JPH068181B2 - Quartz glass products for the semiconductor industry - Google Patents

Quartz glass products for the semiconductor industry

Info

Publication number
JPH068181B2
JPH068181B2 JP62070214A JP7021487A JPH068181B2 JP H068181 B2 JPH068181 B2 JP H068181B2 JP 62070214 A JP62070214 A JP 62070214A JP 7021487 A JP7021487 A JP 7021487A JP H068181 B2 JPH068181 B2 JP H068181B2
Authority
JP
Japan
Prior art keywords
quartz glass
ppm
layer
impurities
cristobalite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62070214A
Other languages
Japanese (ja)
Other versions
JPS63236723A (en
Inventor
宏 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP62070214A priority Critical patent/JPH068181B2/en
Publication of JPS63236723A publication Critical patent/JPS63236723A/en
Publication of JPH068181B2 publication Critical patent/JPH068181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/02Pretreated ingredients
    • C03C1/022Purification of silica sand or other minerals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • C03B2201/04Hydroxyl ion (OH)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は半導体工業用石英ガラス製品に係り、特に半導
体ウエハの熱処理工程に用いられる炉芯管やシリコン単
結晶の引き上げに用いられる石英ガラス製ルツボに関す
る。
Description: TECHNICAL FIELD The present invention relates to a quartz glass product for semiconductor industry, and particularly to a quartz glass product used for pulling a furnace core tube or a silicon single crystal used in a heat treatment process of a semiconductor wafer. Regarding crucibles.

「従来の技術」 半導体ウエハの熱処理工程に用いられる炉芯管等には、
純度が優れていて且つ汚染されにくい透明石英ガラス管
を用いて形成しているが、該石英ガラス管は、天然産の
水晶を原料としている為に、アルミニウム、アルカリ等
の微量不純物元素の混入が避けられず、特にアルカリは
通常各元素が各々1〜3ppm含まれていた。
"Prior Art" For furnace core tubes used in the heat treatment process of semiconductor wafers,
Although it is formed by using a transparent quartz glass tube that is excellent in purity and is not easily contaminated, since the quartz glass tube is made of naturally occurring quartz, trace impurities such as aluminum and alkali are not mixed. It is unavoidable, and in particular, the alkali contained usually 1 to 3 ppm of each element.

このような石英ガラス製の炉芯管を1150〜1300℃前後の
高温下で熱処理を行う拡散炉等に使用した場合には粘性
が低下して熱変形を起こし易く、この為使用寿命が極め
て短くなるという欠点を有していた。
When such a quartz glass furnace core tube is used in a diffusion furnace that performs heat treatment at a high temperature of around 1150 to 1300 ° C, the viscosity decreases and thermal deformation easily occurs, resulting in an extremely short service life. It had the drawback that

又炉芯管内に混入されている不純物が内部へ拡散し、該
不純物が核となって前記炉芯管が結晶化(失透)を起こ
し、クラック等を発生して使用不可能になる場合があ
り、更には、不純物が炉芯管よりガラスを通過して半導
体ウエハ等の被処理物にまで悪影響を及ぼす場合もあっ
た。
In addition, the impurities mixed in the furnace core tube may diffuse into the inside, and the impurities may serve as nuclei to cause crystallization (devitrification) of the furnace core tube, resulting in cracks and the like, making it unusable. In addition, impurities may pass through the glass from the furnace core tube and adversely affect objects to be processed such as semiconductor wafers.

このような石英ガラス材の熱変形や失透は、前記不純物
の内特にNa、K、Li等のアルカリ金属が最も影響する事
が知られており、この為例えば特開昭59-23314号におい
て、前記アルカリ金属を0.5ppm以下に抑えた技術が提案
されている。
It is known that the thermal deformation and devitrification of such a quartz glass material are most affected by alkali metals such as Na, K and Li among the above impurities. For this reason, for example, in JP-A-59-23314. A technique in which the alkali metal is suppressed to 0.5 ppm or less has been proposed.

[発明が解決しようとする問題点] しかしながらかかる従来技術においては、炉芯管内に混
入されている不純物が及ぼす悪影響については防止出来
るが、加熱中に炉芯管外周囲に位置する炉壁等から発生
する不純物の侵入には無防備であり、該不純物の侵入に
より特に長時間の連続加熱によりやはり前記失透や熱変
形が生じる場合がある。而も近年の半導体被処理物の高
密度化と高集積化に伴ない、僅かな不純物が前記炉芯管
を透過しても半導体被処理物にまで悪影響を及ぼす場合
もあり、前記のように炉壁等から発生する不純物の侵入
に無防備な装置を使用する事はユーザ側において多大の
不安がある。
[Problems to be Solved by the Invention] However, in such a conventional technique, the adverse effect of impurities mixed in the furnace core tube can be prevented, but from a furnace wall or the like located outside the furnace core tube during heating. There is no defense against the intrusion of the generated impurities, and the devitrification and the thermal deformation may occur due to the intrusion of the impurities, especially due to continuous heating for a long time. In addition, with the recent increase in density and integration of semiconductor processed objects, even a slight amount of impurities may adversely affect the semiconductor processed objects even if they pass through the furnace core tube. It is very anxious for the user to use an unprotected device for the intrusion of impurities generated from the furnace wall and the like.

このような不純物の侵入を防止する技術として例えば、
特公昭47-1477号において、粉末状の最純粋のクリスト
バライト石を前記石英ガラス管外周面上に吹付けた後、
該クリストバライト石を火炎により焼付ける事により、
前記石英ガラス外周面上に、石英の変態結晶が結合され
たクリストバライト層からなる被膜を形成し、該クリス
トバライト層により前記不純物の侵入を阻止せんとした
技術が提案されているが、かかる技術においては石英ガ
ラス外周面に前記被膜が単に固着されているのみである
から、高温下における前記石英ガラス管の僅かながらの
熱変形と熱膨張の繰り返しにより、前記被膜に目視で確
認出来る程度のひび割れが入ったり又該被膜と石英ガラ
ス本体側間で剥離が生じ、該剥離部分からの不純物の侵
入により失透が生じたり、又前記ひび割れの発生により
クリストバライト層が有する、石英ガラス管の熱変形を
防止する力も弱まる。
As a technique for preventing such intrusion of impurities, for example,
In Japanese Examined Patent Publication No. 47-1477, after spraying powdered purest cristobalite stone on the outer peripheral surface of the quartz glass tube,
By burning the cristobalite stone with a flame,
On the outer peripheral surface of the quartz glass, a technique has been proposed in which a film made of a cristobalite layer to which a modified crystal of quartz is bonded is formed, and the cristobalite layer prevents the intrusion of the impurities. Since the coating is simply fixed to the outer peripheral surface of the quartz glass, the thermal crack and thermal expansion of the quartz glass tube are slightly repeated under high temperature, but the coating has cracks that can be visually confirmed. Also, peeling occurs between the coating film and the quartz glass main body side, devitrification occurs due to intrusion of impurities from the peeled portion, and thermal deformation of the quartz glass tube included in the cristobalite layer due to the occurrence of cracks is prevented. The power also weakens.

本発明はかかる従来技術の欠点に鑑み、前記高温下で長
時間連続熱処理を行う場合においても熱変形や失透を防
止し、これにより使用寿命期間の大幅向上を達成し得る
半導体工業用の石英ガラス製品を提供する事を目的とす
る。
In view of the above-mentioned drawbacks of the prior art, the present invention prevents thermal deformation and devitrification even when performing continuous heat treatment at a high temperature for a long time, and as a result, quartz for the semiconductor industry can achieve a significant improvement in service life. The purpose is to provide glass products.

又本発明の目的は、炉壁等から発生する不純物の侵入を
完全に防止し得、半導体被処理物の高密度化と高集積化
に対応し得る半導体工業用の石英ガラス製品を提供する
事を目的とする。
Another object of the present invention is to provide a quartz glass product for the semiconductor industry, which can completely prevent the intrusion of impurities generated from the furnace wall and the like and can cope with high density and high integration of semiconductor processing objects. With the goal.

「問題点を解決する為の手段」 本発明はかかる技術的課題を達成する為に、 0.5ppm以下の含有量に設定したNa、K及びLiのアルカ
リ金属の内、特に特に拡散速度の早いNa、Kを更に低含
有量化し、それぞれ0.2ppm以下に設定した点 熱変形に影響を与えるOH基を10ppm以下の含有量に設
定した点 前記不純物含有量を有する石英ガラス材の外表面層に
拡散速度の遅い不純物元素、特に三価の陽イオン原子を
ドーピングし、該原子を核としてクリストバライト結晶
層を形成した点、 この場合前記クリストバライト結晶層の層厚が外表面よ
り10〜100μmの深さになるよう設定するのがよい。
[Means for Solving the Problems] In order to achieve the technical problem, the present invention has a particularly high diffusion rate among Na, K and Li alkali metals set to a content of 0.5 ppm or less. , K is further reduced to 0.2 ppm or less, and each is set to 0.2 ppm or less. OH groups that affect thermal deformation are set to 10 ppm or less. Diffusion into the outer surface layer of the quartz glass material having the above impurity content. A point of forming a cristobalite crystal layer by doping an impurity element having a slow rate, especially a trivalent cation atom, and forming the cristobalite crystal layer with the atom as a nucleus. In this case, the layer thickness of the cristobalite crystal layer is 10 to 100 μm from the outer surface. It is better to set

「作用」 本発明の作用を熱変形と失透の両者に分けて説明する。"Action" The action of the present invention will be described separately for both thermal deformation and devitrification.

先ず熱変形の問題を考えてみると、又、通常使用されて
いる石英ガラスはOH基を100〜300ppm程含んでおり、一
般にOH基の多いガラス程、高温下における形状安定性に
劣ると言われている。そこで本発明は前記OH基を10ppm
以下と実質的には0と等しい程度に抑えるとともに、前
記石英ガラスの粘性に悪影響を与えるNa、Kを0.2ppm以
下及びLiを0.5ppm以下と極めて低濃度に抑えた為に、従
来の石英ガラスと比較して飛躍的に粘度が向上する。
First, considering the problem of heat deformation, the commonly used quartz glass contains about 100 to 300 ppm of OH groups, and it is generally said that the glass with more OH groups is inferior in shape stability at high temperature. It is being appreciated. Therefore, the present invention uses 10 ppm of the OH group.
The content of Na and K, which adversely affect the viscosity of the quartz glass, is kept to 0.2 ppm or less and Li is kept to 0.5 ppm or less, which is an extremely low concentration, so that the conventional quartz glass is used. Compared with, the viscosity is dramatically improved.

更に該石英ガラスの表面層に形成されているクリストバ
ライト層は一定の規則配列による結晶層であり、而も該
クリストバライト層は石英ガラス表面上に被膜として形
成されているのではなく、石英ガラスと一体化している
為に、前記クリストバライト層が石英ガラスの圧縮応力
層として機能し、熱変形を抑制する方向に働く。
Further, the cristobalite layer formed on the surface layer of the quartz glass is a crystal layer having a regular array, and the cristobalite layer is not formed as a film on the surface of the quartz glass but integrated with the quartz glass. Since it has been transformed, the cristobalite layer functions as a compressive stress layer of quartz glass, and acts to suppress thermal deformation.

この結果本発明品を1300℃以上の高温下で加熱した場合
においても熱変形がほとんど生じる事なく、一層耐熱性
を向上させる効果がある。
As a result, even when the product of the present invention is heated at a high temperature of 1300 ° C. or higher, there is almost no thermal deformation, and the effect of further improving the heat resistance is obtained.

次に失透の問題を考えてみると、高温下で石英ガラス中
を移動し易いアルカリ金属、特にNa、Kを0.2ppm以下及
びLiを0.5ppm以下に抑えた為に、石英ガラス内に混入さ
れている不純物に起因する失透を防止出来る。又高温加
熱中に例えば炉芯管外周囲に位置する炉壁等から発生す
る不純物が石英ガラス内に侵入せんとした場合でも、そ
の表面層に形成されているクリストバライト層によりそ
の侵入を阻止する事が出来る。
Next, considering the problem of devitrification, alkali metals, which easily move in the quartz glass at high temperatures, especially Na and K are kept to 0.2 ppm or less and Li to 0.5 ppm or less. It is possible to prevent devitrification due to the impurities contained. Even if impurities such as the furnace wall located around the outside of the furnace core tube do not penetrate into the quartz glass during heating at high temperature, the cristobalite layer formed on the surface layer should prevent the penetration. Can be done.

而も、前記クリストバライト層は被膜としてではなく、
石英ガラスと一体化して形成されている為に、高温下に
おける前記石英ガラス管の僅かながらの熱変形と熱膨張
の繰り返しが生じても、クリストバライト層にひび割れ
が入ったり又石英ガラス本体側間で剥離が生じたりする
事なく長時間に互って前記不純物の侵入を阻止し得る。
Moreover, the cristobalite layer is not a coating,
Since it is formed integrally with quartz glass, even if slight thermal deformation and thermal expansion of the quartz glass tube at high temperature occur repeatedly, the cristobalite layer is cracked or between the quartz glass main body sides. Intrusion of the impurities can be prevented over a long period of time without peeling.

又前記クリストバライト層の核となる不純物元素は、拡
散速度の遅い、特にAL等の三価の陽イオンである為に、
石英ガラス表面層に安定して存在する事となり、半導体
被処理物にまで悪影響を及ぼす事はない。
Further, the impurity element serving as the core of the cristobalite layer has a slow diffusion rate, in particular, is a trivalent cation such as AL,
Since it exists stably in the quartz glass surface layer, it does not adversely affect the semiconductor object to be processed.

更に前記三価の陽イオンである不純物元素は一価の陽イ
オンを捕捉してSiと同じ四価になろうとする傾向がある
為に、例えばNa、K、Li等の拡散速度の早い不純物が前
記クリストバライト層を突き抜けて石英ガラス中に侵入
しようとしても、これを前記三価の陽イオンで捕捉し、
内面側への通過を阻止する事が出来る。
Further, since the impurity element which is the trivalent cation tends to capture the monovalent cation and become the same tetravalent as Si, impurities such as Na, K and Li having a high diffusion rate are present. Even when trying to penetrate into the quartz glass through the cristobalite layer, it is captured by the trivalent cation,
It can prevent passage to the inner side.

従って、前記クリストバライト層は、Na、K、Li等の拡
散速度の早い不純物の侵入拡散に対して障壁としての役
目を確実に果す事が出来、この結果高密度化と高集積化
された半導体被処理物の熱処理に使用するのに最も好適
な半導体工業用ガラス製品を提供する事が出来る。
Therefore, the cristobalite layer can surely serve as a barrier against the invasion and diffusion of impurities such as Na, K, and Li which have a high diffusion rate, and as a result, the semiconductor coating with high density and high integration can be obtained. It is possible to provide a glass product for semiconductor industry most suitable for use in heat treatment of a processed product.

「実施例」 以下、本発明の好適な実施例を例示的に詳しく説明す
る。ただしこの実施例に記載されている構成部品の寸
法、材質、形状、その相対配置などは特に特定的な記載
がない限りは、この発明の範囲をそれのみに限定する趣
旨ではなく、単なる説明例に過ぎない。
"Examples" Hereinafter, preferred examples of the present invention will be illustratively described in detail. However, unless otherwise specified, the dimensions, materials, shapes, relative positions, etc. of the components described in this embodiment are not intended to limit the scope of the present invention only thereto, but merely illustrative examples. Nothing more than.

先ず、天然石英を微粉砕して粒度は一定になるよう振る
い分け選別した後、フッ化水素にて浸漬洗浄した精製粉
を、電気炉にて10〜12時間程度長時間加熱溶融する事に
より、OH基が10ppm以下の含有量の溶融体を得、これを
成形して炉芯管を製造する材料となる透明石英ガラス管
を形成した後、次にこれを加熱炉内で塩素ガス又は塩化
水素ガスを流しながら数時間熱処理を行う事によりNaと
Kを0.1ppm、Liを0.3ppmに抑えた石英ガラス管を得る事
が出来た。
First, after natural quartz is finely pulverized and screened so that the particle size is constant, the refined powder that has been immersed and washed in hydrogen fluoride is heated and melted in an electric furnace for about 10 to 12 hours for a long time, After obtaining a melt with an OH group content of 10 ppm or less, forming a transparent quartz glass tube that will be the material for molding the furnace core tube by molding this, then this is chlorine gas or hydrogen chloride in a heating furnace. By performing heat treatment for several hours while flowing gas, it was possible to obtain a quartz glass tube in which Na and K were suppressed to 0.1 ppm and Li to 0.3 ppm.

そして前記石英ガラス管の外周面上に、不純物元素とし
てアルミニウムイオンを含む溶液を付着せしめた後、加
熱処理を行う。
Then, a solution containing aluminum ions as an impurity element is attached to the outer peripheral surface of the quartz glass tube, and then heat treatment is performed.

そして該加熱処理は前記石英ガラス管を石英ガラスの軟
化点以上の温度で加熱して処理され、これにより前記溶
液中のイオン化アルミニウム元素が石英ガラス管の表面
層にドーピングされる。
The heat treatment is performed by heating the quartz glass tube at a temperature equal to or higher than the softening point of the quartz glass, whereby the ionized aluminum element in the solution is doped into the surface layer of the quartz glass tube.

この状態では、成形された石英ガラス管1表面層に前記
アルミ原子が均一にドーピングされているのみでクリス
トバライト層は発現していないので、前記炉芯管1をユ
ーザ段階又はメーカ側で電気炉にて約10〜15時間、1300
℃前後で加熱する事により、図面に示すように石英ガラ
ス管1の全外表面に均一に、外表面より10〜100μmの
層厚を有するクリストバライト層2が発現する。
In this state, since the aluminum atom is uniformly doped into the surface layer of the molded quartz glass tube 1 and the cristobalite layer is not developed, the furnace core tube 1 is installed in the electric furnace at the user stage or the maker side. About 10 to 15 hours, 1300
By heating at around C, a cristobalite layer 2 having a layer thickness of 10 to 100 μm from the outer surface is uniformly developed on the entire outer surface of the quartz glass tube 1 as shown in the drawing.

次にかかる石英ガラス管1をリング状に切り出したもの
(本発明品)と、前記アルミ溶液を付着せしめずに加熱
処理する事によりクリストバライト層2が形成されてい
ないもの(比較例1)と、NaとKが0.1ppm、Liが0.3ppm
であるが、OH基が170ppm有する炉芯管1の表面に、特公
昭47-1477号に基づいて形成された、クリストバライト
層からなる被膜を形成したもの(比較例2)の、三種類
のリング管を使用して1300℃で24時間加熱した場合の変
形度(最大径/最少径)を及び1500℃で加熱した場合の
不純物の失透が発生するまでの時間の2点を比較した。
Next, the quartz glass tube 1 cut out in a ring shape (the product of the present invention), and the one in which the cristobalite layer 2 is not formed by heat treatment without depositing the aluminum solution (Comparative Example 1), 0.1ppm for Na and K, 0.3ppm for Li
However, three types of rings of the core core tube 1 having 170 ppm of OH groups, on which the coating consisting of the cristobalite layer formed based on Japanese Patent Publication No. 47-1477 (Comparative Example 2) is formed The deformation degree (maximum diameter / minimum diameter) when heated at 1300 ° C. for 24 hours using a tube and the time until devitrification of impurities when heated at 1500 ° C. were compared.

この結果、本発明品は変形率が1.01とほとんど無視し得
る程度の変形であるのに対し、比較例2は変形率が1.67
と最大値を示し且つ表面にひび割れが発生していたのを
確認出来た。、又比較例1においては1.10程度と本発明
品より大なる熱変形が見られた。
As a result, the product of the present invention has a deformation rate of 1.01, which is almost negligible, whereas Comparative Example 2 has a deformation rate of 1.67.
It was possible to confirm that a crack had occurred on the surface. Further, in Comparative Example 1, a thermal deformation of about 1.10, which is greater than that of the product of the present invention, was observed.

一方、失透発生時間については、本発明品が1000時間と
極めて長時間の加熱によっても発生しなかったのに対
し、比較例1では450時間程度の加熱により全体的に失
透が発生し、比較例2においても同様に500時間程度の
加熱によりクリストバライト層のひび割れや剥離が生じ
た部分より失透が生じていた。
On the other hand, regarding the devitrification occurrence time, the product of the present invention did not occur even after heating for an extremely long time of 1000 hours, whereas in Comparative Example 1, devitrification occurred overall by heating for about 450 hours, In Comparative Example 2 as well, devitrification occurred from the portion where cracking and peeling of the cristobalite layer occurred similarly after heating for about 500 hours.

「発明の効果」 以上記載の如く本発明によれば、高温下で長時間連続熱
処理を行う場合においても熱変形や失透が生じる事な
く、これにより使用寿命期間の大幅向上を達成し得る半
導体工業用の石英ガラス製品を提供する事が出来る。
"Effects of the Invention" As described above, according to the present invention, even when performing a continuous heat treatment at a high temperature for a long time, thermal deformation and devitrification do not occur, and thereby a semiconductor that can significantly improve the service life is achieved. We can provide industrial quartz glass products.

又本発明によれば、炉壁等から発生する拡散速度の早い
アルカリ金属等の不純物の侵入を完全に防止し得、半導
体被処理物の高密度化と高集積化に十分対応し得る。等
の種々の著効を有す。
Further, according to the present invention, it is possible to completely prevent the invasion of impurities such as an alkali metal having a high diffusion rate generated from the furnace wall and the like, and it is possible to sufficiently cope with high density and high integration of the semiconductor processing object. It has various remarkable effects.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明の実施例に係る石英ガラス製炉芯管の断面
図を示している。
The drawing shows a cross-sectional view of a quartz glass furnace core tube according to an embodiment of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】Na、K及びLiが0.5ppm以下の含有量を有す
る半導体工業用石英ガラス製品において、Na、Kをそれ
ぞれ0.2ppm以下で且つOH基を10ppm以下の含有量に設定
するとともに、その外表面層にドーピングされている不
純物元素を核としてクリストバライト結晶層を形成した
事を特徴とする石英ガラス製品
1. In a quartz glass product for semiconductor industry having a content of Na, K and Li of 0.5 ppm or less, Na and K are each set to 0.2 ppm or less and an OH group is set to a content of 10 ppm or less, A quartz glass product characterized in that a cristobalite crystal layer is formed with the impurity element doped in the outer surface layer as a nucleus.
【請求項2】前記不純物元素が三価の陽イオン原子であ
る特許請求の範囲第1項記載の石英ガラス製品
2. The quartz glass product according to claim 1, wherein the impurity element is a trivalent cation atom.
【請求項3】前記クリストバライト層の層厚が外表面よ
り10〜100μmの深さである特許請求の範囲第1項又は
第2項記載の石英ガラス製品
3. The quartz glass product according to claim 1, wherein the cristobalite layer has a thickness of 10 to 100 μm from the outer surface.
JP62070214A 1987-03-26 1987-03-26 Quartz glass products for the semiconductor industry Expired - Fee Related JPH068181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62070214A JPH068181B2 (en) 1987-03-26 1987-03-26 Quartz glass products for the semiconductor industry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62070214A JPH068181B2 (en) 1987-03-26 1987-03-26 Quartz glass products for the semiconductor industry

Publications (2)

Publication Number Publication Date
JPS63236723A JPS63236723A (en) 1988-10-03
JPH068181B2 true JPH068181B2 (en) 1994-02-02

Family

ID=13425054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62070214A Expired - Fee Related JPH068181B2 (en) 1987-03-26 1987-03-26 Quartz glass products for the semiconductor industry

Country Status (1)

Country Link
JP (1) JPH068181B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124739A (en) * 1988-10-31 1990-05-14 Shin Etsu Chem Co Ltd Synthetic quartz glass and its production
JP2631321B2 (en) * 1989-10-31 1997-07-16 信越石英株式会社 Silica glass crucible for pulling silicon single crystal
JP2933404B2 (en) * 1990-06-25 1999-08-16 信越石英 株式会社 Quartz glass crucible for pulling silicon single crystal and its manufacturing method
JP3253734B2 (en) * 1992-06-19 2002-02-04 富士通株式会社 Quartz equipment for semiconductor device manufacturing
JPH11238728A (en) 1997-12-16 1999-08-31 Fujitsu Ltd Heat treatment jig for use in production of semiconductor devices and manufacture of the same
JP3415533B2 (en) 2000-01-12 2003-06-09 エヌイーシーマイクロ波管株式会社 High pressure discharge lamp
TWI293947B (en) * 2001-03-26 2008-03-01 Tosoh Corp
US6875515B2 (en) * 2002-05-10 2005-04-05 General Electric Company Fused quartz article having controlled devitrification
JP2005255488A (en) * 2004-03-12 2005-09-22 Komatsu Electronic Metals Co Ltd Quartz crucible and method of manufacturing semiconductor single crystal using the same
JP5050363B2 (en) * 2005-08-12 2012-10-17 株式会社Sumco Heat treatment jig for semiconductor silicon substrate and manufacturing method thereof
JP5177979B2 (en) * 2006-09-05 2013-04-10 信越石英株式会社 Composite quartz glass tube for semiconductor manufacturing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2038564C3 (en) * 1970-08-04 1973-09-13 Heraeus Schott Quarzschmelze Gmbh, 6450 Hanau Quartz glass device part, in particular quartz glass tube, with nuclei that promote crystal formation contained in its outer surface layer for use at high temperatures, in particular for carrying out semiconductor technology processes
JPS4869794A (en) * 1971-12-24 1973-09-21
JPS5849519B2 (en) * 1977-03-17 1983-11-04 東芝セラミツクス株式会社 Quartz glass crucible for pulling silicon single crystals
JPS59129421A (en) * 1983-01-14 1984-07-25 Toshiba Ceramics Co Ltd Member for heat treatment of semiconductor
JPH065665B2 (en) * 1984-07-11 1994-01-19 東芝セラミックス株式会社 Quartz member for semiconductor heat treatment

Also Published As

Publication number Publication date
JPS63236723A (en) 1988-10-03

Similar Documents

Publication Publication Date Title
JPH068181B2 (en) Quartz glass products for the semiconductor industry
WO2007063996A1 (en) Quartz glass crucible, process for producing the same, and use
UA81278C2 (en) Vessel for holding a silicon and method for its making
JPH0335279B2 (en)
JP4601437B2 (en) Quartz glass crucible with inner surface semi-crystallized and manufacturing method thereof
US3907618A (en) Process for doping semiconductor employing glass-ceramic dopant
JP3268049B2 (en) Quartz glass material and its manufacturing method
JPH11310423A (en) Synthetic quartz glass and its production
JPS6144793A (en) Quartz glass crucible for pulling up silicon single crystal
US3998667A (en) Barium aluminoborosilicate glass-ceramics for semiconductor doping
JPS59129421A (en) Member for heat treatment of semiconductor
US3962000A (en) Barium aluminoborosilicate glass-ceramics for semiconductor doping
JP3187510B2 (en) Method of manufacturing member for heat treatment of semiconductor wafer
RU2370568C1 (en) Method of fabrication of quartz containers
JP7379054B2 (en) Method for manufacturing quartz glass crucible and quartz glass crucible for melting optical glass
JP3294356B2 (en) Quartz glass furnace core tube for semiconductor wafer processing
JP2610050B2 (en) Quartz glass tube for semiconductor heat treatment
JPS63310748A (en) Quartz glass member for producing semiconductor
JP3050353B2 (en) Method for producing opaque quartz glass
KR101642327B1 (en) Apparatus for manufacturing high purity quartz glass
JPS62226820A (en) Production of infrared transmittable chalcogenide glass containing silicon
JP2777858B2 (en) Silica glass tube for heat treatment of semiconductor and method for producing the same
JPS63215600A (en) Quartz glass component for production of semiconductor
US20070074653A1 (en) Apparatus for preparation of silicon crystals with reduced metal content
JPH02175687A (en) Quartz crucible for pulling silicon single crystal

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees