JPH0681218A - Graphitized vapor-grown carbon fiber for forming interlaminar compound and its production - Google Patents

Graphitized vapor-grown carbon fiber for forming interlaminar compound and its production

Info

Publication number
JPH0681218A
JPH0681218A JP23318492A JP23318492A JPH0681218A JP H0681218 A JPH0681218 A JP H0681218A JP 23318492 A JP23318492 A JP 23318492A JP 23318492 A JP23318492 A JP 23318492A JP H0681218 A JPH0681218 A JP H0681218A
Authority
JP
Japan
Prior art keywords
carbon fiber
grown carbon
vapor
graphitized
intercalation compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23318492A
Other languages
Japanese (ja)
Inventor
Minoru Harada
稔 原田
Masanori Niiyama
正徳 新山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP23318492A priority Critical patent/JPH0681218A/en
Publication of JPH0681218A publication Critical patent/JPH0681218A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject fiber capable of receiving a guest material and quickly forming an interlaminar compound by essentially graphitizing a vapor-grown carbon fiber and crushing the graphitized fiber. CONSTITUTION:A vapor-grown carbon fiber is essentially graphitized and crushed to obtain a host material consisting of carbon fiber 12. The carbon fiber 12 is heated together with a guest material 13 such as a metal halide in a reaction furnace 3 in a heating furnace 1 to form an interlaminar compound.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は層間化合物形成用黒鉛
化気相成長炭素繊維及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a graphitized vapor grown carbon fiber for forming an intercalation compound and a method for producing the same.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】気相成長
炭素繊維は、超微粒子状の鉄やニッケルなどの金属を触
媒として炭素化合物を800〜1,300℃に加熱する
ことにより、これを熱分解して製造することができる。
この気相成長炭素繊維は熱処理することにより容易に黒
鉛構造に転化する特長を有している。例えば、この気相
成長炭素繊維を2,800℃以上で加熱処理して得られ
た黒鉛化気相成長炭素繊維は、結晶欠陥の少ない黒鉛網
面が繊維軸に平行に発達している。したがって、この黒
鉛化気相成長炭素繊維は、層間化合物のホスト用材料と
して好適な材料であるとして期待されている。
2. Description of the Related Art Vapor-grown carbon fibers are prepared by heating a carbon compound to 800 to 1300 ° C. using a metal such as iron or nickel in the form of ultrafine particles as a catalyst. It can be produced by thermal decomposition.
This vapor grown carbon fiber has a feature that it is easily converted into a graphite structure by heat treatment. For example, in the graphitized vapor-grown carbon fiber obtained by heating the vapor-grown carbon fiber at 2,800 ° C. or higher, the graphite network surface with few crystal defects develops parallel to the fiber axis. Therefore, this graphitized vapor grown carbon fiber is expected to be a material suitable as a host material for an intercalation compound.

【0003】しかしながら、この発明者らの検討の結
果、黒鉛化気相成長炭素繊維をホスト材料として層間化
合物を製造したとき、層間化合物の生成速度が遅いとい
った問題が明らかになった。その理由は、以下のようで
あると、この発明者らは推定している。
However, as a result of the investigations by the present inventors, when the intercalation compound was produced by using the graphitized vapor-grown carbon fiber as the host material, it became clear that the formation rate of the intercalation compound was slow. The present inventors presume that the reason is as follows.

【0004】流動気相法により生成した気相成長炭素繊
維は、繊維の両端が丸く炭素の層で覆われているため
に、層間化合物のホスト材料として使用する場合、繊維
を粉砕し、切断する必要があった。
Since vapor grown carbon fibers produced by the fluidized vapor phase method are rounded at both ends of the fibers and covered with a layer of carbon, the fibers are crushed and cut when used as a host material for an intercalation compound. There was a need.

【0005】また、黒鉛化処理は気相成長炭素繊維を通
気性のある耐熱容器に詰めて、不活性気体を流した2,
000℃以上の黒鉛化炉を通過させるのであるが、製造
されたままの気相成長炭素繊維は嵩高くて容器に充填で
きる量が少ないので、ハイブリダイザーやボールミルな
どによって、所定の長さに粉砕してから黒鉛化するのが
普通であった。
Further, in the graphitization treatment, vapor-grown carbon fibers were packed in a gas proof heat-resistant container and an inert gas was flowed.
Although it is passed through a graphitization furnace at 000 ° C or higher, the vapor-grown carbon fiber as produced is bulky and the amount that can be filled in the container is small, so pulverize it to a predetermined length with a hybridizer or ball mill. It was normal to graphitize after that.

【0006】このように気相成長炭素繊維を粉砕した後
に、黒鉛化した場合、その端面の炭素原子は再結合す
る。このとき、これらの炭素原子のいくつかが層間化合
物のゲスト材料の層間への進入を防げるように結合して
いると考えられる。
When the vapor grown carbon fiber is crushed and then graphitized, the carbon atoms on the end face are recombined. At this time, it is considered that some of these carbon atoms are bonded so as to prevent the intercalation compound from entering the interlayer of the guest material.

【0007】また、その雰囲気中に存在するフリーカー
ボンがその端面を覆うように結合していることなども考
えられる。
It is also conceivable that the free carbon existing in the atmosphere is bonded so as to cover the end face.

【0008】この発明は実質的に粉砕しない気相成長炭
素繊維を黒鉛化し、その後に所定の長さに粉砕した黒鉛
化気相成長炭素繊維を用い、層間化合物を製造したとこ
ろ、その反応速度が格段に改善され、粉砕、切断後に黒
鉛化処理した黒鉛化気相成長炭素繊維より勝れているこ
とを見いだしてこの発明に達した。すなわち、この発明
は黒鉛層間化合物のホスト材料に好適な黒鉛化気相成長
炭素繊維及びその製造方法を提供することにある。
According to the present invention, an intercalation compound is produced using graphitized vapor-grown carbon fiber which has been substantially pulverized and then graphitized to a predetermined length. The present invention has been achieved by finding that it is significantly improved and is superior to the graphitized vapor grown carbon fiber that is graphitized after crushing and cutting. That is, the present invention provides a graphitized vapor-grown carbon fiber suitable as a host material for a graphite intercalation compound and a method for producing the same.

【0009】[0009]

【前記課題を解決するための手段】前記課題を解決する
ための本願請求項1に記載の発明は、気相成長炭素繊維
を実質的に黒鉛化処理した後に粉砕してなることを特徴
とする層間化合物形成用黒鉛化気相成長炭素繊維であ
り、請求項2に記載の発明は、直径が5μm以下、アス
ペクト比が50以下である前記請求項1に記載の層間化
合物形成用黒鉛化気相成長炭素繊維であり、請求項3に
記載の発明は、気相成長炭素繊維を実質的に黒鉛化処理
した後に粉砕することを特徴とする層間化合物形成用黒
鉛化気相成長炭素繊維である。
The invention according to claim 1 for solving the above-mentioned problems is characterized in that vapor-grown carbon fibers are substantially graphitized and then pulverized. A graphitized vapor grown carbon fiber for forming an intercalation compound, wherein the invention according to claim 2 has a diameter of 5 μm or less and an aspect ratio of 50 or less. It is a grown carbon fiber, and the invention according to claim 3 is a graphitized vapor grown carbon fiber for forming an intercalation compound, characterized in that the vapor grown carbon fiber is substantially graphitized and then pulverized.

【0010】−層間化合物形成用気相成長炭素繊維及び
その製造方法− この発明の層間化合物形成用気相成長炭素は、気相成長
炭素繊維を実質的に黒鉛化処理した後に粉砕されてな
る。
-Vapor grown carbon fiber for forming intercalation compound and method for producing the same-The vapor grown carbon for forming intercalation compound of the present invention is obtained by substantially graphitizing the vapor grown carbon fiber and then pulverizing the carbon fiber.

【0011】ここで、気相成長炭素繊維は、気相成長法
により製造することができる。
Here, the vapor grown carbon fiber can be produced by a vapor growth method.

【0012】気相成長法により気相成長炭素繊維を製造
する方法としては、いわゆる基板法と流動気相法とがあ
る。基板法は、基板に触媒金属例えば遷移金属もしくは
遷移金属化合物を担持させ、高温度に加熱しながら、そ
の基板上に炭素源ガスである炭化水素ガスを流通させる
ことにより、基板表面に炭素繊維を生成させる方法であ
り、流動気相法は、基板を使用せず、触媒金属になり得
る金属化合物を炭素源である炭素化合物とを気化して高
温の反応管中に流通させることにより、空間中に炭素繊
維を生成させる方法である。
As a method for producing a vapor grown carbon fiber by the vapor growth method, there are a so-called substrate method and a fluidized vapor phase method. In the substrate method, a catalyst metal such as a transition metal or a transition metal compound is supported on the substrate, and while heating to a high temperature, a hydrocarbon gas that is a carbon source gas is circulated on the substrate to form carbon fibers on the substrate surface. The fluidized gas phase method is a method of producing a metal compound that can be a catalyst metal without using a substrate, by vaporizing a metal compound that is a carbon source into a reaction tube at a high temperature, This is a method of producing carbon fiber.

【0013】具体的には、特開昭52−107320
号、特開昭57−117622号、特開昭58−156
512号、特開昭58−180615号、特開昭60−
185818号、特開昭60−224815号、特開昭
60−231821号、特開昭61−132630号、
特開昭61−132600号、特開昭61−13266
3号、特開昭61−225319号、特開昭61−22
5322号、特開昭61−225325号、特開昭61
−225327号、特開昭61−225328号、特開
昭61−2275425号、特開昭61−282427
号の各公報に記載の方法により製造される気相成長炭素
繊維をこの発明の方法における原料として使用すること
ができる。
Specifically, Japanese Patent Laid-Open No. 52-107320
No. 57-176622 and 58-156.
512, JP-A-58-180615, JP-A-60-
185818, JP-A-60-224815, JP-A-60-231821, JP-A-61-132630,
JP-A-61-132600, JP-A-61-132666
3, JP-A-61-225319, JP-A-61-222.
5322, JP-A-61-225325, JP-A-61
-225327, JP-A-61-225328, JP-A-61-2275425, and JP-A-61-282427.
The vapor-grown carbon fibers produced by the method described in each of the publications can be used as a raw material in the method of the present invention.

【0014】気相成長炭素繊維は実質的に粉砕、切断さ
れることなく黒鉛化処理がなされる。ここで、実質的に
粉砕、切断されることがないとは、切断面の形成が黒鉛
化後に行われると言う意味であって、黒鉛化処理に供さ
れる気相成長炭素繊維の粉砕、切断を全く行わないこと
ではない。つまり、場合によっては、気相成長炭素繊維
の予備的な粉砕、切断を行っても良い。ただし、この予
備的な粉砕、切断はできるだけ軽くしておくのが好まし
い。
The vapor grown carbon fiber is graphitized without being substantially crushed and cut. Here, substantially not crushed and cut means that the formation of the cut surface is performed after graphitization, and the crushing and cutting of the vapor-grown carbon fiber to be subjected to the graphitization treatment. Is not to do at all. That is, in some cases, preliminary pulverization and cutting of the vapor grown carbon fiber may be performed. However, it is preferable to make this preliminary crushing and cutting as light as possible.

【0015】黒鉛化処理は、気相成長炭素繊維を2,0
00℃以上、好ましくは2,500℃以上、さらに好ま
しくは2,800℃以上に加熱処理することを内容と
し、これによって黒鉛化気相成長炭素繊維を得ることが
できる。
The graphitization treatment was carried out by using a vapor-grown carbon fiber of 2,0
The heat treatment is performed at a temperature of 00 ° C. or higher, preferably 2,500 ° C. or higher, more preferably 2,800 ° C. or higher, whereby a graphitized vapor grown carbon fiber can be obtained.

【0016】得られる黒鉛化気相成長炭素繊維のd002
が3.45〜3.35Å、好ましくは3.42〜3.3
5、更に好ましくは3.37〜3.35Åになるよう
に、Lcが30Å以上、好ましくは300Å以上、更に
好ましくは1,000Å以上になるように黒鉛化処理の
条件を適宜に設定するのが良い。d002 が大きすぎた
り、Lcが小さすぎたりする場合は、この黒鉛化気相成
長炭素繊維を用いても層間化合物を好適に得ることがで
きないことがある。
D 002 of the resulting graphitized vapor grown carbon fiber
Is 3.45 to 3.35Å, preferably 3.42 to 3.3.
5, more preferably, the Lc is 30 Å or more, preferably 300 Å or more, and more preferably 1,000 Å or more so that Lc is 3.37 to 3.35 Å. good. If d 002 is too large or Lc is too small, it may not be possible to obtain an intercalation compound suitably even if this graphitized vapor grown carbon fiber is used.

【0017】得られた黒鉛化気相成長炭素繊維は、次に
アスペクト比を下げるために粉砕される。粉砕手段に限
定はないが、小球体と供に撹乱するアクアマイザー(登
録商標)やボールミル、ジェットミルでもよいが、気流
中で激しく撹拌して、繊維と撹拌羽や壁と、また、繊維
同志を衝突させて粉砕するハイブリダイザーに黒鉛化気
相成長炭素繊維単独を装填し、処理するのがが好まし
い。黒鉛化気相成長炭素繊維のハイブリダイザー中にお
ける滞在時間、撹拌羽の回転数により繊維長さを調整す
ることができる。なお、粉砕時に繊維温度が200℃以
上に上がるのは好ましくない。そこで、粉砕手段には適
宜の冷却手段を設けておくのが好ましい。
The graphitized vapor grown carbon fiber obtained is then ground to reduce the aspect ratio. The crushing means is not limited, and may be an aquamizer (registered trademark), a ball mill, or a jet mill that is disturbed together with small spheres. It is preferable to load the hybridizer, which is crushed by colliding with, with the graphitized vapor-grown carbon fiber alone and then treated. The length of the graphitized vapor-grown carbon fiber in the hybridizer can be adjusted by adjusting the length of stay of the carbon fiber in the hybridizer and the rotation speed of the stirring blade. In addition, it is not preferable that the fiber temperature rises to 200 ° C. or more during pulverization. Therefore, it is preferable to provide an appropriate cooling means in the crushing means.

【0018】この発明の黒鉛化気相成長炭素繊維は、前
記した粉砕手段によって所定の長さに調整されてなる。
この場合、所定の長さとして直径が5μm以下、好まし
くは0.1〜3μm以下であり、アスペクト比が50以
下、好ましくは20以下であるのが望ましい。直径が5
μmを越えると、層間化合物形成用黒鉛化気相成長炭素
繊維を用いて層間化合物を形成したときに、繊維に割れ
が生じ易くなり、直径が0.1μm未満であると、層間
化合物の形成速度が遅くなる。また、平均アスペクト比
が50以上であると層間化合物のゲスト材料の層間での
移動距離が長くなり、層間化合物の形成速度が遅くな
る。
The graphitized vapor grown carbon fiber of the present invention is adjusted to a predetermined length by the above-mentioned pulverizing means.
In this case, it is desirable that the predetermined length has a diameter of 5 μm or less, preferably 0.1 to 3 μm or less, and an aspect ratio of 50 or less, preferably 20 or less. Diameter is 5
If the diameter exceeds 0.1 μm, when the intercalation compound is formed using the graphitized vapor grown carbon fiber for forming an intercalation compound, the fiber is likely to crack, and if the diameter is less than 0.1 μm, the formation rate of the intercalation compound is increased. Will be late. Further, if the average aspect ratio is 50 or more, the movement distance of the guest material of the intercalation compound between the layers becomes long, and the formation rate of the intercalation compound becomes slow.

【0019】又、この粉砕処理によって生じた、黒鉛化
気相成長炭素繊維における新しい端面の割合が、全端面
の50%以上であり、好ましくは65%以上であるのが
良い。
The proportion of new end faces in the graphitized vapor-grown carbon fiber produced by this pulverization treatment is preferably 50% or more, and more preferably 65% or more of the total end faces.

【0020】−層間化合物− 本発明に用いる上記ゲスト材料としては、たとえばL
i、K、Cs等のアルカリ金属、Ca等のアルカリ土類
金属、Br2 、Cl2 等のハロゲン、H2 SO4、HN
3 等の無機酸、FeCl3 、FeBr3 、NiCl
2 、CuCl2 等のハロゲン化金属などがある。これら
の中でも、取り扱い易さの点では、ハロゲン化金属が好
ましい。なお、ゲスト材料が非ガス体であるときは、ゲ
スト材料とホスト材料としての層間化合物形成用気相成
長炭素繊維とは反応炉内で別々に存在させるのがよい。
-Intercalation Compound- The guest material used in the present invention is, for example, L.
Alkali metals such as i, K and Cs, alkaline earth metals such as Ca, halogens such as Br 2 and Cl 2 , H 2 SO 4 and HN
Inorganic acids such as O 3 , FeCl 3 , FeBr 3 , NiCl
2 , and metal halides such as CuCl 2 . Among these, metal halides are preferable from the viewpoint of easy handling. When the guest material is a non-gaseous material, it is preferable that the guest material and the vapor-grown carbon fiber for forming an intercalation compound as the host material are separately present in the reaction furnace.

【0021】層間化合物形成用気相成長炭素繊維とゲス
ト材料との使用割合は、層間化合物形成用気相成長炭素
繊維とゲスト材料との種類およびそれらの組み合わせに
より相違するので一概に決定することはできないのであ
るが、例えばゲスト材料がハロゲン化金属であるときに
は、通常、層間化合物形成用気相成長炭素繊維10〜6
0重量%、特に20〜50重量%、ハロゲン化金属40
〜90重量%、特に50〜80重量%である。
The use ratio of the vapor-grown carbon fiber for forming an intercalation compound and the guest material differs depending on the kind of the vapor-grown carbon fiber for forming an intercalation compound and the guest material and a combination thereof, and therefore cannot be determined unconditionally. Although it is not possible, for example, when the guest material is a metal halide, the vapor-grown carbon fibers 10 to 6 for forming an intercalation compound are usually used.
0% by weight, especially 20 to 50% by weight, metal halide 40
-90% by weight, especially 50-80% by weight.

【0022】[0022]

【実施例】以下にこの発明の実施例を示す。この発明は
以下の実施例に限定されるものではなく、この発明の要
旨の範囲内において適宜に変更することができるのでは
いうまでもない。
EXAMPLES Examples of the present invention will be shown below. It is needless to say that the present invention is not limited to the following examples and can be appropriately modified within the scope of the gist of the present invention.

【0023】(実施例1)平均直径が1μm,平均長さ
が126μm、平均アスペクト比が126の気相成長炭
素繊維をアルゴンガス雰囲気中で2,800℃で30分
間黒鉛化処理した。その後に、高速気流中での衝撃処理
を行うハイブリダイザー(NHS−1、(株)奈良機械
製作所製)を用い、7,000rpm(周速87.5m
/s)にて2分間衝撃処理をした。処理後得られた繊維
は、平均直径が1μm、平均長さが23μm、アスペク
ト比23、d002 が3.362Å、Lcが1,000Å
以上であった。
Example 1 A vapor grown carbon fiber having an average diameter of 1 μm, an average length of 126 μm and an average aspect ratio of 126 was graphitized at 2,800 ° C. for 30 minutes in an argon gas atmosphere. After that, a hybridizer (NHS-1, manufactured by Nara Machinery Co., Ltd.) that performs impact treatment in a high-speed airflow was used and 7,000 rpm (peripheral speed 87.5 m
/ S) for 2 minutes. The fibers obtained after the treatment have an average diameter of 1 μm, an average length of 23 μm, an aspect ratio of 23, a d 002 of 3.362Å, and an Lc of 1,000 Å.
That was all.

【0024】その後、図1に示すGIC製造装置におい
て、セラミック製の耐熱腐食性筒体3内の仕切り板11
の上にホスト材料として上記記載の黒鉛化気相成長炭素
繊維500gを載せるとともに、仕切り版11の下にゲ
スト材料として約1.5kgの無水塩化第二鉄分を収納
し、加熱炉1の蓋2を閉じて真空排気した。
Thereafter, in the GIC manufacturing apparatus shown in FIG. 1, the partition plate 11 in the ceramic heat-resistant and corrosion-resistant cylindrical body 3 is used.
500 g of the graphitized vapor-grown carbon fiber described above is placed as a host material on the top, and about 1.5 kg of anhydrous ferric chloride is stored as a guest material under the partition plate 11, and the lid 2 of the heating furnace 1 is placed. Was closed and evacuated.

【0025】続いて加熱炉1内に塩素ガスを400To
rrまで導入したのち、耐熱耐腐食性筒体3の蓋部材4
をロッド5で閉め、加熱炉1内を真空排気し、その後、
加熱炉1内を空気で満たした。
Subsequently, the heating furnace 1 was filled with chlorine gas at 400 To
After introducing up to rr, the lid member 4 of the heat and corrosion resistant cylinder 3
Is closed with a rod 5, the inside of the heating furnace 1 is evacuated, and then
The heating furnace 1 was filled with air.

【0026】次に、加熱炉1内を350℃に24時間加
熱したのち、変性黒鉛化気相成長炭素繊維を取り出した
ところ、この繊維の重量が1.65kgであり、X線回
折からd002 は9.55Åを示し、第一ステージの塩化
第二鉄層間化合物になっていた。
Next, after heating the inside of the heating furnace 1 to 350 ° C. for 24 hours, the modified graphitized vapor grown carbon fiber was taken out. The weight of this fiber was 1.65 kg, and d 002 was obtained by X-ray diffraction. Was 9.55Å, which was a ferric chloride intercalation compound in the first stage.

【0027】なお、図1において、加熱炉1は、加熱炉
本体の開口部に蓋2を開閉自在に取り付けてなる。加熱
炉本体の内部には、一端が開口した耐熱耐腐食性筒体3
が加熱炉本体の内壁から所定間隔を設けて収納される。
この耐熱耐腐食性筒体3の開口部には蓋部材4が装着さ
れる。この蓋体4にはロッド5が装着される。そのロッ
ド5は蓋2を貫通して加熱炉本体の外部に突き出てい
る。このロッド5は図示しない駆動装置により前後動可
能になっている。したがって、このロッド5を前後動さ
せると、このロッド5の先端部に装着された蓋部材4が
前記耐熱耐腐食性筒体3の開口部を閉鎖し、あるいは解
放する。したがって、耐熱耐腐食性筒体3の開口部は、
加熱炉本体の開口部が密閉されている状態でも、外部か
ら密閉開放することができる。なお、蓋2の外面とロッ
ド5との間にはOリング6が設けられている。
In FIG. 1, the heating furnace 1 has a lid 2 which is openably and closably attached to the opening of the heating furnace body. Inside the heating furnace body, a heat-resistant and corrosion-resistant cylindrical body 3 with one end open
Are housed at a predetermined distance from the inner wall of the heating furnace body.
A lid member 4 is attached to the opening of the heat and corrosion resistant cylinder 3. A rod 5 is attached to the lid 4. The rod 5 penetrates the lid 2 and projects to the outside of the furnace body. The rod 5 can be moved back and forth by a driving device (not shown). Therefore, when the rod 5 is moved back and forth, the lid member 4 attached to the tip of the rod 5 closes or releases the opening of the heat and corrosion resistant tubular body 3. Therefore, the opening of the heat and corrosion resistant cylinder 3 is
Even when the opening of the heating furnace body is sealed, it can be sealed and opened from the outside. An O-ring 6 is provided between the outer surface of the lid 2 and the rod 5.

【0028】また、それぞれ蓋2を閉じた際の加熱炉1
内の気密を保持す目的で加熱炉本体の開口端面と蓋2と
の間には蓋2の局部冷却が可能であるため、ゴム等の一
般的なシール部材16が設けられ、耐熱耐腐食性筒体3
の開口端面と蓋部材4との間にはたとえば断熱性グラフ
ァイトのようなシール部材17が設けられている。加熱
炉本体の内面は、耐熱性および気密性の材料、たとえば
ステンレス7で構成され、その外側はヒータ8および断
熱材料9で構成され、この断熱材料9の外面はカバー1
0で覆われている。
Further, the heating furnace 1 when the lid 2 is closed
Since the lid 2 can be locally cooled between the opening end surface of the heating furnace main body and the lid 2 for the purpose of maintaining the airtightness inside, a general sealing member 16 such as rubber is provided, and heat resistance and corrosion resistance are provided. Cylinder 3
A seal member 17 made of, for example, heat-insulating graphite is provided between the open end surface of the lid member 4 and the lid member 4. The inner surface of the heating furnace body is made of a heat-resistant and airtight material, for example, stainless steel 7, the outer side thereof is made of a heater 8 and a heat insulating material 9, and the outer surface of this heat insulating material 9 is the cover 1.
It is covered with 0.

【0029】断熱材料9としては公知のもので良く、た
とえばガラス綿、レンガ、微粉鉱物などがある。耐熱耐
腐食性筒体3は高度の耐腐食性材料、たとえば高温の塩
素系ガスにも耐えるようセラミックス、ガラス、および
これらでライニングされた金属などの材料で構成され、
内部は多孔を有する仕切り板11で画され、その上部に
ホスト材料としての炭素材料12を、またその下部にゲ
スト材料13を収納できるようになっている。
Any known material may be used as the heat insulating material 9, and examples thereof include glass cotton, brick, and fine powder minerals. The heat and corrosion resistant cylinder 3 is made of a highly corrosive resistant material, for example, a material such as ceramics, glass, and a metal lined with these so as to withstand high temperature chlorine-based gas,
The interior is defined by a partition plate 11 having porosity, and a carbon material 12 as a host material can be accommodated in the upper part thereof and a guest material 13 can be accommodated in the lower part thereof.

【0030】加熱炉本体の内部空間は、蓋2を貫通する
パイプ14を介して排気手段およびガス導入手段(図示
せず)と連絡され、パイプ14には蓋2に近い箇所に圧
力計15および温度計(図示せず)が取り付けられてい
る。なお、前記パイプ14は、蓋2を貫通していなくて
も加熱炉本体を貫通していても良い。耐熱耐腐食性筒体
3は、通常加熱炉本体に固定されているが、取り外しも
可能である。
The internal space of the heating furnace body is connected to an exhaust means and a gas introduction means (not shown) through a pipe 14 penetrating the lid 2, and the pipe 14 has a pressure gauge 15 and a gas gauge 15 at a position near the lid 2. A thermometer (not shown) is attached. The pipe 14 may not penetrate the lid 2 but may penetrate the heating furnace main body. The heat-resistant and corrosion-resistant cylindrical body 3 is usually fixed to the heating furnace body, but can be removed.

【0031】(比較例)平均直径が1μm、平均長さが
126μm、平均アスペクト比が126の気相成長炭素
繊維をハイブリダイザー、NHS−1、(株)奈良機械
製作所製)で、7,000rpm(周速87.5m/
s)にて2分間処理した後、アルゴンガス雰囲気中で
2,800℃、30分間黒鉛化処理をした。
Comparative Example A vapor-grown carbon fiber having an average diameter of 1 μm, an average length of 126 μm, and an average aspect ratio of 126 was used at 7,000 rpm with a hybridizer, NHS-1, manufactured by Nara Machinery Co., Ltd. (Peripheral speed 87.5m /
s) for 2 minutes, and then graphitized at 2,800 ° C. for 30 minutes in an argon gas atmosphere.

【0032】得られた繊維は、平均直径が1μm、平均
長さが25μm、アスペクト比が25、d002 が3.3
62Å、Lcが1,000Å以上であった。
The obtained fiber has an average diameter of 1 μm, an average length of 25 μm, an aspect ratio of 25 and a d 002 of 3.3.
62Å, Lc was 1,000Å or more.

【0033】この繊維を用い、実施例1と同様に実験を
行なったところ、得られた変性黒鉛化気相成長炭素繊維
は、X線回折からd002 は9.55Åを示し、第一ステ
ージの塩化第二鉄層間化合物になっていることが確認さ
れたが、その重量は0.95kgであった。
Using this fiber, an experiment was conducted in the same manner as in Example 1. As a result, the modified graphitized vapor-grown carbon fiber obtained had a d 002 of 9.55Å as determined by X-ray diffraction. It was confirmed to be a ferric chloride intercalation compound, but its weight was 0.95 kg.

【0034】[0034]

【発明の効果】この発明によると、ゲスト材料を受け入
れて迅速に層間化合物を形成することのできる層間化合
物形成用に好適な黒鉛化気相成長炭素繊維及びその製造
方法を提供することができる。
According to the present invention, it is possible to provide a graphitized vapor-grown carbon fiber suitable for forming an intercalation compound capable of receiving a guest material and rapidly forming an intercalation compound, and a method for producing the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の層間化合物の製造装置の一例を示す
説明図である。
FIG. 1 is an explanatory view showing an example of an apparatus for producing an intercalation compound of the present invention.

【符号の説明】[Explanation of symbols]

1 加熱炉 2 蓋体 3 反応炉 4 蓋体 12 ホスト材料としての層間化合物形成用気相成長炭
素繊維 13 ゲスト材料 14 ガス置換手段のパイプ
DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Lid body 3 Reactor 4 Lid body 12 Vapor-grown carbon fiber for forming intercalation compound as host material 13 Guest material 14 Pipe of gas replacement means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 気相成長炭素繊維を実質的に黒鉛化処理
した後に粉砕してなることを特徴とする層間化合物形成
用黒鉛化気相成長炭素繊維。
1. A graphitized vapor-grown carbon fiber for forming an intercalation compound, characterized in that the vapor-grown carbon fiber is substantially graphitized and then pulverized.
【請求項2】 直径が5μm以下、アスペクト比が50
以下である前記請求項1に記載の層間化合物形成用黒鉛
化気相成長炭素繊維。
2. A diameter of 5 μm or less and an aspect ratio of 50.
The graphitized vapor-grown carbon fiber for forming an intercalation compound according to claim 1, wherein:
【請求項3】 気相成長炭素繊維を実質的に黒鉛化処理
した後に粉砕することを特徴とする層間化合物形成用黒
鉛化気相成長炭素繊維の製造方法。
3. A method for producing a graphitized vapor grown carbon fiber for forming an intercalation compound, which comprises substantially graphitizing the vapor grown carbon fiber and then pulverizing the same.
JP23318492A 1992-09-01 1992-09-01 Graphitized vapor-grown carbon fiber for forming interlaminar compound and its production Pending JPH0681218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23318492A JPH0681218A (en) 1992-09-01 1992-09-01 Graphitized vapor-grown carbon fiber for forming interlaminar compound and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23318492A JPH0681218A (en) 1992-09-01 1992-09-01 Graphitized vapor-grown carbon fiber for forming interlaminar compound and its production

Publications (1)

Publication Number Publication Date
JPH0681218A true JPH0681218A (en) 1994-03-22

Family

ID=16951057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23318492A Pending JPH0681218A (en) 1992-09-01 1992-09-01 Graphitized vapor-grown carbon fiber for forming interlaminar compound and its production

Country Status (1)

Country Link
JP (1) JPH0681218A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005070535A1 (en) * 2004-01-27 2005-08-04 Showa Denko K.K. Catalyst support and fuel cell using same
US7150840B2 (en) 2002-08-29 2006-12-19 Showa Denko K.K. Graphite fine carbon fiber, and production method and use thereof
US7749935B2 (en) 2004-01-27 2010-07-06 Showa Denko K.K. Catalyst carrier and fuel cell using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7150840B2 (en) 2002-08-29 2006-12-19 Showa Denko K.K. Graphite fine carbon fiber, and production method and use thereof
WO2005070535A1 (en) * 2004-01-27 2005-08-04 Showa Denko K.K. Catalyst support and fuel cell using same
KR100833154B1 (en) * 2004-01-27 2008-05-28 쇼와 덴코 가부시키가이샤 Catalyst support and fuel cell using same
US7749935B2 (en) 2004-01-27 2010-07-06 Showa Denko K.K. Catalyst carrier and fuel cell using the same
US7919427B2 (en) 2004-01-27 2011-04-05 Showa Denko K.K. Catalyst carrier and fuel cell using the same

Similar Documents

Publication Publication Date Title
Tang et al. Growth of SiC nanorods prepared by carbon nanotubes-confined reaction
Wang et al. A simple wet-chemical synthesis and characterization of CuO nanorods
Hu et al. Low‐Temperature Synthesis of Nanocrystalline Titanium Nitride via a Benzene–Thermal Route
Bradshaw et al. Combustion synthesis of aluminum nitride particles and whiskers
Sun et al. Synthesis of molybdenum nitrides nanosheets by nitriding 2H‐MoS2 with ammonia
Farzaneh et al. New route for preparing nanosized boron carbide powder via magnesiothermic reduction using mesoporous carbon
Singh et al. Synthesis and characterization of rice husk silica, silica-carbon composite and H3PO4 activated silica
Yuan et al. Synthesis of γ‐AlON powders by a combinational method of carbothermal reduction and solid‐state reaction
Lv et al. Combustion synthesis of C/MgAl2O4 composite powders using magnesium oxalate as carbon source
Goldie et al. Cobalt nanoparticle catalysed graphitization and the effect of metal precursor decomposition temperature
CN110255626A (en) Method based on vapor deposition preparation surface-active onion shape Nano carbon balls
Krasilin et al. Morphology vs. chemical composition of single Ni-doped hydrosilicate nanoscroll
Liu et al. Synthesis of ultra-fine tantalum carbide powders by a combinational method of sol–gel and spark plasma sintering
Mashhadi et al. The effects of NH4Cl addition and particle size of Al powder in AlN whiskers synthesis by direct nitridation
JPH0681218A (en) Graphitized vapor-grown carbon fiber for forming interlaminar compound and its production
CN107539965B (en) A kind of preparation method of nano-calcium carbonate calcium pyroborate/hexagonal nanometer boron nitride composite material
Farhan et al. Characterization of latticed SiC nanowires containing coating for carbon foam using carbonization activated pack cementation process
Dang et al. Synthesis of AlN whiskers using cobalt oxide catalyst and their alignments for the improvement of thermal conductivity
Okuchi The melting temperature of iron hydride at high pressures and its implications for the temperature of the Earth's core
Zeng et al. Synthesis of boron carbide powder from hexagonal boron nitride
Wiesel et al. Encapsulation of Mo 2 C in MoS 2 inorganic fullerene-like nanoparticles and nanotubes
Ramanujam et al. Rapid synthesis of nanocrystalline YAG via microwave‐assisted solvothermal process
Astrova et al. Interaction of fluorocarbon with silicon monoxide and processes of SiC nanowire formation
Soltys et al. Synthesis and Properties of Silicon Carbide
Brontvein et al. Synthesis and Characterization of Pb@ GaS Core–Shell Fullerene-Like Nanoparticles and Nanotubes

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001003