JPH0681670B2 - Energization control method in resistance welding machine - Google Patents

Energization control method in resistance welding machine

Info

Publication number
JPH0681670B2
JPH0681670B2 JP63065766A JP6576688A JPH0681670B2 JP H0681670 B2 JPH0681670 B2 JP H0681670B2 JP 63065766 A JP63065766 A JP 63065766A JP 6576688 A JP6576688 A JP 6576688A JP H0681670 B2 JPH0681670 B2 JP H0681670B2
Authority
JP
Japan
Prior art keywords
energization
welding
occurrence
current
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63065766A
Other languages
Japanese (ja)
Other versions
JPH01241385A (en
Inventor
元 辻井
正英 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP63065766A priority Critical patent/JPH0681670B2/en
Publication of JPH01241385A publication Critical patent/JPH01241385A/en
Publication of JPH0681670B2 publication Critical patent/JPH0681670B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、抵抗溶接機における通電制御方法に関する。The present invention relates to an energization control method in a resistance welding machine.

(従来の技術) 抵抗溶接では、電極間に挾まれるワークの部分に通電に
よる発熱でナゲット部が形成されるが、その後も通電を
続けるとナゲット部の熱膨張力を電極加圧力が押えきれ
なくなり、溶接金属の一部が外に飛出して散りを生ずる 溶接強度が最大になるのは、散りの発生寸前で通電を停
止したときであるが、散りの発生時期を事前に知ること
はできず、そこで従来は、特公昭57−37430号公報で知
られるように、通電時間を一定にして通電を行い、散り
が発生したときは次の打点での溶接に際し溶接電流を所
定量減少させるか、或いは特開昭58−47579号公報や、
特開昭58−47580号公報に見られるように、散りの発生
時点で通電を停止するようにしている。
(Prior art) In resistance welding, the nugget part is formed in the part of the work sandwiched between the electrodes due to the heat generated by energization, but if the energization is continued after that, the electrode expansion force can completely suppress the thermal expansion force of the nugget part. Disappearance causes some of the weld metal to fly out and cause spatter.Welding strength reaches its maximum when power is stopped just before spatter occurs, but it is not possible to know in advance when spatter occurs. Therefore, conventionally, as known from Japanese Patent Publication No. 57-37430, the welding current should be reduced by a predetermined amount during welding at the next welding point when the electricity is supplied with a constant energization time and scattering occurs. Alternatively, JP-A-58-47579,
As disclosed in Japanese Patent Laid-Open No. 47475/1983, the energization is stopped when the dust is generated.

尚、上記のものでは、散りによって変化する電極間の距
離や抵抗値、電流値、電極加圧力等のパラメータを検出
し、この検出値の変化からチリの発生を検出している。
In the above, parameters such as the distance between electrodes, the resistance value, the current value, and the electrode pressing force, which change due to scattering, are detected, and the occurrence of dust is detected from the change in the detected value.

(発明が解決しようとする課題) 上記特公昭57−37430号公報の技術は、散りが発生した
ときの事後対策であり、散りが発生した打点部の溶接強
度を保証できない。
(Problems to be Solved by the Invention) The technique disclosed in Japanese Patent Publication No. 57-37430 is a post-countermeasure when splattering occurs, and the welding strength of the spotted portion where the splattering occurs cannot be guaranteed.

又、特開昭58−47579号公報や特開昭58−47580号公報に
記載のものは、商用電源からコンタクタを介して溶接ト
ランスに電力を供給する通常の交流式溶接機であって、
1次電流の波形は第9図に示すようになり、ここでコン
タクタは一般にサイリスタで構成するため、通電途中で
は電流をカットできず、通電途中のt1の時点で散りが発
生しても半サイクルの通電が終了するt2の時点までは通
電が継続され、散りの発生から通電停止までのタイムラ
グは、電源周波数が50Hzの場合最大限10ミリ秒になる。
Further, the one described in JP-A-58-47579 and JP-A-58-47580 is a normal AC welding machine for supplying electric power from a commercial power source to a welding transformer through a contactor,
The waveform of the primary current is as shown in Fig. 9. Since the contactor is generally composed of a thyristor here, the current cannot be cut during energization, and even if dispersion occurs at time t 1 during energization, it will be half Energization continues until time t 2 when the energization of the cycle ends, and the time lag from the occurrence of dispersion to the stop of energization is 10 ms at the maximum when the power supply frequency is 50 Hz.

