JPH0682573B2 - Anisotropic manganese-aluminum-carbon alloy magnet - Google Patents

Anisotropic manganese-aluminum-carbon alloy magnet

Info

Publication number
JPH0682573B2
JPH0682573B2 JP60007355A JP735585A JPH0682573B2 JP H0682573 B2 JPH0682573 B2 JP H0682573B2 JP 60007355 A JP60007355 A JP 60007355A JP 735585 A JP735585 A JP 735585A JP H0682573 B2 JPH0682573 B2 JP H0682573B2
Authority
JP
Japan
Prior art keywords
alloy
manganese
aluminum
anisotropic
deformation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60007355A
Other languages
Japanese (ja)
Other versions
JPS61168208A (en
Inventor
滋 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60007355A priority Critical patent/JPH0682573B2/en
Publication of JPS61168208A publication Critical patent/JPS61168208A/en
Publication of JPH0682573B2 publication Critical patent/JPH0682573B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は永久磁石に係り、特に異方性マンガン−アルミ
ニウム−炭素(Mn−Al−C)系合金磁石に関する。
The present invention relates to a permanent magnet, and more particularly to an anisotropic manganese-aluminum-carbon (Mn-Al-C) alloy magnet.

(従来の技術) マンガン68.0ないし73.0重量%、炭素(1/10Mn−6.6)
ないし(1/3Mn−22.2)重量%(ただし数式内のMnはマ
ンガン成分重量%を表わす)、残部がアルミニウムの組
成からなる異方性Mn−Al−C系合金磁石は、すぐれた磁
気特性をもつ永久磁石として、例えば、特公昭54-31448
号公報等で知られている。
(Prior art) Manganese 68.0 to 73.0% by weight, carbon (1 / 10Mn-6.6)
Or (1 / 3Mn-22.2)% by weight (where Mn represents the% by weight of manganese component in the formula), and the balance of the composition is aluminum. Anisotropic Mn-Al-C alloy magnets have excellent magnetic characteristics. As a permanent magnet with, for example, Japanese Patent Publication No. 54-31448
It is known from the official gazette.

(発明が解決しようとする問題点) 異方性Mn−Al−C系合金磁石は前記組成範囲内にある合
金を、530ないし830℃の温度領域で押出加工などの温間
塑性加工を施すことによって製造されるが、この合金は
鉄合金や銅合金と違って可塑性に乏しいため、塑性加工
に必要な加工圧力が高くなり、加工設備が複雑になった
り工具寿命が十分でないなどの問題があった。
(Problems to be solved by the invention) An anisotropic Mn-Al-C alloy magnet is obtained by subjecting an alloy within the above composition range to warm plastic working such as extrusion in the temperature range of 530 to 830 ° C. However, unlike iron alloys and copper alloys, this alloy has poor plasticity, so the processing pressure required for plastic working is high, and there are problems such as complicated processing equipment and insufficient tool life. It was

本発明は上述に鑑み、この合金の可塑性を良くして加工
圧力を軽減すること、言い換えれば、この合金の変形抵
抗を小さくすることを目的とし、工業的生産に寄与しよ
うとするものである。
In view of the above, the present invention aims to improve the plasticity of this alloy to reduce the processing pressure, in other words, to reduce the deformation resistance of this alloy, and to contribute to industrial production.

(問題点を解決するための手段) 本発明は、前記組成範囲のMn−Al−C系合金に適量のア
ンチモン(以下、Sbと記す)を添加することによって、
この合金の温間塑性加工時の加工温度領域における変形
抵抗を著しく改善するものである。
(Means for Solving Problems) The present invention provides a suitable amount of antimony (hereinafter, referred to as Sb) by adding an appropriate amount of antimony (hereinafter, referred to as Sb) to the Mn-Al-C alloy having the above composition range.
The deformation resistance of this alloy in the working temperature range during the warm plastic working is significantly improved.

(作用) 以下に代表的な実験データを例示しながら本発明を詳し
く説明する。
(Operation) The present invention will be described in detail below by exemplifying representative experimental data.

図はマンガン68.0ないし73.0重量%、炭素(1/10Mn−6.
6)ないし(1/3Mn−22.2)重量%、残部がアルミニウム
の組成範囲内のMn−Al−C系合金に、Sbを添加した合金
を530ないし830℃の温度領域で温間塑性加工したとき
の、Sbの添加量と変形抵抗との関係を示した図で、添加
量(横軸)は上記Sbを添加しないMn−Al−C系合金100
に対する重量比で、また変形抵抗値比(縦軸)は同じく
Sb添加前のMn−Al−C系合金の変形抵抗値に対する比で
表わしてある。
The figure shows manganese 68.0 to 73.0% by weight, carbon (1 / 10Mn-6.
6) to (1 / 3Mn-22.2)% by weight, the balance of which is Mn-Al-C based alloy in the composition range of aluminum, when Sb-added alloy is subjected to warm plastic working in the temperature range of 530 to 830 ° C In the figure showing the relationship between the Sb addition amount and the deformation resistance, the addition amount (horizontal axis) is the Mn-Al-C based alloy 100 containing no Sb.
And the ratio of deformation resistance (vertical axis) is the same.
It is represented by the ratio to the deformation resistance value of the Mn-Al-C alloy before the addition of Sb.

図に示すように、変形抵抗値の減少効果はSbの添加量が
0.2(ただし、添加前の合金を100とした重量比、添加量
について以下同じ)のところで顕著に現れれ、さらに添
加量を増すと変形抵抗値はさらに減少して添加量が0.2
ないし4.0の領域では添加しない合金と比べて20ないし3
0%も小さくなる。このようにSbの添加は変形抵抗を小
さくする上で極めて有効に作用する。添加量が4.0を越
えると変形抵抗はさらに小さくなるが磁気特性の著しく
低下を招くため実用的には有効でない。すなわち、Sbの
添加量が4.0以下の場合はその磁気特性の低下は1割以
内であって実用する永久磁石としての性能は十分で何ら
問題はない。しかし、添加量が4.0を越えると、例えば
5.0のSbを添加した合金の押出加工後の(BH)max値は、
2.6MG・Oe程度で、添加しない合金の場合の(BH)max値
6.0MG・Oeと比べると半分以下になり実用的価値が著し
く低下する。したがって実用的には0.2ないし4.0の添加
量領域が有効である。
As shown in the figure, the effect of reducing deformation resistance is
It appears remarkably at 0.2 (however, the weight ratio with the alloy before addition as 100, the same applies below), and if the amount added is further increased, the deformation resistance value further decreases and the amount added becomes 0.2
20 to 3 in the range of 4.0 to 4.0 compared to the alloy without addition
It will be 0% smaller. Thus, the addition of Sb acts extremely effectively in reducing the deformation resistance. When the addition amount exceeds 4.0, the deformation resistance is further reduced, but the magnetic properties are remarkably deteriorated, which is not practically effective. That is, when the amount of Sb added is 4.0 or less, the deterioration of the magnetic properties is within 10%, and the performance as a practical permanent magnet is sufficient and there is no problem. However, if the added amount exceeds 4.0, for example,
The (BH) max value after extrusion of the alloy with 5.0 Sb added is
(BH) max value in the case of alloy not added with 2.6MG / Oe
Compared with 6.0MG Oe, it is less than half, and the practical value is significantly reduced. Therefore, practically, the addition amount range of 0.2 to 4.0 is effective.

Sbを添加することによって変形抵抗が小さくなる効果を
もたらす原因はまだ解明されていないが、顕微鏡観察で
は0.2ないし4.0の添加量領域で結晶粒界に少量の析出物
が存在していることが確認されており、これが塑性加工
時の変形抵抗の減少に関与しているものと推察される。
さらに添加量が4.0を越えると、上記の析出物以外にβ
−Mn相およびAlMn(r)相と呼ばれる非磁性相が、結晶
粒界のみならず結晶粒内にも存在することが確認され、
これが変形抵抗の減少効果をもたらすものの磁気特性の
著しく低下も招いているものと考えられる。
The cause of the effect of reducing deformation resistance by adding Sb has not been clarified yet, but it has been confirmed by microscopic observation that a small amount of precipitates are present in the grain boundaries in the addition amount range of 0.2 to 4.0. It is presumed that this is involved in the reduction of deformation resistance during plastic working.
If the amount added exceeds 4.0, β other than the above precipitates
-It was confirmed that non-magnetic phases called Mn phase and AlMn (r) phase exist not only in the crystal grain boundaries but also in the crystal grains.
Although this brings about the effect of reducing the deformation resistance, it is considered that the magnetic properties are remarkably deteriorated.

以下に代表的な実施例を示す。Typical examples are shown below.

(実施例) マンガン70.2重量%、アルミニウム29.3重量%、炭素0.
5重量%の組成からなるMn−Al−C系合金ビレットおよ
びこの組成100に対する重量比で0.2、1.0、4.0のSbをそ
れぞれ添加した合金ビレットを溶解鋳造により作成し、
これらの合金ビレットを1100℃から冷却する熱処理を施
した後、700℃の温度を押出加工(押出比=5)した。
合金について押出加工時の変形抵抗値および押出加工後
の磁気特性(BH)max値を測定したところ、次表に示す
結果が得られ、Sbを0.2、1.0、4.0添加した合金は、Sb
を添加しない合金と比較して磁気特性はほとんど変らず
に変形抵抗値が20ないし30%も小さくなった。
(Example) Manganese 70.2% by weight, aluminum 29.3% by weight, carbon 0.
An Mn-Al-C alloy billet having a composition of 5% by weight and an alloy billet containing Sb of 0.2, 1.0, and 4.0 in a weight ratio with respect to 100 of the composition are prepared by melting casting.
After subjecting these alloy billets to a heat treatment of cooling from 1100 ° C., they were extruded at a temperature of 700 ° C. (extrusion ratio = 5).
When the deformation resistance value during extrusion and the magnetic property (BH) max value after extrusion were measured for the alloys, the results shown in the following table were obtained, and the alloys with Sb added at 0.2, 1.0, and 4.0 were Sb
The magnetic resistance was almost unchanged and the deformation resistance was 20 to 30% smaller than that of the alloy without addition of Al.

(発明の効果) 以上詳細に述べたように本発明は、Mn−Al−C系合金磁
石に適量のSbを添加することによって、温間塑性加工時
の可塑性の著しく改善を可能にするものである。したが
って、加工圧力の軽減によって加工金型の寿命が従来と
比べて10倍以上長持ちすることや、加工金型の小型簡易
化が図れるなどの顕著な効果があり、本発明はMn−Al−
C系合金磁石の工業的生産に大きく尽すものがある。
(Effects of the Invention) As described in detail above, the present invention makes it possible to significantly improve the plasticity during warm plastic working by adding an appropriate amount of Sb to the Mn-Al-C alloy magnet. is there. Therefore, by reducing the processing pressure, there is a remarkable effect that the life of the processing die lasts 10 times or more as compared with the conventional one, and the size of the processing die can be simplified, and the present invention is Mn-Al-
There is a large contribution to the industrial production of C-based alloy magnets.

【図面の簡単な説明】[Brief description of drawings]

図はMn−Al−C系合金磁石にSbを添加したときの添加量
と変形抵抗との関係を示す図である。
The figure is a diagram showing the relationship between the addition amount and the deformation resistance when Sb is added to the Mn-Al-C alloy magnet.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】マンガン68.0ないし73.0重量%、炭素(1/
10Mn−6.6)ないし(1/3Mn−22.2)重量%、残部がアル
ミニウムの組成からなる合金100に対して、アンチモン
を重量比で0.2ないし4.0の割合で添加した組成からなる
ことを特徴とする異方性マンガン−アルミニウム−炭素
系合金磁石。
1. Manganese 68.0 to 73.0% by weight, carbon (1 /
10Mn-6.6) to (1 / 3Mn-22.2)% by weight, with the balance being 100 parts of an alloy having an aluminum composition, antimony is added at a ratio of 0.2 to 4.0 by weight. An isotropic manganese-aluminum-carbon based magnet.
JP60007355A 1985-01-21 1985-01-21 Anisotropic manganese-aluminum-carbon alloy magnet Expired - Lifetime JPH0682573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60007355A JPH0682573B2 (en) 1985-01-21 1985-01-21 Anisotropic manganese-aluminum-carbon alloy magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60007355A JPH0682573B2 (en) 1985-01-21 1985-01-21 Anisotropic manganese-aluminum-carbon alloy magnet

Publications (2)

Publication Number Publication Date
JPS61168208A JPS61168208A (en) 1986-07-29
JPH0682573B2 true JPH0682573B2 (en) 1994-10-19

Family

ID=11663647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60007355A Expired - Lifetime JPH0682573B2 (en) 1985-01-21 1985-01-21 Anisotropic manganese-aluminum-carbon alloy magnet

Country Status (1)

Country Link
JP (1) JPH0682573B2 (en)

Also Published As

Publication number Publication date
JPS61168208A (en) 1986-07-29

Similar Documents

Publication Publication Date Title
US4133703A (en) Permanent magnetic Mn-Al-C alloy
JP4328927B2 (en) Aluminum alloy material with excellent electrical and thermal conductivity
JP4210020B2 (en) Aluminum alloy material for heat sinks with excellent thermal conductivity
JPH0682573B2 (en) Anisotropic manganese-aluminum-carbon alloy magnet
JPH0673326B2 (en) Anisotropic manganese-aluminum-carbon alloy magnet
JP2760013B2 (en) Method for producing high permeability magnetic material
JPH0736362B2 (en) Method for manufacturing anisotropic manganese-aluminum-carbon alloy magnet
JPS58210140A (en) Heat resistant conductive copper alloy
JPS608297B2 (en) magnet alloy
US4443276A (en) Mn--Al--C Alloys for anisotropic permanent magnets
JP3951921B2 (en) Manufacturing method of aluminum alloy processed material of 58.1IACS% or more
JPS6241302B2 (en)
JPS5924177B2 (en) Square hysteresis magnetic alloy
JP4239792B2 (en) Aluminum alloy for casting with high electrical resistivity
JP2002226932A (en) Aluminum alloy for heat sink having excellent strength and thermal conductivity and production method therefor
JPS609644B2 (en) alloy magnet
JPS5931583B2 (en) Anisotropic manganese-aluminum-carbon alloy magnet
JPH08264308A (en) Rare earth magnet and its manufacture
JP2581179B2 (en) Method for producing rare earth-B-Fe sintered magnet with excellent corrosion resistance
JPS63111602A (en) High performance rare earth cast magnet
JP3220386B2 (en) Iron-based soft magnetic alloy
JP2968304B2 (en) Structural members of heat exchanger made of Al alloy
JPS5974253A (en) Manganese-aluminum-carbon alloy magnet
JP2001026831A (en) Extruded tube
JPS594496B2 (en) Aluminum alloy for casting

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term