JPH0682846A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPH0682846A
JPH0682846A JP4255669A JP25566992A JPH0682846A JP H0682846 A JPH0682846 A JP H0682846A JP 4255669 A JP4255669 A JP 4255669A JP 25566992 A JP25566992 A JP 25566992A JP H0682846 A JPH0682846 A JP H0682846A
Authority
JP
Japan
Prior art keywords
voltage
solid
image pickup
state
polarizing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4255669A
Other languages
Japanese (ja)
Inventor
Shingo Tatsumi
晋吾 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4255669A priority Critical patent/JPH0682846A/en
Publication of JPH0682846A publication Critical patent/JPH0682846A/en
Priority to US08/790,755 priority patent/US5764287A/en
Priority to US08/814,874 priority patent/US5907358A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To easily obtain the solid-state image pickup device which obtains an image of high resolution without providing any mechanical driving mechanism. CONSTITUTION:A polarizing element 7, a voltage-controlled polarizing element 8, and a double refractive element 9 are provided on the optical path between an image pickup lens 1 and a solid-state image pickup element 3, a control circuit 10 which controls polarization characteristics of the voltage-controlled polarizing element 8 and a signal processing circuit 6 which processes an optical image detected by the solid-state image pickup element 3 are provided, and the control circuit 10 applies a voltage to the voltage-controlled polarizing element 8 at specific timing to control the polarization state of light passing through the voltage-controlled polarizing element 8. Consequently, the rotational state of the plane of polarization of the light passing through the voltage- controlled polarizing element 8 is changed to make a light beam which reaches the solid-state image pickup element 3 through the double refractive element 9 shift in position by the separation width of the double refractive element 9, thereby separating the optical path without providing any mechanical driving mechanism.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体撮像装置に係わり、
特に、高画質化が要求されるビデオカメラ装置に用いて
好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device,
In particular, it is suitable for use in a video camera device that requires high image quality.

【0002】[0002]

【従来の技術】近年、固体撮像素子等を用いた画像入力
装置において、高画質化が要望されている。さらに、高
画質化の中でも、特に、高解像度化が望まれており、そ
のために、各撮像素子メーカは高画素数のセンサを実用
化している。しかしながら、現在実用化されている固体
撮像素子の場合は、文字の識別やプリント出力に使うに
は未だ不十分である。また、ビデオ装置用として用いる
場合でも、高画素数になると歩留等の点でコストが割高
になる問題があった。
2. Description of the Related Art In recent years, an image input device using a solid-state image pickup device or the like is required to have high image quality. Further, among the higher image quality, higher resolution is particularly desired, and for this reason, each image sensor manufacturer puts a sensor with a high number of pixels into practical use. However, the solid-state image sensor currently in practical use is still insufficient for use in character recognition and print output. Further, even when it is used for a video device, there is a problem that the cost becomes high in terms of yield and the like when the number of pixels is high.

【0003】そのため、通常のビデオ信号を扱う場合で
も、センサの使い方によって高解像度化のための工夫を
施した製品が出されている。その従来技術の原理につい
て、図3を用いて簡単に説明する。図3において、被写
体からの光Lは、レンズ1、光路変更用の平行平板ガラ
ス2を経て固体撮像素子3に至る。上記固体撮像素子3
は、入射された被写体からの光Lを光電変換して電気信
号として出力する。
Therefore, even when a normal video signal is handled, a product has been developed in which a high resolution is devised depending on how the sensor is used. The principle of the conventional technique will be briefly described with reference to FIG. In FIG. 3, light L from a subject reaches the solid-state image sensor 3 through the lens 1 and the parallel plate glass 2 for changing the optical path. The solid-state image sensor 3
Photoelectrically converts the incident light L from the subject and outputs it as an electric signal.

【0004】固体撮像素子3から出力された信号は、信
号処理装置6で必要な処理を施された後ビデオ信号Sv
として出力される。また、平行平板ガラス2は駆動装置
4によって、固体撮像素子3に対する平行度を変えるこ
とができるように構成されている。したがって、平行平
板ガラス2の傾きによって光路が平行に移動し、固体撮
像素子3上に結像する像の位置が平行移動することにな
る。
The signal output from the solid-state image pickup device 3 is subjected to necessary processing in the signal processing device 6 and then the video signal Sv.
Is output as. Further, the parallel plate glass 2 is configured so that the parallelism with respect to the solid-state image sensor 3 can be changed by the driving device 4. Therefore, the optical path moves in parallel due to the inclination of the parallel plate glass 2, and the position of the image formed on the solid-state image sensor 3 moves in parallel.

【0005】そこで、同期信号発生器5から与えられる
同期信号に応じて、例えば、フレーム毎に平行平板ガラ
ス2の固体撮像素子3に対する平行度が、平行な状態と
少し傾いた状態とに交互に入れ替わるように制御する。
この時、平行度を傾ける量は、固体撮像素子3のサンプ
リング間隔の1/2ピッチになるようにする。すると、
サンプリング間隔が等価的に1/2倍(サンプリングポ
イントが2倍)になったことと同じになり、解像度が向
上する。もちろん、光学像が平行移動しているので、後
段の信号処理装置6で1/2ピッチ分のオフセット補正
をしている。
Therefore, depending on the synchronization signal provided from the synchronization signal generator 5, for example, the parallelism of the parallel plate glass 2 with respect to the solid-state image pickup device 3 alternates between the parallel state and the slightly inclined state for each frame. Control to switch.
At this time, the amount of inclination of the parallelism is set to be 1/2 pitch of the sampling interval of the solid-state image pickup device 3. Then,
The sampling interval is equivalently halved (sampling points are twice), and the resolution is improved. Of course, since the optical image is moving in parallel, the signal processing device 6 in the subsequent stage corrects the offset by 1/2 pitch.

【0006】[0006]

【発明が解決しようとする課題】このような従来技術に
は、次のような問題点があった。すなわち、平行平板ガ
ラスのような光学部品を機械的に高速に駆動しているた
め信頼性に欠ける。また、光学部品を機械的に高速に駆
動するために大きな駆動部を設けなければならないの
で、装置が大きくなってしまう問題があった。本発明は
上述の問題点にかんがみ、機械的な駆動機構を設けるこ
となく高解像度の画像を容易に得られるようにすること
を目的とする。
However, such a conventional technique has the following problems. That is, since an optical component such as a parallel plate glass is mechanically driven at a high speed, it lacks reliability. In addition, since a large drive unit must be provided in order to mechanically drive the optical component at high speed, there is a problem that the device becomes large. In view of the above problems, it is an object of the present invention to easily obtain a high resolution image without providing a mechanical drive mechanism.

【0007】[0007]

【課題を解決するための手段】本発明の固体撮像装置
は、被写体の像を撮像面に結像させる撮像レンズと、上
記撮像レンズにより結像された像を光電変換する固体撮
像素子とを有する固体撮像装置において、上記撮像レン
ズと上記固体撮像素子との間の光路中に、偏光素子と電
圧制御偏光素子と複屈折素子とを設けるとともに、上記
電圧制御偏光素子へ所定のタイミングで電圧を印加し
て、上記電圧制御偏光素子を通過する光の偏向状態を所
定のタイミングで制御する制御回路と、上記制御回路の
制御状態に応じて画像合成を行う信号処理装置とを設け
ている。
A solid-state image pickup device according to the present invention comprises an image pickup lens for forming an image of a subject on an image pickup surface, and a solid-state image pickup device for photoelectrically converting the image formed by the image pickup lens. In the solid-state imaging device, a polarizing element, a voltage-controlled polarizing element, and a birefringent element are provided in the optical path between the imaging lens and the solid-state imaging element, and a voltage is applied to the voltage-controlled polarizing element at a predetermined timing. Then, a control circuit for controlling the deflection state of the light passing through the voltage control polarization element at a predetermined timing and a signal processing device for performing image combination according to the control state of the control circuit are provided.

【0008】[0008]

【作用】電圧制御偏光素子は、電圧が印加されていると
きはここを通過する光の偏向面を回転させないが、電圧
が印加されていないときはここを通過する光の偏向面を
回転させるので、上記電圧制御偏光素子に所定のタイミ
ングで電圧を印加すると、複屈折素子を介して固体撮像
素子に到達する光線は、上記複屈折素子の分離幅だけ位
置がずれることになり、機械的な駆動機構を設けること
なく光路の分離が可能になる。
The voltage-controlled polarizing element does not rotate the deflecting surface of light passing therethrough when a voltage is applied, but rotates the deflecting surface of light passing therethrough when no voltage is applied. When a voltage is applied to the voltage control polarization element at a predetermined timing, the light beam reaching the solid-state imaging device via the birefringence element is displaced by the separation width of the birefringence element, and mechanical driving is performed. The optical path can be separated without providing a mechanism.

【0009】[0009]

【実施例】次に、添付図面に従って本発明の一実施例を
説明する。図1は、本実施例の固体撮像装置の概略構成
を示すブロック図である。図1において、被写体からの
光Lはレンズ1、偏光素子7、電圧制御偏光素子8、複
屈折素子9を経て固体撮像素子3へ至る。
An embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a block diagram showing a schematic configuration of the solid-state imaging device of this embodiment. In FIG. 1, light L from a subject reaches a solid-state image sensor 3 via a lens 1, a polarization element 7, a voltage control polarization element 8 and a birefringence element 9.

【0010】また、固体撮像素子3からの出力された信
号は、信号処理装置6で必要な処理が施された後、ビデ
オ信号Svとして出力される。電圧制御偏光素子8は、
制御回路10によって、例えば、フレーム毎に電圧制御
を受けて偏光面が90度回転する。制御回路10は、同
期信号発生器5の出力に基づいてその出力電圧を制御し
ている。なお、図1において、従来例と同一部分につい
ては同一の符号を付している。
The signal output from the solid-state image pickup device 3 is output as a video signal Sv after being subjected to necessary processing in the signal processing device 6. The voltage control polarization element 8 is
For example, the polarization plane is rotated by 90 degrees under the voltage control for each frame by the control circuit 10. The control circuit 10 controls its output voltage based on the output of the synchronization signal generator 5. In FIG. 1, the same parts as those in the conventional example are designated by the same reference numerals.

【0011】次に、図1および図2の(a),(b)に
よって、本実施例の固体撮像装置の動作について説明す
る。図2は、図1の偏光素子7から固体撮像素子3に至
る光路中の素子を更に詳しく書き、かつ、動作が分かり
やすいように、光の偏光について模式的に表現した図で
ある。
Next, the operation of the solid-state image pickup device of this embodiment will be described with reference to FIGS. 1 and 2A and 2B. FIG. 2 is a diagram in which the elements in the optical path from the polarization element 7 to the solid-state imaging element 3 in FIG. 1 are described in more detail, and the polarization of light is schematically represented so that the operation can be easily understood.

【0012】先ず、電圧制御偏光素子8の一例について
説明する。この電圧制御偏光素子8は、透明電極8-1
-3によって、液晶ユニット8-2を挟み込んだ構成にな
っている。したがって、透明電極間8-1、8-3に電圧を
印加しない時は、この素子を通過する光は偏光面が90
°回転し、電圧を印加した時には偏光面が回転せずに通
過する。
First, an example of the voltage control polarization element 8 will be described. This voltage-controlled polarization element 8 has a transparent electrode 8 -1 ,
The liquid crystal unit 8 -2 is sandwiched by 8 -3 . Therefore, when no voltage is applied between the transparent electrodes 8 -1 , 8 -3 , the light passing through this element has a polarization plane of 90 °.
It rotates through °, and when a voltage is applied, the plane of polarization passes without rotating.

【0013】次に、動作について説明する。最初に、図
2(a)を参照して、電圧制御偏光素子8に電圧を印加
しない場合について説明する。偏光素子7に至るまでの
光は、自然光なので偏光していない。この様子を、紙面
に垂直な方向を示す符号(矢の正面を示す符号)と、紙
面に平行な方向を示す符号(図中、上下方向を示す矢
印)とを合成して表現して模式的に示した。
Next, the operation will be described. First, the case where no voltage is applied to the voltage control polarization element 8 will be described with reference to FIG. The light reaching the polarizing element 7 is natural light and is not polarized. This state is schematically represented by combining a code indicating a direction perpendicular to the paper surface (a code indicating the front of an arrow) and a code indicating a direction parallel to the paper surface (an arrow indicating the vertical direction in the drawing). It was shown to.

【0014】偏光素子7は、例えば紙面に平行な向きの
光を透過するように配置する。すると、電圧制御偏光素
子8へ入射する光は紙面に平行な方向(図中、上下方向
を示す矢印)に偏光している。今、電圧制御偏光素子8
に電圧を印加していないと、透過光は偏光面が90°回
転して紙面に垂直な方向の偏光(矢の正面を示す符号)
となる。この光が、複屈折素子9に入射する。
The polarizing element 7 is arranged so as to transmit light in a direction parallel to the paper surface, for example. Then, the light incident on the voltage control polarization element 8 is polarized in a direction parallel to the paper surface (in the figure, an arrow indicating the vertical direction). Now voltage control polarization element 8
When no voltage is applied to the transmitted light, the transmitted light is polarized in the direction perpendicular to the plane of the paper by rotating the polarization plane by 90 ° (symbol indicating the front of the arrow).
Becomes This light enters the birefringent element 9.

【0015】この複屈折素子9は、例えば水晶で構成さ
れており、自然光が入射すると、常光線と異常光線とに
分離されて出力される。この時、常光線は、分離方向に
垂直な方向に偏光した(この場合、紙面に垂直な方向)
光が透過し、異常光線は、分離方向に平行な方向に偏光
した光(この場合、紙面に平行な方向の光)が透過す
る。したがって、複屈折素子9を透過する光路は、図中
の実線で示した光路となる。
The birefringent element 9 is made of, for example, quartz, and when natural light enters, it is separated into an ordinary ray and an extraordinary ray and output. At this time, the ordinary ray was polarized in the direction perpendicular to the separation direction (in this case, the direction perpendicular to the paper surface).
The light is transmitted, and the extraordinary ray is the light polarized in the direction parallel to the separation direction (in this case, the light in the direction parallel to the paper surface). Therefore, the optical path passing through the birefringent element 9 is the optical path shown by the solid line in the figure.

【0016】次に、電圧制御偏光素子8に電圧を印加し
た場合について、図2(b)について説明する。この場
合、電圧が印加されているため、電圧制御偏光素子8を
通過する光は偏光面の回転を受けない。したがって、電
圧制御偏光素子8を通過した光は、紙面に平行な方向に
偏向した状態で複屈折素子9に入射する。複屈折素子9
では、その性質によって、図中実線で示した光路を辿り
固体撮像素子3に至る。
Next, the case where a voltage is applied to the voltage control polarization element 8 will be described with reference to FIG. In this case, since the voltage is applied, the light passing through the voltage control polarization element 8 does not undergo rotation of the polarization plane. Therefore, the light that has passed through the voltage control polarization element 8 enters the birefringence element 9 while being deflected in the direction parallel to the paper surface. Birefringent element 9
Then, depending on its nature, the optical path shown by the solid line in the figure is followed to reach the solid-state imaging device 3.

【0017】したがって、固体撮像素子3に到達する光
線は、電圧制御偏光素子8に電圧を印加した時と印加し
ない時とでは、複屈折素子の分離幅分だけ位置がずれる
ことになる。そこで、上記分離幅を固体撮像素子3の光
電変換用フォトダイオードPDのピッチPの1/2の幅
(1/2P)になるように設定すると、等価的にサンプ
リング間隔が1/2倍(サンプリングポイントが2倍)
になったことになり、高解像度の画像を得ることができ
る。
Therefore, the light beam reaching the solid-state image pickup device 3 is displaced by the separation width of the birefringent element between when the voltage is applied to the voltage control polarization element 8 and when the voltage is not applied. Therefore, when the separation width is set to be a width (1 / 2P) of the pitch P of the photoelectric conversion photodiodes PD of the solid-state imaging device 3, the sampling interval is equivalently 1/2 times (sampling). Double points)
Therefore, it is possible to obtain a high resolution image.

【0018】なお、光学的にずれた画像を合成して復元
方法は、従来より行われている技術を用いて行うことが
できるので、説明を省く。また、電圧制御偏光素子8に
電圧を印加するタイミング(フレーム毎)も従来と同じ
でよいので、説明を省略する。
Since the method of synthesizing the optically displaced images and the restoration can be performed by using the conventional technique, the description thereof will be omitted. Further, the timing (for each frame) of applying the voltage to the voltage-controlled polarization element 8 may be the same as the conventional one, and thus the description thereof is omitted.

【0019】さらに、上述の実施例では、像の切換タイ
ミングをフレーム毎としたが、フィールド毎に像を切換
えるようにしてもよい。また、本発明の実施例で、像の
空間的な分離方向は特に問題にしない。例えば、従来の
ビデオシステム(例えば、NTSC,PAL)では、水
平解像度を向上させるために、画像の水平方向に分離す
れば良い。また、ハイビジョンシステムやコンピュータ
用画像入力として応用する場合は画像の垂直方向、また
は水平と垂直を合成した方向(斜め方向)に分離すれば
よい。このようにする場合でも、後段の信号処理装置6
を若干改良するだけでよい。
Further, in the above-mentioned embodiment, the image switching timing is set for each frame, but the image may be switched for each field. In the embodiment of the present invention, the spatial separation direction of the image does not matter. For example, in a conventional video system (for example, NTSC, PAL), the image may be separated in the horizontal direction in order to improve the horizontal resolution. Further, in the case of application as an image input for a high-definition system or a computer, it may be separated in the vertical direction of the image or a direction in which horizontal and vertical are combined (oblique direction). Even in this case, the signal processing device 6 in the subsequent stage
Just need to be improved.

【0020】[0020]

【発明の効果】本発明は上述したように、撮像レンズと
固体撮像素子との間の光路中に、偏光素子と電圧制御偏
光素子と複屈折素子とを配設し、上記電圧制御偏光素子
へ所定のタイミングで電圧を印加して、上記電圧制御偏
光素子を通過する光の偏向状態を制御するとともに、上
記制御回路の制御状態に応じた画像合成を行うようにし
たので、上記電圧制御偏光素子に電圧が印加されている
ときと、電圧が印加されていないときとで、上記電圧制
御偏光素子を通過する光の偏向面の回転状態を変化させ
ることができる。これにより、上記複屈折素子を介して
上記固体撮像素子に到達する光線の位置を、上記複屈折
素子の分離幅だけずらすことができ、機械的な駆動機構
を設けることなく光路の分離が可能になる。したがっ
て、高解像度の画像が得られる固体撮像装置を、機械的
な駆動機構を設けることなく簡単に構成することができ
る。
As described above, according to the present invention, a polarizing element, a voltage control polarizing element, and a birefringent element are arranged in the optical path between the imaging lens and the solid-state imaging element, and the voltage controlling polarizing element is provided. Since the voltage is applied at a predetermined timing to control the deflection state of the light passing through the voltage control polarization element, and the image synthesis is performed according to the control state of the control circuit, the voltage control polarization element is used. It is possible to change the rotation state of the deflecting surface of the light passing through the voltage control polarization element depending on whether the voltage is applied to or not applied. Thereby, the position of the light beam reaching the solid-state imaging device via the birefringent element can be shifted by the separation width of the birefringent element, and the optical paths can be separated without providing a mechanical drive mechanism. Become. Therefore, the solid-state imaging device that can obtain a high-resolution image can be easily configured without providing a mechanical drive mechanism.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す固体撮像装置の構成図
である。
FIG. 1 is a configuration diagram of a solid-state imaging device showing an embodiment of the present invention.

【図2】(a)は、電圧制御偏光素子に電圧が印加され
ていない場合の固体撮像装置の要部構成および光路を示
し、(b)は電圧制御偏光素子に電圧が印加されている
場合の固体撮像装置の要部構成および光路を示す図であ
る。
FIG. 2 (a) shows a main configuration and an optical path of a solid-state imaging device when a voltage is not applied to the voltage control polarization element, and FIG. 2 (b) is a case where a voltage is applied to the voltage control polarization element. It is a figure which shows the principal part structure and optical path of the solid-state imaging device of.

【図3】高解像度化の従来例を示す固体撮像装置の構成
図である。
FIG. 3 is a configuration diagram of a solid-state imaging device showing a conventional example of high resolution.

【符号の説明】[Explanation of symbols]

1 レンズ 2 平行平板ガラス 3 固体撮像素子 4 駆動装置 5 同期信号発生器 6 信号処理装置 7 偏光素子 8 電圧制御偏光素子 9 複屈折素子 10 制御回路 DESCRIPTION OF SYMBOLS 1 lens 2 parallel plate glass 3 solid-state image sensor 4 driving device 5 synchronizing signal generator 6 signal processing device 7 polarizing element 8 voltage control polarizing element 9 birefringent element 10 control circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被写体の像を撮像面に結像させる撮像レ
ンズと、上記撮像レンズにより結像された像を光電変換
する固体撮像素子とを有する固体撮像装置において、 上記撮像レンズと上記固体撮像素子との間の光路中に、
偏光素子と電圧制御偏光素子と複屈折素子とを設けると
ともに、 上記電圧制御偏光素子へ所定のタイミングで電圧を印加
して、上記電圧制御偏光素子を通過する光の偏向状態を
所定のタイミングで制御する制御回路と、上記制御回路
の制御状態に応じて画像合成を行う信号処理装置とを設
けたことを特徴とする固体撮像装置。
1. A solid-state image pickup device comprising: an image pickup lens for forming an image of a subject on an image pickup surface; and a solid-state image pickup device for photoelectrically converting the image formed by the image pickup lens. In the optical path between the element,
A polarizing element, a voltage-controlled polarizing element, and a birefringent element are provided, and a voltage is applied to the voltage-controlled polarizing element at a predetermined timing to control the deflection state of light passing through the voltage-controlled polarizing element at a predetermined timing. A solid-state imaging device, comprising: a control circuit for controlling the control circuit; and a signal processing device for performing image synthesis according to the control state of the control circuit.
JP4255669A 1992-08-31 1992-08-31 Solid-state image pickup device Pending JPH0682846A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4255669A JPH0682846A (en) 1992-08-31 1992-08-31 Solid-state image pickup device
US08/790,755 US5764287A (en) 1992-08-31 1997-01-27 Image pickup apparatus with automatic selection of gamma correction valve
US08/814,874 US5907358A (en) 1992-08-31 1997-03-11 Image pickup apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4255669A JPH0682846A (en) 1992-08-31 1992-08-31 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPH0682846A true JPH0682846A (en) 1994-03-25

Family

ID=17281975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4255669A Pending JPH0682846A (en) 1992-08-31 1992-08-31 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPH0682846A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9847073B2 (en) 2003-03-10 2017-12-19 Fergason Licensing Llc Apparatus and method for preparing, storing, transmitting and displaying images
CN110809106A (en) * 2019-11-04 2020-02-18 Oppo广东移动通信有限公司 Lens, camera module and electronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9847073B2 (en) 2003-03-10 2017-12-19 Fergason Licensing Llc Apparatus and method for preparing, storing, transmitting and displaying images
US9881588B2 (en) 2003-03-10 2018-01-30 Fergason Licensing Llc Apparatus and method for preparing, storing, transmitting and displaying images
CN110809106A (en) * 2019-11-04 2020-02-18 Oppo广东移动通信有限公司 Lens, camera module and electronic device

Similar Documents

Publication Publication Date Title
US5616912A (en) Three dimensional imaging apparatus, camera, and microscope using discrete shutter control to produce parallax for obtaining three dimensional images
US5764285A (en) Imaging apparatus having area sensor and line sensor
JPH0682846A (en) Solid-state image pickup device
JP4481178B2 (en) Imaging method and imaging apparatus
JPH06261236A (en) Image pickup device
JPH11127441A (en) Image pickup device
JPH08250692A (en) Optical device
EP1505427A1 (en) Light controller and imaging apparatus
JPH06100728B2 (en) Image forming optics
JP2001218116A (en) Image pickup device
JPH04115786A (en) Image shift type image pickup device
JP2000125169A (en) Image pickup device
JPH0378378A (en) Solid state image pickup device
JPH0463074A (en) Image shift type image pickup device
JPH09218308A (en) Polarized light separating element, and solid image pikcup device and light emitting element array printer using the same
JPH05276452A (en) Image pickup device
JPH07274070A (en) High resolution display device
JPH0691601B2 (en) Image input device using solid-state image sensor
JPH06292093A (en) Image pickup device
JPH06292092A (en) Image pickup device
JPH01286585A (en) Solid-state image pickup device
JPH08223473A (en) Image pickup device
KR930000461B1 (en) Projecting device using lcd
KR100247779B1 (en) Video indication device using a low resolving power element and method thereof
JPH08205005A (en) Image pickup device