ところで、本願発明者は高速度カメラを用いて実験を行
い、散りの飛散速度が時速200km(5.5cm/ミリ秒)に達す
ることを確認した。
By the way, the inventor of the present application conducted an experiment using a high-speed camera and confirmed that the scattering speed of scattering reached 200 km / h (5.5 cm / millisecond).

上記の如く、10ミリ秒のタイムラグがあると、散りの発
生を初期段階で抑制できなくなり、溶接強度が低下して
しまう。
As described above, if there is a time lag of 10 milliseconds, the occurrence of scattering cannot be suppressed in the initial stage, and the welding strength will decrease.

本発明は、以上の点に鑑み、散りが発生したときその初
期段階で確実に通電を停止して、良好な溶接を行い得ら
れるようにした通電制御方法を提供することをその目的
とする。
SUMMARY OF THE INVENTION In view of the above points, an object of the present invention is to provide an energization control method capable of reliably stopping energization at the initial stage of occurrence of scattering and performing good welding.

(課題を解決するための手段) 本発明は、上記目的を達成すべく、1対の電極間にワー
クを挾んで通電する際に、散りの発生で値が変化するパ
ラメータを検出し、このパラメータ値の変化から散りの
発生を検出して通電を停止するようにしたものにおい
て、溶接トランスの2次側に整流回路を介して前記電極
を接続すると共に、該トランスの1次側をパワトランジ
スタで構成されるインバータと整流回路とを介して交流
電源端子に接続し、該インバータに加える制御パルスの
パルス幅に応じて1次側の通電パルス幅を変化させて溶
接電流を制御するようにし、散りの発生を検出したとき
制御パルスを立下げて直ちに通電を停止するようにした
ことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention detects a parameter whose value changes due to occurrence of scattering when a work is sandwiched between a pair of electrodes and energized, and this parameter is detected. In the one in which the occurrence of dispersion is detected from the change in the value and the energization is stopped, the electrode is connected to the secondary side of the welding transformer through a rectifier circuit, and the primary side of the transformer is a power transistor. The welding current is controlled by connecting to the AC power supply terminal via the configured inverter and rectifier circuit, and changing the energizing pulse width on the primary side according to the pulse width of the control pulse applied to the inverter to control the welding current. When the occurrence of is detected, the control pulse is lowered to immediately stop the energization.

この場合、溶接電流を通電開始後散りの発生で通電を停
止するまで漸増させることが望ましい。
In this case, it is desirable to gradually increase the welding current after the start of energization until the energization is stopped due to occurrence of dispersion.

(作 用) インバータのパワトランジスタは、制御パルスの立上り
と立下りでオンオフし、これにより溶接トランスの1次
側の通電パルス幅が制御パルスに応じて変化する。そし
て、散りの発生により制御パルスが立下ると、瞬時にパ
ワトランジスタがオフし、散りの発生初期段階で確実に
通電が停止される。
(Operation) The power transistor of the inverter is turned on and off at the rising and falling edges of the control pulse, which changes the energizing pulse width on the primary side of the welding transformer according to the control pulse. Then, when the control pulse falls due to the occurrence of the dispersion, the power transistor is instantly turned off, and the energization is surely stopped at the initial stage of the occurrence of the dispersion.

ところで、ワークの種類や板厚等によってナゲットの形
成に必要な溶接電流値が変化するため、例えば板厚の異
る打点を定電流で溶接する場合、打点毎に電流値を設定
せざるを得なくなり、又電極の摩耗による電流密度の減
少に合わせて電流値を設定し直す必要を生ずる これに対し、溶接電流を漸増させるようにすれば、一々
電流値を設定する必要がなくなり、而も散りの発生で自
動的に通電が停止されるため、通電時間の設定も不要と
なり、設定作業が極めて簡単になる。
By the way, since the welding current value necessary for forming the nugget changes depending on the type of work, plate thickness, etc., for example, in the case of welding with a constant current at welding points with different sheet thicknesses, the current value must be set for each welding point. In addition, it is necessary to reset the current value according to the decrease of the current density due to the wear of the electrode. On the other hand, if the welding current is gradually increased, it is not necessary to set the current value one by one, which is also scattered. Since the energization is automatically stopped due to the occurrence of the occurrence of electricity, it is not necessary to set the energization time, and the setting work becomes extremely easy.

(実施例) 第1図を参照して、(1)は溶接トランスを示し、該ト
ランス(1)の2次側を整流回路(2)を介して1対の
電極(3)(3)に接続し、後記するコントローラ(1
1)により空圧サーボ回路(26)を介して作動される加
圧シリンダ(4)により電極(3)(3)間にワークW
を挾んで加圧した状態で該両電極(3)(3)間に直流
の溶接電流を通電してワークWのスポット溶接を行うよ
うにした。
(Example) With reference to FIG. 1, (1) shows a welding transformer, and the secondary side of the transformer (1) is connected to a pair of electrodes (3) and (3) through a rectifier circuit (2). Connect and connect the controller (1
The work W is placed between the electrodes (3) and (3) by the pressurizing cylinder (4) operated by the pneumatic servo circuit (26) by the 1).
In the state where the workpiece W is pressed and pressed, a direct welding current is passed between the electrodes (3) and (3) to perform spot welding of the work W.

該トランス(1)の1次側は、4個のパワトランジスタ
(51)(52)(53)(54)から成るインバータ(5)
と、濾波回路(6)と、整流回路(7)とを介して三相
の交流電源端子(8)に接続され、これらパワトランジ
スタ(51)〜(54)をパルス幅制御回路(9)によりベ
ースドライブ回路(10)を介してオンオフ制御するよう
にした。
The primary side of the transformer (1) is an inverter (5) consisting of four power transistors (5 1 ) (5 2 ) (5 3 ) (5 4 ).
When a filter circuit (6), is connected to the rectifier circuit (7) to the AC power supply terminal (8) of three phases via these power transistors (5 1) to (5 4) a pulse width control circuit (9 ), The ON / OFF control is performed via the base drive circuit (10).

図中(11)はマイクロコンピュータから成る抵抗溶接機
のコントローラ、(12)は電流検出素子(12a)からの
信号で実効電流値を検出する電流検出回路、(13)は電
流設定器、(14)は電流検出回路(12)と電流設定器
(13)との出力を比較して実効電流値が設定電流値に達
するまで低レベルの信号を出力し両者が一致したとき高
レベルの信号を出力する比較器、(15)は高周波例えば
1600Hzのクロックパルスを発生する発振器を示し、これ
らコントローラ(11)からの信号と、比較器(14)から
の信号と、発振器(15)からのクロックパルスとをパル
ス幅制御回路(9)に入力して、該回路(9)から後記
する如く制御パルスを出力させるようにした。
In the figure, (11) is a controller of a resistance welding machine including a microcomputer, (12) is a current detection circuit that detects an effective current value from a signal from the current detection element (12a), (13) is a current setter, and (14) ) Compares the outputs of the current detection circuit (12) and the current setter (13) and outputs a low level signal until the effective current value reaches the set current value, and outputs a high level signal when the two match. Comparator, (15) high frequency eg
An oscillator for generating a 1600 Hz clock pulse is shown, and a signal from these controllers (11), a signal from a comparator (14), and a clock pulse from an oscillator (15) are input to a pulse width control circuit (9). Then, the control pulse is output from the circuit (9) as described later.

パルス幅制御回路(9)の詳細は第2図に示す通りであ
り、比較器(14)からの信号を入力するANDゲート(1
6)と、クロックパルスを入力するANDゲート(17)と、
両ANDゲート(16)(17)の出力をORゲート(18)を介
して入力するフリップフロップ(19)と、クロックパル
スを入力するフリップフロップ(20)と、クロックパル
スの入力で端子の出力が短時間低レベルになる単安定
マルチバイブレータ(21)と、出力側の2個のANDゲー
ト(22)(23)とを設け、該両ANDゲート(22)(23)
にフリップフロップ(19)のQ端子と単安定マルチバイ
ブレータ(21)の端子とコントローラ(11)との信号
を入力すると共に、一方のANDゲート(22)にフリップ
フロップ(20)のQ端子の信号と、他方のANDゲート(2
3)に該フリップフロップ(20)の端子の信号とを入
力した。
The details of the pulse width control circuit (9) are as shown in FIG. 2, and the AND gate (1 which inputs the signal from the comparator (14)
6) and an AND gate (17) for inputting a clock pulse,
A flip-flop (19) that inputs the outputs of both AND gates (16) and (17) via an OR gate (18), a flip-flop (20) that inputs a clock pulse, and the output of the terminal when the clock pulse is input A monostable multivibrator (21) that is in a low level for a short time and two AND gates (22) (23) on the output side are provided, and both AND gates (22) (23)
The signal of the Q terminal of the flip-flop (19), the terminal of the monostable multivibrator (21) and the controller (11) is input to the AND gate, and the signal of the Q terminal of the flip-flop (20) is input to one AND gate (22). And the other AND gate (2
The signal from the terminal of the flip-flop (20) was input to 3).

かくて、実効電流値が設定電流値に達するまでは、AND
ゲート(16)に比較器(14)から低レベルの信号が入力
されて、フリップフロップ(19)のQ端子からは高レベ
ルの信号が継続して出力され、一方、フリップフロップ
(20)のQ端子及び端子の出力はクロックパルスによ
って交互に高レベルとなり、又単安定マルチバイブレー
タ(21)の端子の出力はクロックパルスの入力毎に短
時間低レベルになるため、ANDゲート(22)(23)から
クロックパルスに同期した短い休止時間を存して高レベ
ルの制御パルスが交互に出力され、一方のANDゲート(2
2)からの制御パルスによりパワトランジスタ(51)(5
2)と、他方のANDゲート(23)からの制御パルスにより
パワトランジスタ(53)(54)とがオンされて、溶接ト
ランス(1)の1次コイルに第8図に示す如き矩形波の
交流パルスが通電される。
Thus, until the effective current value reaches the set current value, AND
A low level signal is input to the gate (16) from the comparator (14) and a high level signal is continuously output from the Q terminal of the flip-flop (19), while the Q of the flip-flop (20) is output. AND gate (22) (23) because the output of the terminal and the output of the terminal alternately become high level by the clock pulse, and the output of the terminal of the monostable multivibrator (21) becomes low level for a short time every input of the clock pulse. Outputs a high level control pulse alternately with a short pause time synchronized with the clock pulse from one AND gate (2
Power transistor (5 1 ) (5
2 ) and the power transistor (5 3 ) (5 4 ) are turned on by the control pulse from the other AND gate (23), and the rectangular wave as shown in FIG. 8 is applied to the primary coil of the welding transformer (1). AC pulse is applied.

実効電流値が設定電流値に一致すると、比較器(14)か
らANDゲート(16)に高レベルの信号が入力されて、フ
リップフロップ(19)のQ端子の出力が低レベルにな
り、かくするときはクロックパルスが入力される前に制
御パルスが立下って制御パルスのパルス幅が減少し、こ
れに応じて溶接トランス(1)の1次側の通電パルス幅
Tも減少し、溶接電流が設定電流値に等しくなるように
制御される。
When the effective current value matches the set current value, a high level signal is input from the comparator (14) to the AND gate (16), and the output of the Q terminal of the flip-flop (19) becomes low level. At this time, the control pulse falls before the clock pulse is input, and the pulse width of the control pulse decreases. Accordingly, the energizing pulse width T of the primary side of the welding transformer (1) also decreases, and the welding current is reduced. It is controlled to be equal to the set current value.

そして、電流設定器(13)から第7図に示す特性の設定
信号を出力し、溶接電流を通電開始後この特性に従って
漸増させるようにした。
Then, the current setting device (13) outputs a setting signal having the characteristic shown in FIG. 7, and the welding current is gradually increased according to this characteristic after the start of energization.

前記コントローラ(11)には、加圧シリンダ(4)のピ
ストンの変位から電極(3)(3)間の開度を検出する
光学式距離センサから成る開度検出器(24)の信号と、
電極(3)(3)間の電圧と電流とから電極(3)
(3)間の抵抗値を検出する抵抗検出回路(25)の信号
とが入力され、開度検出器(24)からの信号で電極
(3)(3)が所定の加圧開度に閉じられたことが確認
されたとき、該コントローラ(11)から前記ANDゲート
(22)(23)に高レベルの通電指令信号を出力して、通
電を開始するようにし、又抵抗検出回路(25)で検出さ
れた抵抗値の単位時間当りの変化量ΔRをコントローラ
(11)のCPUで演算して、これが規定値以上になったと
きコントローラ(11)からANDゲート(22)(23)に低
レベルの通電停止信号を出力し、制御パルスを立下げて
通電を停止するようにした。
The controller (11) includes a signal from an opening detector (24) including an optical distance sensor that detects the opening between the electrodes (3) and (3) from the displacement of the piston of the pressurizing cylinder (4),
From the voltage and current between the electrodes (3) (3), the electrodes (3)
A signal from the resistance detection circuit (25) for detecting the resistance value between (3) is input, and the electrodes (3) and (3) are closed to a predetermined pressurization opening by a signal from the opening detector (24). When it is confirmed, the controller (11) outputs a high level energization command signal to the AND gates (22) (23) to start energization, and the resistance detection circuit (25) The change amount ΔR of the resistance value per unit time detected by the CPU is calculated by the CPU of the controller (11), and when it exceeds the specified value, the controller (11) changes the low level to the AND gates (22) (23). An energization stop signal is output to stop the energization by lowering the control pulse.

第4図のa線は良好な溶接が行われた場合の電極(3)
(3)間の抵抗値の変化を示し、通電初期に接触抵抗の
減少で抵抗値が一旦低下した後、発熱により抵抗値が次
第に増加し、ナゲットの形成後の散りの発生で抵抗値が
急激に低下する。
The line a in Fig. 4 is the electrode (3) when good welding is performed.
The change in the resistance value between (3) shows that the resistance value once decreases due to the decrease of the contact resistance at the initial stage of energization, and then the resistance value gradually increases due to heat generation, and the resistance value suddenly increases due to the occurrence of dispersion after the formation of the nugget. Fall to.

尚、ワークの汚損や電極(3)の片当り等で電極(3)
とワークの接触面積が小さくなると、ワークの局部加熱
により通電初期に散りを発生し、抵抗値の変化特性は第
4図のb線のようになり、又電極(3)が過度に摩耗す
ると、電流密度の減少でナゲットが良好に形成されなく
なり、その結果散りも発生しなくなって、抵抗値の変化
特性は第4図のc線のようになる。
It should be noted that the electrode (3) may be damaged due to stains on the work or partial contact of the electrode (3)
When the contact area between the work and the work becomes small, the work is locally heated to cause dispersion in the initial stage of energization, the resistance change characteristic becomes as shown by line b in FIG. 4, and when the electrode (3) is excessively worn, Due to the decrease in the current density, the nugget is not formed well, and as a result, scattering does not occur, and the resistance value change characteristic is as shown by line c in FIG.

第3図はコントローラ(11)のプログラムを示し、先ず
抵抗値を読込んでストアし、所定の単位時間前に読込ん
だ抵抗値と今回読込んだ抵抗値との偏差から単位時間当
りの変化量ΔRを演算し()、次にΔRが設定値α以
上か否かを判別して()、ΔR<αのときは通電開始
からの経過時間tが予め定めた最大通電時間tmaxに達し
たか否かを判別し()、t<tmaxのときはのステッ
プに戻り上記の判別処理を繰返す。
FIG. 3 shows a program of the controller (11). First, the resistance value is read and stored, and the amount of change per unit time from the deviation between the resistance value read a predetermined unit time ago and the resistance value read this time. Calculate ΔR (), then determine whether or not ΔR is greater than or equal to the set value α (), and if ΔR <α, whether the elapsed time t from the start of energization has reached a predetermined maximum energization time tmax. It is determined whether or not (), and when t <tmax, the process returns to step and the above determination process is repeated.

尚、前記単位時間はこの判別処理のサイクルタイムのn
(整数)倍に設定し、のステップでn回前に読込んだ
抵抗値をRAMから読出してΔRを演算する。単位時間を1
00マイクロ秒程度に設定すれば、散りの発生時にのみΔ
Rが判別可能な大きさとなり、散り発生時以外の抵抗値
の変化ではΔRが殆んど零となり、誤作動を生ずること
なく散りの発生を応答性良く検出できる。
The unit time is n of the cycle time of this discrimination processing.
It is set to (integer) times, and the resistance value read n times before in the step is read from the RAM and ΔR is calculated. Unit time is 1
If set to about 00 microseconds, Δ
R becomes a discriminable size, and ΔR becomes almost zero when the resistance value changes except when the scattering occurs, and the occurrence of the scattering can be detected with good responsiveness without causing a malfunction.

散りの発生でΔR≧αになると、経過時間tが予め定め
た最小通電時間tminを越えているか否かを判別する
()。t>minでΔR>αになるのは、第4図のa線
の如く良好な溶接が行われたときであり、この場合は
のステップに進んで通電停止信号を出力する。これによ
れば、パルス幅制御回路(9)から出力されている制御
パルスが立下り、ΔR>αになった第8図のt1の時点で
直ちに通電が停止される。
When ΔR ≧ α due to occurrence of dispersion, it is determined whether the elapsed time t exceeds a predetermined minimum energization time tmin (). When t> min, ΔR> α is satisfied when good welding is performed as shown by the line a in FIG. 4, and in this case, the process proceeds to step and the energization stop signal is output. According to this, the control pulse output from the pulse width control circuit (9) falls, and the energization is immediately stopped at t 1 in FIG. 8 when ΔR> α.

又、第4図のb線の如く初期散りを生じてt<tminでΔ
R>αになったときは、のステップに進んで通電停止
信号を出力し、次いでのステップに進んでアラームを
作動する。
Also, as shown in line b of FIG.
When R> α, the process proceeds to step to output the energization stop signal, and then proceeds to the next step to activate the alarm.

又、第4図のc線の如く最大通電時間tmaxになってもΔ
R≧αにならないときは、のステップからのステッ
プに進んで通電停止信号を出力し、次いでのステップ
に進んで整形指令信号を出力し、抵抗溶接機をこれを取
付けたロボットの作動で整形器の配置場所に移動して、
電極(3)を整形する。
Also, even if the maximum energization time tmax is reached as shown by line c in FIG. 4, Δ
If R ≧ α does not hold, the process proceeds from step to step 1 to output the energization stop signal, to the next step to output the shaping command signal, and the shaping machine is operated by the operation of the robot having the resistance welding machine attached. Move to the location of
Shape the electrode (3).

尚、溶接電流を上記の如く漸増させるため、ワークの種
類や板厚が変化しても、電極(3)が過度に摩耗してい
ない限り確実にナゲットが形成され、tminとtmaxとを、
各種ワークのナゲット形成時期がその間に含まれるよう
に多少余裕を持って設定しておけば、ワーク毎に溶接電
流や溶接時間を設定しなくとも、良好に溶接が行われ
る。
Since the welding current is gradually increased as described above, even if the type of work and the plate thickness are changed, a nugget is reliably formed unless the electrode (3) is excessively worn, and tmin and tmax are
By setting the nugget formation time of various works so that it is included between them, it is possible to perform good welding without setting a welding current or a welding time for each work.

又、上記実施例では散りの発生を検出するパラメータと
して抵抗値を用いたが、電極(3)(3)間の距離即ち
電極開度をパラメータとして用いることも可能である。
Further, in the above embodiment, the resistance value is used as the parameter for detecting the occurrence of the dispersion, but the distance between the electrodes (3) (3), that is, the electrode opening degree can be used as the parameter.

電極開度は、ワークの発熱による膨張で次第に増加し、
散りの発生で急激に減少し、その変化特性は、溶接が良
好に行われたとき第6図のa線、電極(3)の接触不良
による初期散りを生じたとき同図b線、電極(3)の過
度の摩耗を生じたとき同図c線の如くになる。
The electrode opening gradually increases due to expansion due to heat generation of the work,
When the welding is satisfactorily performed, the change characteristics are shown in FIG. 6a line, and when the electrode (3) causes initial dispersion due to poor contact, the b line in FIG. When excessive wear of 3) occurs, it becomes like the line c in the figure.

第5図は電極開度θをパラメータに用いたときの制御プ
ログラムを示し、のステップで前記開度センサ(24)
により検出される電極開度θを読込んでストアし、の
ステップで単位時間前に読込んだ電極開度と今回読込ん
だ電極開度との偏差から単位時間当りの開度変化量Δθ
を演算し、のステップでΔθが設定値β以上になった
か否かを判別する。のステップから先の判別処理は、
第3図のものと同一である。
FIG. 5 shows a control program when the electrode opening θ is used as a parameter.
The electrode opening degree θ detected by is read and stored, and the opening change amount Δθ per unit time is calculated from the deviation between the electrode opening degree read in unit time before in step and the electrode opening degree read this time.
Is calculated, and it is determined whether or not Δθ has become equal to or larger than the set value β in step. The determination process from the step of
It is the same as that of FIG.

尚、第5図では通電開始までのプログラムを付記したの
で、これについて説明する。
It should be noted that a program up to the start of energization is additionally shown in FIG. 5, which will be described.

加圧開始後、電極開度θを読込んでθが打点位置のワー
クの厚さに相当する正規の加圧開度θに減少したか否
かを判別し(、)、θ>θのときは空圧サーボ回
路(26)を介して加圧力を増加し()、θ≦θにな
ったとき通電を開始する。
After the pressurization is started, the electrode opening degree θ is read, and it is determined whether or not θ has decreased to the regular pressurization opening degree θ S corresponding to the thickness of the work at the spot position (,), and θ> θ S At this time, the applied pressure is increased via the pneumatic servo circuit (26) (), and when θ ≦ θ S , energization is started.

これによれば、ワーク同士が加圧密着されたときにのみ
通電が行われ、密着不良状態での通電によるワークの穴
明きといった不具合の発生を防止できる。
According to this, the power is supplied only when the works are pressed and brought into close contact with each other, and it is possible to prevent the occurrence of a defect such as punching of the works due to the power being supplied in the poor contact state.

そして、電極開度を本実施例の如く散りの検出パラメー
タに用いれば、抵抗検出回路(25)のような別の検出手
段が不用となり、コストダウンを図ることができる。
If the electrode opening degree is used as the scattering detection parameter as in the present embodiment, another detection means such as the resistance detection circuit (25) becomes unnecessary, and the cost can be reduced.

(発明の効果) 以上の説明から明らかなように、請求項1の発明によれ
ば、散りの発生初期段階で確実に通電を停止でき、自動
的に良好な溶接を行い得られ、更に請求項2の発明によ
れば、溶接条件の設定が容易なり、生産性の一層の向上
を図れる効果を有する。
(Effects of the Invention) As is clear from the above description, according to the invention of claim 1, it is possible to surely stop the energization at the initial stage of occurrence of scattering, and to perform good welding automatically. According to the second aspect of the invention, the welding conditions can be easily set, and the productivity can be further improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法の実施に用いる通電制御装置の1例
のブロック回路図、第2図は制御パルスを発生するパル
ス幅制御回路の1例のブロック回路図、第3図はコント
ローラのプログラムを示すフローチャート、第4図は抵
抗値の変化特性を示す線図、第5図はパラメータとして
電極開度を用いた場合のプログラムを示すフローチャー
ト、第6図は電極開度の変化特性を示す線図、第7図は
溶接電流の設定特性を示す線図、第8図は溶接トランス
の1次電流の波形を示す線図、第9図は交流溶接を行う
従来技術における溶接トランスの1次電流の波形を示す
線図である。 W……ワーク、(1)……溶接トランス (2)……整流回路、(3)……電極 (5)……インバータ (51)〜(54)……パワトランジスタ (7)……整流回路、(8)……交流電源端子 (9)……パルス幅制御回路 (11)……コントローラ
FIG. 1 is a block circuit diagram of an example of an energization control device used for carrying out the method of the present invention, FIG. 2 is a block circuit diagram of an example of a pulse width control circuit for generating a control pulse, and FIG. 3 is a controller program. 4 is a flow chart showing the resistance change characteristic, FIG. 5 is a flow chart showing a program when the electrode opening is used as a parameter, and FIG. 6 is a line showing the electrode opening change characteristic. Fig. 7 is a diagram showing the setting characteristics of the welding current, Fig. 8 is a diagram showing the waveform of the primary current of the welding transformer, and Fig. 9 is the primary current of the welding transformer in the prior art for performing AC welding. It is a diagram showing a waveform of. W …… Workpiece, (1) …… Welding transformer (2) …… Rectifier circuit, (3) …… Electrode (5) …… Inverter (5 1 ) to (5 4 ) …… Power transistor (7) …… Rectifier circuit (8) …… AC power supply terminal (9) …… Pulse width control circuit (11) …… Controller

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】1対の電極間にワークを挾んで通電する際
に、散りの発生で値が変化するパラメータを検出し、こ
のパラメータ値の変化から散りの発生を検出して通電を
停止するようにしたものにおいて、溶接トランスの2次
側に整流回路を介して前記電極を接続すると共に、該ト
ランスの1次側をパワトランジスタで構成されるインバ
ータと整流回路とを介して交流電源端子に接続し、該イ
ンバータに加える制御パルスのパルス幅に応じて1次側
の通電パルス幅を変化させて溶接電流を制御するように
し、散りの発生を検出したとき制御パルスを立下げて直
ちに通電を停止するようにしたことを特徴とする抵抗溶
接機における通電制御方法。
1. When a work is sandwiched between a pair of electrodes and energized, a parameter whose value changes due to occurrence of scattering is detected, and the occurrence of scattering is detected from the change in the parameter value to stop energization. In this configuration, the electrode is connected to the secondary side of the welding transformer via a rectifier circuit, and the primary side of the transformer is connected to an AC power supply terminal via an inverter composed of power transistors and a rectifier circuit. The welding current is controlled by changing the energization pulse width on the primary side according to the pulse width of the control pulse applied to the inverter, and when the occurrence of dispersion is detected, the control pulse is turned off to immediately energize. A method for controlling energization in a resistance welding machine, which is characterized in that it is stopped.
【請求項2】溶接電流を通電開始後散りの発生で通電を
停止するまで漸増させるようにしたことを特徴とする請
求項1記載の抵抗溶接機における通電制御方法。
2. The energization control method in a resistance welding machine according to claim 1, wherein the welding current is gradually increased after the start of energization until the energization is stopped due to occurrence of dispersion.
JP63065766A 1988-03-22 1988-03-22 Energization control method in resistance welding machine Expired - Fee Related JPH0681670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63065766A JPH0681670B2 (en) 1988-03-22 1988-03-22 Energization control method in resistance welding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63065766A JPH0681670B2 (en) 1988-03-22 1988-03-22 Energization control method in resistance welding machine

Publications (2)

Publication Number Publication Date
JPH01241385A JPH01241385A (en) 1989-09-26
JPH0681670B2 true JPH0681670B2 (en) 1994-10-19

Family

ID=13296472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63065766A Expired - Fee Related JPH0681670B2 (en) 1988-03-22 1988-03-22 Energization control method in resistance welding machine

Country Status (1)

Country Link
JP (1) JPH0681670B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2724860B1 (en) * 1994-09-23 1997-01-17 Lorraine Laminage WELDING CURRENT REGULATION DEVICE
DE69620365T2 (en) * 1995-12-21 2002-11-14 Matsushita Electric Ind Co Ltd Control device for a resistance welding machine
CN102107317A (en) * 2011-01-20 2011-06-29 毛振刚 Automatic power-saving controller for electric welding machines
CN104816082B (en) * 2015-05-14 2017-01-11 哈尔滨工业大学 Silicon controlled rectifier connection angle and triggering angle extraction circuit
JP2019141851A (en) * 2018-02-16 2019-08-29 マツダ株式会社 Method and device for detecting expulsion and surface flash in electric resistance welding

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847579A (en) * 1981-09-17 1983-03-19 Dengensha Mfg Co Ltd Method and device for controlling weld time in resistance welding
JPS60118393A (en) * 1983-12-01 1985-06-25 Inoue Japax Res Inc Welding device

Also Published As

Publication number Publication date
JPH01241385A (en) 1989-09-26

Similar Documents

Publication Publication Date Title
US4746051A (en) Ultrasonic welding control
US4399511A (en) Power factor monitoring and control system for resistance welding
EP0314679A1 (en) Method and apparatus for measuring and controlling indentation in resistance welding.
JP2000288743A (en) Controller for resistance welding equipment
US20050045597A1 (en) Resistance welding control method
JPH0681670B2 (en) Energization control method in resistance welding machine
JPS6096378A (en) Flash butt welding method
JPS5847579A (en) Method and device for controlling weld time in resistance welding
JP3810497B2 (en) Resistance welding control device
JP3518401B2 (en) Arc welding equipment
JPH0422584A (en) Method and device for controlling welding current of spot welding machine
JPH0130593B2 (en)
JPH0760457A (en) Resistance welding machine
GB2126511A (en) Method of and apparatus for automatic control of a machine for upset butt welding of metal workpieces
JPS63180384A (en) Inter-tip power control type control system for resistance welding
JPH0430916A (en) Control method and device for wire-cut electric discharge machine
JP3733438B2 (en) Control method and control apparatus for electric servo resistance welding apparatus
JP2559976B2 (en) Spot welding equipment
JP3291110B2 (en) Control device and control method for resistance welding machine
JPH0130594B2 (en)
JP3243484B2 (en) Electric pressurization control method.
JPH06344155A (en) Controller for spot welding machine
JPH03207583A (en) Method for controlling resistance welding machine
JPS592589B2 (en) flash welding equipment
JPS5841952B2 (en) Adaptive control method in resistance welding

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees