液状ゴム成分が減少し,固体状ゴム
と均一に混合することが難しくなる。
As a method for forming a composite of layered silicate and liquid rubber,
For example, first, a clay mineral composed of layered silicate is uniformly dispersed in water at a concentration of 5% by weight or less, and separately, a liquid rubber having a positively charged group is dissolved in water in a polar solvent or the polar solvent. 20 in a mixed solvent of solvent and water
Disperse at a concentration of up to% by weight. Mix both in a stirring vessel and stir vigorously to form a homogeneous solution. At this time, it is desirable that the compounding weight ratio of the layered silicate and the liquid rubber in the dry state is 1: 0.1 to 1: 5. The layered silicate / liquid rubber composite dispersed in the mixed solvent containing water is collected by suction filtration or pressure filtration,
After pre-drying at 80 ° C-150 ° C, vacuum dry. Here, the layered silicate used has a cation exchange capacity of
It is recommended to use one with 50 to 200 meq / 100g. If the capacity exceeds 200 meq / 100 g, the bond strength between the layers of the silicate layer is strong and the interlayer distance between the silicate layers in the composite is large.
Hard to exceed 30Å. Also, if it is less than 50 meq / 100 g, the amount of liquid rubber component that can enter the layers decreases, and it becomes difficult to mix it with the solid rubber uniformly.

また,上記複合体中の液状ゴム成分を固体状ゴムに可溶
化させる方法としては,複合体を固体状ゴムと混練,分
散させる。この際に,カーボンブラック,あるいはその
他の添加剤を添加する。
As a method of solubilizing the liquid rubber component in the composite into the solid rubber, the composite is kneaded and dispersed with the solid rubber. At this time, carbon black or other additives are added.

このようにして,本実施態様のゴム組成物を製造するこ
とができる。
In this way, the rubber composition of this embodiment can be manufactured.

〔実施例〕 以下,本発明の実施例を説明する。[Examples] Examples of the present invention will be described below.

なお,各実施例のゴム組成物を加硫したものの物性試験
(引張,動的粘弾性,膨潤)および未加硫物の物性試験
(ムーニー粘度試験)は以下に示す方法で行った。
The physical properties test (tensile, dynamic viscoelasticity, swelling) of the vulcanized rubber composition of each example and the physical property test of unvulcanized product (Moonie viscosity test) were carried out by the following methods.

(A)引張試験:JISK−6301に準じ,100%ひずみにおけ
る応力値を求めた。また,動的ひずみ50%の条件で,定
常状態の繰り返し変形下での入力ひずみエネルギ(W)
と損失ひずみエネルギ(H)の比(=H/W)より,ヒス
テリシス損失量(%)を求めた。
(A) Tensile test: The stress value at 100% strain was determined according to JIS K-6301. In addition, the input strain energy (W) under the cyclic deformation of steady state under the condition of 50% dynamic strain
The amount of hysteresis loss (%) was calculated from the ratio (= H / W) of the loss strain energy (H).

(B)動的粘弾性試験:厚さ2mm,幅5mm,長さ25mmの試験
片について,岩本製作所製VEF−S型粘弾性スペクトロ
メータを用いて,周波数10Hz,動的ひずみ0.04%の条件
で,25℃,100℃における貯蔵弾性率(E′)と力学損失
(tanδ)のピーク温度を測定した。
(B) Dynamic viscoelasticity test: For a test piece having a thickness of 2 mm, a width of 5 mm and a length of 25 mm, using a VEF-S type viscoelasticity spectrometer manufactured by Iwamoto Seisakusho under the conditions of frequency 10 Hz and dynamic strain 0.04%. The peak temperatures of storage modulus (E ') and mechanical loss (tan δ) at 25 ℃ and 100 ℃ were measured.

(C)膨潤試験:厚さ2mm,直径19mmφのディスク状試験
片をベンゼン溶媒(試薬特級)に浸漬させ,72時間後の
平衡膨潤度を測定した。ここで,膨潤度はゴム中に浸入
した溶媒に対する充填剤を含めないゴムの体積分率
(vr)の逆数で定義され(すなわち1/vr),溶媒の体積
分率(vs)との間にvr+vs=1の関係がある。
(C) Swelling test: A disk-shaped test piece having a thickness of 2 mm and a diameter of 19 mmφ was dipped in a benzene solvent (special grade reagent), and the equilibrium swelling degree after 72 hours was measured. Here, the degree of swelling is defined as the reciprocal of the volume fraction (v r ) of the rubber that does not include the filler in the solvent that has penetrated into the rubber (ie 1 / v r ), and is defined as the volume fraction of the solvent (v s ). There is a relation of v r + v s = 1 between.

(D)ムーニー粘度試験:JISK−6300に準じる。(D) Mooney viscosity test: According to JIS K-6300.

実施例1 xは53,yは10,分子量3400,アクリロニトリル(AN)含量
16.5%)800gをジメチルスルフォキシド(DMSO)5.5l,
水5.5lの混合溶媒に分散させ,濃塩酸(35%)を47.3ml
加えた。次に,Na型モンモリロナイト(クニミネ工業ク
ニピアF,モンモリロナイト中の珪酸塩層の層厚さ10Å,
大きさ1000Å×1000Å,負電荷一価当たりの層表面の占
有面積100Å,陽イオン交換容量119ミリ当量/100g)385
gを水20lにプロペラ攪拌器で懸濁させ,その液に上記の
液状ポリブタジエン分散液を加え,攪拌した。その生成
物をフィルタープレスによりろ過集積させ,80℃で予備
乾燥した後,100℃で真空乾燥することによって,モンモ
リロナイト/液状ポリブタジエン複合体を得た。このモ
ンモリロナイト/液状ポリブタジエン複合体について,
パルス法NMRによるスピン−スピン緩和時間(T2)を測
定した結果,液状ポリブタジエン中のプロトン(1H)の
分子運動性として,樹脂(ガラス)状態にある10μs程
度のT2成分(T2S)とゴム状態にある1ms以上のT2成分
(T2L)が観測された。分子運動が強く拘束された領域
に相当するT2S成分の成分量は20%程度あり,モンモリ
ロナイトと液状ポリブタジエンの間に強い結合が生じ,
ゴム分子鎖の20%程度が界面付近で拘束を受けているこ
とを意味している。また,この複合体のX線回折測定の
結果,モンモリロナイトの(001)面は消失し,液状ポ
リブタジエン中にモンモリロナイト層が均一に分散して
いることがわかった。また,複合体中におけるモンモリ
ロナイトの珪酸塩層の層間距離は80Å以上であった。
Example 1 x is 53, y is 10, molecular weight 3400, acrylonitrile (AN) content
16.5%) 800 g dimethyl sulfoxide (DMSO) 5.5 l,
Disperse in 5.5 l of water mixed solvent and add concentrated hydrochloric acid (35%) to 47.3 ml.
added. Next, Na-type montmorillonite (Kunimine industrial Kunipia F, layer thickness of silicate in montmorillonite 10Å,
Size 1000 Å × 1000 Å, area occupied by layer surface per negative charge 100 Å, cation exchange capacity 119 meq / 100 g) 385
g was suspended in 20 liters of water with a propeller stirrer, and the above liquid polybutadiene dispersion was added and stirred. The product was collected by filtration with a filter press, pre-dried at 80 ° C, and then vacuum-dried at 100 ° C to obtain a montmorillonite / liquid polybutadiene composite. About this montmorillonite / liquid polybutadiene composite,
As a result of measuring the spin-spin relaxation time (T 2 ) by pulse method NMR, the molecular mobility of the proton ( 1 H) in the liquid polybutadiene was found to be the T 2 component (T 2S ) in the resin (glass) state for about 10 μs. And a T 2 component (T 2L ) in the rubber state for 1 ms or longer was observed. The amount of T 2 S component corresponding to the region where the molecular motion is strongly restrained is about 20%, and a strong bond occurs between montmorillonite and liquid polybutadiene,
This means that about 20% of the rubber molecular chains are bound near the interface. As a result of X-ray diffraction measurement of this composite, it was found that the (001) plane of montmorillonite disappeared and that the montmorillonite layer was uniformly dispersed in the liquid polybutadiene. The interlayer distance of the montmorillonite silicate layer in the composite was more than 80Å.

更に,この複合体を液体窒素で冷却し,ハンマーミル
(ホソカワミクロン,フィッツミル)にて500g/minのフ
ィード量で粒径3mm以下に粉砕した。
Furthermore, this composite was cooled with liquid nitrogen and pulverized with a hammer mill (Hosokawa Micron, Fitzmill) at a feed rate of 500 g / min to a particle size of 3 mm or less.

次いで,上記粉砕した複合体と,固体状ゴムとしてのア
クリロニトリル−ブタジエン共重合体ゴム(NBR,日本ゼ
オンNipo1042,AN含量33%)とを第1表に示す配合量
で配合し,さらに加硫剤としての硫黄1.5重量部,加硫
促進剤としてのジベンゾチアゾルスルフィド1重量部,
及び加硫助剤としての酸化亜鉛3重量部とステアリン酸
1重量部を添加して,これらを8インチロールにて50℃
で混練して,ゴム組成物(試料No.1,2)を得た。ここ
で,試料No.1,2におけるゴム組成物100重量部に対する
モンモリロナイト充填量は,それぞれ5,10重量部であ
る。
Then, the crushed composite and an acrylonitrile-butadiene copolymer rubber (NBR, Nippon Zeon Nipo1042, AN content 33%) as a solid rubber were compounded in the compounding amounts shown in Table 1, and a vulcanizing agent was further added. 1.5 parts by weight of sulfur as a base, 1 part by weight of dibenzothiazol sulfide as a vulcanization accelerator,
And, 3 parts by weight of zinc oxide and 1 part by weight of stearic acid as a vulcanization aid are added, and these are heated at 50 ° C. with an 8-inch roll.
Kneading was performed to obtain a rubber composition (Sample Nos. 1 and 2). Here, the filling amount of montmorillonite with respect to 100 parts by weight of the rubber composition in sample Nos. 1 and 2 is 5 and 10 parts by weight, respectively.

また,比較のため第1表に示すように,試料No.1,2にお
ける複合体を使用しないもの(NBRの純ゴム試料No.C
1),上記複合体の代わりにモンモリロナイトと液状ポ
リブタジエンを1:2の重量比で単に機械的に混合したも
のを配合したもの(試料No.C2),上記複合体の代わり
にモンモリロナイトのみを配合したもの(試料No.C
3),及び上記複合体の代わりにSRFカーボンを配合した
もの(試料No.C4)をそれぞれ試料No.1,2と同様にして
調製した。なお,試料No.C2において用いたモンモリロ
ナイトと液状ポリブタジエンの機械混合物は,X線回折測
定では,モンモリロナイトの(100)面に相当するピー
クがほとんど変化せず,またパルスNMR測定では分子運
動が強く拘束されたゴムの領域に相当する成分は観測さ
れず,モンモリロナイトと液状ポリブタジエンの間の相
互作用が小さいことを示している。また,この機械混合
物は,ペースト状で粉砕が不可能であり,モンモリロナ
イトの凝集体が液状ポリブタジエンによって包みこまれ
た状態であった。ここで,試料No.C1〜C4におけるゴム
組成物100重量部に対するモンモリロナイトあるいはカ
ーボンブラックの充填量は,それぞれ0,10,10,20重量部
であった。
In addition, as shown in Table 1 for comparison, the composites of sample Nos. 1 and 2 not used (NBR pure rubber sample No. C
1), montmorillonite and liquid polybutadiene were simply mechanically mixed at a weight ratio of 1: 2 instead of the above composite (Sample No. C2), and only montmorillonite was mixed instead of the above composite. Things (Sample No. C
3) and the one containing SRF carbon instead of the above composite (Sample No. C4) were prepared in the same manner as Sample Nos. 1 and 2, respectively. In the mechanical mixture of montmorillonite and liquid polybutadiene used in sample No. C2, the peak corresponding to the (100) plane of montmorillonite hardly changed in X-ray diffraction measurement, and the molecular motion was strongly restrained in pulsed NMR measurement. No component corresponding to the rubber region was observed, indicating a small interaction between montmorillonite and liquid polybutadiene. Further, this mechanical mixture was in a paste form and could not be pulverized, and the montmorillonite agglomerate was in a state of being surrounded by liquid polybutadiene. Here, the filling amounts of montmorillonite or carbon black with respect to 100 parts by weight of the rubber composition in Sample Nos. C1 to C4 were 0, 10, 10, and 20 parts by weight, respectively.

上記6種類の試料について,未加硫のものおよび加硫物
(160℃で15分間プレス加硫したもの)について各種物
性試験を行い,それらの結果を第2表に示す。
Various physical property tests were conducted on the above-mentioned 6 types of samples for unvulcanized ones and vulcanized ones (press-vulcanized at 160 ° C. for 15 minutes), and the results are shown in Table 2.

第2表より明らかなように,本実施例の試料は,比較例
の試料に比べて,引張特性,動的粘弾性特性,および膨
潤性に優れていることが分る。また,本実施例の試料
は,力学損失のピーク温度が比較例試料No.C1の純ゴム
配合試料よりも低温側ヘシフトしていることより,液状
ゴム成分が固体状ゴ ムに可溶化し,モンモリロナイトの珪酸塩層がゴム組成
物中に均一に分散していることが分る。
As is clear from Table 2, the sample of this example is superior to the sample of the comparative example in tensile properties, dynamic viscoelastic properties, and swelling properties. Further, in the sample of this example, the peak temperature of the mechanical loss was shifted to the lower temperature side than the pure rubber compounded sample of the comparative sample No. C1. It was found that the silicate layer of montmorillonite was solubilized in the rubber and was uniformly dispersed in the rubber composition.

本実施例の試料は比較例試料No.C2を除く比較例に比べ
て,ムーニー粘度が低く,成形,加工性が良好であるこ
とが分る(比較例試料No.C2は,モンモリロナイトと結
合性のない液状ゴム成分が単独で可塑剤の役割を果た
し,ムーニー粘度を極端に低下させている。しかし,そ
の他の特性にメリットはない。)。
It can be seen that the sample of this example has a lower Mooney viscosity and better moldability and workability than the comparative example excluding the comparative sample No. C2 (Comparative sample No. C2 has a binding property with montmorillonite). The non-existent liquid rubber component alone plays the role of a plasticizer and extremely reduces the Mooney viscosity. However, there is no merit in other properties.)

実施例2 実施例1の試料No.2のものに更にSRFカーボンを第3表
に示すように添加した以外は,実施例1と同様にしてゴ
ム組成物(試料No.3)を調製した。また,比較のため,
モンモリロナイト/液状ポリブタジエン複合体を用い
ず,第3表に示すようにSRFカーボンを添加した比較例
のゴム組成物(試料No.C5)も調製した。
Example 2 A rubber composition (Sample No. 3) was prepared in the same manner as in Example 1 except that SRF carbon was further added to the sample No. 2 of Example 1 as shown in Table 3. Also, for comparison,
A rubber composition (Sample No. C5) of a comparative example was also prepared in which SRF carbon was added as shown in Table 3 without using the montmorillonite / liquid polybutadiene composite.

上記2種類の試料について,未加硫のものおよび加硫物
(160℃で15分間プレス加硫したもの)の各種物性試験
を行った。それらの結果を第 4表に示す。
With respect to the above-mentioned two kinds of samples, various physical property tests of unvulcanized one and vulcanized one (press vulcanized at 160 ° C. for 15 minutes) were conducted. Those results first It is shown in Table 4.

第4表より明らかなように,本実施例の試料は,比較例
の試料に比べて,引張特性,動的粘弾性特性,および膨
潤性に優れており,しかも力学損失のピーク温度が低い
ことより,モンモリロナイトの珪酸塩層がゴム組成物中
に均一に分散していることが分る。また,本実施例のも
のは,比較例に比べてムーニー粘度が低く,成形,加工
性に優れていることが分る。
As is clear from Table 4, the sample of this example is superior to the sample of the comparative example in tensile properties, dynamic viscoelastic properties, and swelling property, and the peak temperature of mechanical loss is low. From this, it can be seen that the silicate layer of montmorillonite is uniformly dispersed in the rubber composition. Further, it can be seen that in the present example, the Mooney viscosity is lower than that in the comparative example, and the molding and processability are excellent.

実施例3 実施例1と同様にしてモンモリロナイト/液状ポリブタ
ジエン複合体を製造し,粉砕した。この粉砕した複合体
と,固体状ゴムとしてのクロロプレンゴム(CR;昭和ネ
オプレン,ネオプレンW)とを第5表に示す配合量で配
合し,更に加硫剤としての硫黄2重量部,加硫促進剤と
しての1,3ジフェニルグアニジン1重量部とテトラメチ
ルチウラムモノスルフィド1重量部,及び加硫助剤とし
ての酸化亜鉛5重量部とステアリン酸1.5重量部を添加
して,これらを8インチロールにて50℃で混練して,加
硫剤を含むゴム組成物(試料No.4)を得た。
Example 3 A montmorillonite / liquid polybutadiene composite was prepared and crushed in the same manner as in Example 1. The pulverized composite and chloroprene rubber (CR; Showa Neoprene, Neoprene W) as solid rubber were blended in the amounts shown in Table 5, and further 2 parts by weight of sulfur as a vulcanizing agent and vulcanization acceleration 1 part by weight of 1,3 diphenylguanidine as an agent, 1 part by weight of tetramethylthiuram monosulfide, 5 parts by weight of zinc oxide as a vulcanization aid and 1.5 parts by weight of stearic acid were added to form an 8-inch roll. And kneading at 50 ° C to obtain a rubber composition containing a vulcanizing agent (Sample No. 4).

また,比較のため,第5表に示すように,上記試料No.4
のゴム組成物におけるモンモリロナイト/液状ポリブタ
ジエン複合体を配合しなかったもの(試料No.C6)を,
上記複合体に代えてモンモリロナイト/液状ポリブタジ
エン機械混合物を配合したもの(試料No.C7),モンモ
リロナイトを配合したもの(試料No.C8),およびHAFカ
ーボンを配合したもの(試料No.C9)を比較例のゴム組
成物として上記と同様に調製した。
For comparison, as shown in Table 5, the above sample No. 4
The rubber composition of No. 1 containing no montmorillonite / liquid polybutadiene composite (Sample No. C6)
Compared with the above composite instead of montmorillonite / liquid polybutadiene mechanical mixture (Sample No.C7), montmorillonite (Sample No.C8) and HAF carbon (Sample No.C9). An example rubber composition was prepared in the same manner as above.

上記5種類の試料について,未加硫のものおよび加硫物
(160℃で15分間プレス加硫したもの)の各種物性試験
を行った。それらの結果を第6表に示す。
With respect to the above-mentioned 5 types of samples, various physical properties tests of unvulcanized products and vulcanized products (press-vulcanized at 160 ° C. for 15 minutes) were conducted. The results are shown in Table 6.

第6表より明らかなように,本実施例の試料は,比較例
の試料に比べて,引張特性,動的粘弾性特性,および膨
潤性に優れており,しかも力学損失のピーク温度が低い
ことよりモンモリロナイトの 珪酸塩層がゴム組成物中に均一に分散していることが分
る。また,ムーニー粘度が低い,加工性も良好であるこ
とが分る。
As is clear from Table 6, the sample of this example is superior to the sample of the comparative example in tensile properties, dynamic viscoelastic properties, and swelling property, and the peak temperature of mechanical loss is low. More of montmorillonite It can be seen that the silicate layer is uniformly dispersed in the rubber composition. It is also found that the Mooney viscosity is low and the workability is good.

実施例4 液状ポリブタジエン(日本石油化学製EC-1800-150/100, x:y:z≒1:1:1,R1,R2,R4はアルキル基,アリル基,ア
リール基,Hであり,R3はアルキレン基,アリレン基,ア
リレーン基である。分子量1800,エチルセルソルブ20%
入り)520gを水8.0lに分散させ,濃塩酸(35%)を47.3
ml加えた。次に,Na型モンモリロナイト(クニミネ工業
クニピアF,モンモリロナイト中の珪酸塩層の層厚さ10
Å,大きさ1000Å×1000Å,負電荷一価当たりの層表面
の占有面積100Å2,陽イオン交換容量119ミリ当量/100
g)385gを水20lにプロペラ攪拌器で懸濁させ,その液に
上記の液状ポリブタジエン分散液を加え,攪拌した.そ
の生成物をフィルタープレスによりろ過集積させ,80℃
で予備乾燥した後,100℃で真空乾燥することによって,
モンモリロナイト/液状ポリブタジエン複合体を得た。
このモンモリロナイト/液状ポリブタジエン複合体につ
いて,パルス法NMRによるスピン−スピン緩和時間
(T2)を測定した結果,液状ポリブタジエン中のプロト
ン(1H)の分子運動性として,樹脂(ガラス)状態にあ
る10μs程度のT2成分(T2S)とゴム状態にある1ms以上
のT2成分(T2L)が観測された。分子運動が強く拘束さ
れた領域に相当するT2S成分の成分量は50%以上あり,
モンモリロナイトと液状ポリブタジエンの間に強い結合
が生じ,ゴム分子鎖の50%以上が界面付近で拘束を受け
ていることを意味している。また,この複合体のX線回
折測定の結果,モンモリロナイトの(001)面は消失
し,液状ポリブタジエン中にモンモリロナイト層が均一
に分散していることがわかった。また,複合体中におけ
るモンモリロナイトの珪酸塩層の層間距離は43Åであっ
た。
Example 4 Liquid polybutadiene (manufactured by Nippon Petrochemicals EC-1800-150 / 100, x: y: z≈1: 1: 1, R 1 , R 2 , and R 4 are an alkyl group, an allyl group, an aryl group, and H, and R 3 is an alkylene group, an arylene group, and an arylene group. Molecular weight 1800, ethyl cellosolve 20%
520g was dispersed in 8.0l of water, and concentrated hydrochloric acid (35%) was added to 47.3
ml was added. Next, Na-type montmorillonite (Kunimine Industrial Kunipia F, layer thickness of silicate layer in montmorillonite 10
Å, size 1000 Å × 1000 Å, area occupied by layer surface per negative charge 100 Å 2 , cation exchange capacity 119 meq / 100
g) 385 g was suspended in 20 liters of water with a propeller stirrer, and the above liquid polybutadiene dispersion was added to the suspension and stirred. The product is collected by filtration with a filter press and kept at 80 ℃.
By pre-drying at 100 ℃ and then vacuum drying at 100 ℃
A montmorillonite / liquid polybutadiene composite was obtained.
The spin-spin relaxation time (T 2 ) of this montmorillonite / liquid polybutadiene composite was measured by pulsed NMR. As a result, the molecular mobility of protons ( 1 H) in liquid polybutadiene was 10 μs in the resin (glass) state. The T 2 component (T 2S ) and the T 2 component (T 2L ) in the rubber state for more than 1 ms were observed. The amount of T 2 S component corresponding to the region where the molecular motion is strongly restrained is 50% or more,
This means that a strong bond occurs between montmorillonite and liquid polybutadiene, and more than 50% of the rubber molecular chains are constrained near the interface. As a result of X-ray diffraction measurement of this composite, it was found that the (001) plane of montmorillonite disappeared and that the montmorillonite layer was uniformly dispersed in the liquid polybutadiene. The interlayer distance of the montmorillonite silicate layer in the composite was 43Å.

次いで,上記複合体と,固体状ゴムとしてのアクリロニ
トリル−ブタジエン共重合体ゴム(NBR,日本ゼオンNipo
1041B,AN含量41%)とを第7表に示す配合量で配合
し,さらに加硫剤としての硫黄0.5重量部,加硫促進剤
としてのシクロヘキシルベンゾチアジルスルフェンアミ
ド1重量部とテトラメチルチウラムジスルフィド2重量
部,および加硫助剤としての酸化亜鉛5重量部とステア
リン酸1重量部を添加して,これらを8インチロールに
て50℃で混練して,ゴム組成物(試料No.5,6)を得た。
ここで,試料No.5,6におけるゴム組成物100重量部に対
するモンモリロナイト充填量は,それぞれ5,10重量部で
ある。
Next, the above composite and acrylonitrile-butadiene copolymer rubber (NBR, Zeon Nipo Nipo
1041B, AN content 41%) and the compounding amounts shown in Table 7, 0.5 part by weight of sulfur as a vulcanizing agent, 1 part by weight of cyclohexylbenzothiazylsulfenamide as a vulcanization accelerator and tetramethyl 2 parts by weight of thiuram disulfide, 5 parts by weight of zinc oxide as a vulcanization aid and 1 part by weight of stearic acid were added, and these were kneaded with an 8-inch roll at 50 ° C. to give a rubber composition (Sample No. 5,6) was obtained.
Here, the filling amount of montmorillonite with respect to 100 parts by weight of the rubber composition in Sample Nos. 5 and 6 is 5 and 10 parts by weight, respectively.

また,比較のため第7表に示すように,試料No.5,6にお
ける複合体を使用しないもの(NBRの純ゴム試料No.C1
0),上記複合体の代わりにモンモリロナイトと液状ポ
リブタジエンを1:1の重量比で単に機械的に混合したも
のを配合したもの(試料No.C11),上記複合体の代わり
にモンモリロナイトのみを配合したもの(試料No.C1
2),及び上記複合体の代わりにFEFカーボンを配合した
もの(試料No.C13)をそれぞれ試料No.5,6と同様にして
調製した。なお,試料No.C11において用いたモンモリロ
ナイトと液状ポリブタジエンの機械混合物は,X線回折測
定では,モンモリロナイトの(100)面に相当するピー
クがほとんど変化せず,またパルスNMR測定では分子運
動が強く拘束されたゴムの領域に相当する成分は観測さ
れず,モンモリロナイトと液状ポリブタジエンの間の相
互作用が小さいことを示している。また,この機械混合
物は,ペースト状で粉砕が不可能であり,モンモリロナ
イトの凝集体が液状ポリブタジエンによって包みこまれ
た状態であった。ここで,試料No.C10〜C13におけるゴ
ム組成物100重量部に対するモンモリロナイトあるいは
カーボンブラックの充填量は,それぞれ0,10,10,20重量
部であった。
In addition, as shown in Table 7 for comparison, the composites of Sample Nos. 5 and 6 not using the composite (NBR pure rubber Sample No. C1
0), instead of the above composite, a mixture of montmorillonite and liquid polybutadiene that was simply mechanically mixed at a weight ratio of 1: 1 (Sample No. C11), and instead of the above composite, only montmorillonite was mixed. Things (Sample No. C1
2) and the one containing FEF carbon instead of the above composite (Sample No. C13) were prepared in the same manner as Sample Nos. 5 and 6, respectively. In the mechanical mixture of montmorillonite and liquid polybutadiene used in sample No. C11, the peak corresponding to the (100) plane of montmorillonite hardly changed in X-ray diffraction measurement, and the molecular motion was strongly restrained in pulsed NMR measurement. No component corresponding to the rubber region was observed, indicating a small interaction between montmorillonite and liquid polybutadiene. Further, this mechanical mixture was in a paste form and could not be pulverized, and the montmorillonite agglomerate was in a state of being surrounded by liquid polybutadiene. Here, the filling amount of montmorillonite or carbon black with respect to 100 parts by weight of the rubber composition in Sample Nos. C10 to C13 was 0, 10, 10, and 20 parts by weight, respectively.

上記6種類の試料について,未加硫のものおよび加硫物
(160℃で20分間プレス加硫したもの)について各種物
性試験を行い,それらの結果を第8表に示す。
Various physical property tests were conducted on the above 6 types of samples for unvulcanized products and vulcanized products (press vulcanized at 160 ° C. for 20 minutes), and the results are shown in Table 8.

第8表より明らかなように,本実施例の試料は,比較例
の試料に比べて,引張特性,動的粘弾性特性,および膨
潤性に優れていることが分る。また,本実施例の試料
は,力学損失のピーク温度が比較例試料No.C10の純ゴム
配合試料よりも低温側へシフトしていることより,液状
ゴム成分が固体状ゴムに可溶化し,モンモリロナイトの
珪酸塩層がゴム組成物中に均一に分散していることが分
る。
As is clear from Table 8, the sample of this example is superior to the sample of the comparative example in tensile properties, dynamic viscoelastic properties, and swelling properties. Further, in the sample of the present example, the peak temperature of the mechanical loss is shifted to a lower temperature side than the pure rubber compounded sample of the comparative sample No. C10, so that the liquid rubber component is solubilized in the solid rubber, It can be seen that the silicate layer of montmorillonite is uniformly dispersed in the rubber composition.

本実施例の試料は比較例試料No.C11を除く比較例に比べ
て,ムーニー粘度が低く,成形,加工性が良好であるこ
とが分る(比較例試料No.C11は,モンモリロナイトと結
合性のない液状ゴム成分が単独で可塑剤の役割を果た
し,ムーニー粘度を極端に低下させている。しかし,そ
の他の特性にメリットはない。)。
It can be seen that the sample of this example has a lower Mooney viscosity and better moldability and processability than the comparative example excluding the comparative sample No. C11 (Comparative sample No. C11 has a binding property with montmorillonite). The non-existent liquid rubber component alone plays the role of a plasticizer and extremely reduces the Mooney viscosity. However, there is no merit in other properties.)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 紀夫 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 審査官 鐘尾 みや子 (56)参考文献 特開 昭55−13791(JP,A) 特開 昭52−111945(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Norio Sato Inventor No. 41, Yokomichi, Nagakute-cho, Nagakute-cho, Aichi-gun, Aichi Prefecture Miyako Kanao, Examiner, Toyota Central Research Institute Co., Ltd. (56) (JP, A) JP-A-52-111945 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】層厚さが7〜12Åの層状珪酸塩がその層間
距離30Å以上で,正電荷を有する基を有する液状ゴム中
に分子状に分散してなる層状珪酸塩と液状ゴムとの複合
体と,固体状ゴムとからなり,上記複合体中の液状ゴム
が固体状ゴム中に可溶化していることを特徴とするゴム
組成物。
1. A layered silicate and a liquid rubber in which a layered silicate having a layer thickness of 7 to 12 Å is molecularly dispersed in a liquid rubber having a positively charged group with an interlayer distance of 30 Å or more. A rubber composition comprising a composite and a solid rubber, wherein the liquid rubber in the composite is solubilized in the solid rubber.
【請求項2】層状珪酸塩と液状ゴムとの複合体は,固体
状ゴム100重量部に対して1〜100重量部配合されてなる
特許請求の範囲第(1)項記載のゴム組成物。
2. The rubber composition according to claim 1, wherein the composite of the layered silicate and the liquid rubber is blended in an amount of 1 to 100 parts by weight with respect to 100 parts by weight of the solid rubber.
【請求項3】正電荷を有する基を有する液状ゴムは,液
状ポリブタジエンまたはその変成体のうちの1種または
2種以上である特許請求の範囲第(1)項記載のゴム組
成物。
3. The rubber composition according to claim 1, wherein the liquid rubber having a positively charged group is one or more of liquid polybutadiene and its modified products.
JP62325049A 1987-03-04 1987-12-22 Rubber composition Expired - Fee Related JPH0684456B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62325049A JPH0684456B2 (en) 1987-10-15 1987-12-22 Rubber composition
DE3806548A DE3806548C2 (en) 1987-03-04 1988-03-01 Composite material and process for its manufacture
US07/164,217 US4889885A (en) 1987-03-04 1988-03-04 Composite material containing a layered silicate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-260269 1987-10-15
JP26026987 1987-10-15
JP62325049A JPH0684456B2 (en) 1987-10-15 1987-12-22 Rubber composition

Publications (2)

Publication Number Publication Date
JPH01198645A JPH01198645A (en) 1989-08-10
JPH0684456B2 true JPH0684456B2 (en) 1994-10-26

Family

ID=26544533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62325049A Expired - Fee Related JPH0684456B2 (en) 1987-03-04 1987-12-22 Rubber composition

Country Status (1)

Country Link
JP (1) JPH0684456B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6908958B2 (en) 2002-03-27 2005-06-21 The Yokohama Rubber Co., Ltd. Organically modified layered clay as well as organic polymer composition and tire inner liner containing same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5973053A (en) * 1995-06-05 1999-10-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Composite clay material and method for producing the same, blend material and composite clay rubber using the same and production method thereof
JP3377159B2 (en) * 1996-09-04 2003-02-17 株式会社豊田中央研究所 Manufacturing method of clay composite rubber material
JP3356001B2 (en) * 1997-05-26 2002-12-09 株式会社豊田中央研究所 Resin composite material and method for producing the same
US6117932A (en) * 1997-09-18 2000-09-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Resin composite
KR20030040467A (en) * 2000-09-21 2003-05-22 롬 앤드 하스 캄파니 Compositions Involving Polar Monomers and Multivalent Cations and Processes for Preparing the Same
DE10343130A1 (en) * 2003-09-18 2005-04-28 Karlsruhe Forschzent Modified two-layer clay minerals, process for their preparation and their use
CA2588910C (en) * 2004-12-03 2013-09-10 Exxonmobil Chemical Patents Inc. Modified layered fillers and their use to produce nanocomposite compositions
JP6018951B2 (en) 2013-02-28 2016-11-02 株式会社ブリヂストン Rubber composition, inner liner material, and pneumatic tire
CN105008453B (en) 2013-02-28 2019-01-11 株式会社普利司通 Rubber composition, inner liner raw material and pneumatic tire

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111945A (en) * 1976-03-16 1977-09-20 Adachishin Sangiyou Kk Fillers
EP0007190A1 (en) * 1978-07-11 1980-01-23 Imperial Chemical Industries Plc Polymer-coated siliceous fillers for use in plastics or rubbers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6908958B2 (en) 2002-03-27 2005-06-21 The Yokohama Rubber Co., Ltd. Organically modified layered clay as well as organic polymer composition and tire inner liner containing same

Also Published As

Publication number Publication date
JPH01198645A (en) 1989-08-10

Similar Documents

Publication Publication Date Title
EP0695239B1 (en) Composite tire inner-liners and inner tubes
US4889885A (en) Composite material containing a layered silicate
Wang et al. Carbon—silica dual phase filler, a new generation reinforcing agent for rubber: Part IX. Application to truck tire tread compound
US5576372A (en) Composite tire innerliners and inner tubes
EP1954755B1 (en) Elastomer nanocomposites comprising isobutylene and multifunctional oligomers
US5576373A (en) Composite tire innerliners and inner tubes
JP4951526B2 (en) Processable filling curable halogenated isoolefin elastomer
US8048947B2 (en) Nanocomposites and methods for making the same
Mohamad et al. The effect of filler on epoxidised natural rubber-alumina nanoparticles composites
Danafar et al. A review of natural rubber nanocomposites based on carbon nanotubes
EP1362884B1 (en) Silica-Filled elastomeric compounds
Das et al. Effect of halloysite nanotubes (HNTs) on mechanical properties of EPDM/NBR blend-nanocomposites
CN105175754A (en) Polymer-clay nanocomposite material and preparation method therefor
JPH0684456B2 (en) Rubber composition
WO2023054510A1 (en) Masterbatch, method for producing masterbatch, rubber composition for tires, method for producing rubber composition for tires, and rubber material for tires
Senthilvel et al. Novel carbon black-halloysite nanotube reinforced NBR-PVC hybrid oil seals for automotive applications
Kim et al. Styrene butadiene rubber-clay nanocomposites using a latex method: morphology and mechanical properties
Bhattacharya et al. Correlation of vulcanization and viscoelastic properties of nanocomposites based on natural rubber and different nanofillers, with molecular and supramolecular structure
Limtrakul et al. Influence of carbon black/silica hybrid ratio on properties of passenger car tire sidewall
KR100705793B1 (en) Rubber Compound for Tire Comprising Modified Nano Silicate
KR100746335B1 (en) Tire inner liner rubber composition
JPH11228762A (en) Rubber composition for rubber vibration insulator
WO2022101926A1 (en) Un-modified fuller's earth nanoclay rubber nanocomposite for tyre and method thereof
KR101005288B1 (en) Rubber composition for tire tread
JPH10330544A (en) Vibration-proofing rubber composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees