JPH0681001A - Alloy steel powder - Google Patents

Alloy steel powder

Info

Publication number
JPH0681001A
JPH0681001A JP4234662A JP23466292A JPH0681001A JP H0681001 A JPH0681001 A JP H0681001A JP 4234662 A JP4234662 A JP 4234662A JP 23466292 A JP23466292 A JP 23466292A JP H0681001 A JPH0681001 A JP H0681001A
Authority
JP
Japan
Prior art keywords
steel powder
powder
strength
alloy steel
dimensional accuracy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4234662A
Other languages
Japanese (ja)
Inventor
Shigeru Unami
繁 宇波
Osamu Furukimi
古君  修
Yoshiaki Maeda
義昭 前田
Eiji Hatsuya
栄治 初谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4234662A priority Critical patent/JPH0681001A/en
Publication of JPH0681001A publication Critical patent/JPH0681001A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the dimensional accuracy of a heat-treated sintered compact and to impart high strength and fatigue characteristic to the sintered compact by incorporating the prealloyed steel powder of Mo, V, Ti and Nb and the composite alloy powder of Ni and Cu. CONSTITUTION:This alloy steel powder contains a prealloyed steel powder component consisting of 0.05-2.5wt.% of Mo and 0.005-0.8% of one or >=2 kinds among V, Ti and Nb, the composite alloy steel powder component of at least one kind between 0.5-5% Ni and 0.5-2.5% Cu and the balance Fe with inevitable impurites. The powder is compacted, sintered and then heat-treated, and as a result, the dimensional accuracy, strength and fatigue characteristic of the product are improved. Graphite powder is added to the prealloyed steel powder, as required, prior to compacting, and the strength is further increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、各種焼結部品の中で
も特に優れた寸法精度、強度及び疲労特性が要求される
部品の製造に供して好適な鉄系焼結−熱処理材用の合金
鋼粉を提供しようとするものである。自動車部品として
そのギヤなどには高強度や優れた疲労特性が要求され
る。これらの部品を粉末冶金法で製造する場合には、強
度及び疲労特性の向上のために合金成分を添加した焼結
体に、浸炭処理や浸窒処理などを施すとともに、その後
に焼入れ焼戻し熱処理を施して製品化する。そしてその
焼結部品の特性として、上記した強度や疲労特性のほか
寸法精度に優れていることも要求されている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloy steel for iron-based sintered-heat treated material, which is suitable for production of various sintered parts which require particularly excellent dimensional accuracy, strength and fatigue characteristics. It is intended to provide powder. As an automobile part, its gears and the like are required to have high strength and excellent fatigue characteristics. When manufacturing these parts by powder metallurgy, the sintered body with alloy components added to improve strength and fatigue properties is subjected to carburizing treatment, nitrifying treatment, etc., followed by quenching and tempering heat treatment. Apply to commercialize. In addition to the above-mentioned strength and fatigue characteristics, the sintered parts are required to have excellent dimensional accuracy.

【0002】[0002]

【従来の技術】従来からの、純鉄粉中に合金成分を均一
に合金化させて製造する予合金鋼粉を用いる場合では、
その焼結体の熱処理後の寸法精度は良いものの、合金鋼
粉の圧縮性が損なわれることが多く、その場合には高い
焼結密度が得られなくなり、結果的に疲労特性の向上が
望めなくなる。
2. Description of the Related Art When using a conventional prealloyed steel powder produced by uniformly alloying alloy components in pure iron powder,
Although the dimensional accuracy of the sintered body after heat treatment is good, the compressibility of the alloy steel powder is often impaired, in which case a high sintered density cannot be obtained, and as a result, improvement of fatigue properties cannot be expected. .

【0003】この問題の解決が図れる合金鋼粉の製造方
法として、例えば特公昭45−9649号公報の低合金
粉末鉄の製法に、Ni,Mo及びCuなどの合金化成分粉末を
鉄粉に拡散付着させる方法(以下この方法による合金化
を単に複合合金化といい、この方法によって製造された
合金鋼粉を複合合金鋼粉という)が開示されている。し
かしながら、上記の方法によって製造された複合合金鋼
粉は、圧縮性には優れるものの、異種金属粉を混粉後加
熱し拡散により部分的に合金化するだけなので、成分的
に均一なものが得られる予合金鋼粉にくらべると、組織
の均一性が悪く、熱処理によるひずみが大きくなり熱処
理後の製品の寸法精度が低下する原因となっていた。こ
のように、上記した複合合金鋼粉では圧縮性が高く、焼
結体の強度及び疲労特性の向上は得られるものの、寸法
精度の点では十分とは云いがたかった。
As a method for producing alloy steel powder which can solve this problem, for example, in the method for producing low alloy powder iron in Japanese Patent Publication No. 45-9649, alloying component powders such as Ni, Mo and Cu are diffused into iron powder. A method of adhering (hereinafter, alloying by this method is simply referred to as complex alloying, and alloy steel powder produced by this method is referred to as complex alloy steel powder) is disclosed. However, the composite alloy steel powder produced by the above method has excellent compressibility, but since it is only partially alloyed by heating after mixing different metal powders and diffusion, a uniform composition is obtained. Compared with the pre-alloyed steel powder used, the uniformity of the structure was poor, and the strain due to heat treatment became large, causing the dimensional accuracy of the product after heat treatment to decrease. As described above, although the above-described composite alloy steel powder has high compressibility and can improve the strength and fatigue properties of the sintered body, it was not sufficient in terms of dimensional accuracy.

【0004】また、発明者の1人は他の3名と共同で、
特開平1−215904号公報の熱処理における寸法変
化のばらつきの小さい合金鋼粉およびその製造方法にお
いて、高い圧縮性を有するだけでなく、焼結体の熱処理
後における寸法精度の良好な合金鋼粉を、その製造方法
とともに提案開示したが、この合金鋼粉はMo及びCuとと
もにNiを5.0 wt%を超えて含有(複合合金化)させるこ
とから、経済的な不利はいなめなく、最近の寸法精度と
疲労特性の向上に対する厳しい要請には今1つ対応でき
ないところに問題を残していた。
One of the inventors, in collaboration with the other three,
In the alloy steel powder having a small variation in the dimensional change in the heat treatment and the manufacturing method thereof disclosed in JP-A 1-215904, an alloy steel powder having not only high compressibility but also good dimensional accuracy after heat treatment of a sintered body is obtained. , And proposed and disclosed its manufacturing method, but this alloy steel powder contains more than 5.0 wt% of Ni in addition to Mo and Cu (composite alloy), so there is no economic disadvantage, and the recent dimensional accuracy and There was a problem where we could not meet one severe demand for improvement of fatigue characteristics.

【0005】[0005]

【発明が解決しようとする課題】この発明は、前記した
問題点を有利に解決しようとするもので、焼結体の熱処
理後の寸法精度が良好で、かつ優れる強度及び疲労特性
が得られ、経済的にも良好な合金鋼粉を提供することを
目的とする。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the above-mentioned problems in an advantageous manner. The sintered body has good dimensional accuracy after heat treatment, and excellent strength and fatigue characteristics can be obtained. The purpose is to provide alloy steel powder that is economically favorable.

【0006】[0006]

【課題を解決するための手段】この発明は、Mo,V,Ti
及びNbなどは予合金化により、Ni及びCuなどは複合合金
化により、それぞれ合金化することが所期の目的達成の
ために極めて有効であるとの知見を得たことによるもの
である。
The present invention provides Mo, V, Ti
This is because it was found that pre-alloying of Nb and Nb and the like and complex alloying of Ni and Cu and the like are extremely effective for achieving the intended purpose.

【0007】すなわち、この発明の要旨はMoを、V,T
i,Nbのうちの1種又は2種以上とともに、Moは0.05wt
%以上、2.5 wt%以下、V,Ti及びNbはそれぞれ0.005
wt%以上、0.08wt%以下、の各範囲内の予合金鋼粉成分
として含有し、かつNi:0.5 wt%以上、5wt%以下及び
Cu:0.5 wt%以上、2.5 wt%以下のうちの少なくとも一
種を複合合金鋼粉成分として含み、残余は鉄及び不可避
的混入不純物の組成になり、成形、焼結を経たのちの熱
処理材における寸法精度、強度及び疲労特性に優れるこ
とを特徴とする合金鋼粉である。
That is, the gist of the present invention is that Mo, V, T
Mo is 0.05 wt% together with one or more of i and Nb.
% Or more, 2.5 wt% or less, V, Ti and Nb are each 0.005
It is contained as a prealloyed steel powder component within each range of wt% or more and 0.08 wt% or less, and Ni: 0.5 wt% or more and 5 wt% or less and
Cu: Includes at least one of 0.5 wt% or more and 2.5 wt% or less as a composite alloy steel powder component, with the balance being the composition of iron and inevitable mixed impurities, and the dimensions of the heat-treated material after forming and sintering An alloy steel powder characterized by excellent precision, strength and fatigue characteristics.

【0008】ここに、予合金鋼粉成分とは、あらかじめ
ほぼ均一に合金化させてなる合金鋼粉の成分をいい、複
合合金鋼粉成分とは、鋼粉表面に拡散付着させた合金成
分をいう。
Here, the prealloyed steel powder component refers to a component of alloy steel powder which is alloyed substantially uniformly in advance, and the composite alloy steel powder component refers to an alloy component diffused and adhered to the surface of the steel powder. Say.

【0009】[0009]

【作用】この発明は、合成成分のそれぞれの特性に合わ
せて予合金化又は複合合金化するようにしたもので、合
金成分中のMo,V,Ti及びNbなどについては予合金化す
る一方、Ni及びCuについては複合合金化することとする
ものである。以下、その理由ならびに各成分組成範囲の
限定理由について述べる。
According to the present invention, pre-alloying or composite alloying is performed according to the respective characteristics of the synthetic components. Mo, V, Ti and Nb in the alloying components are pre-alloyed while Ni and Cu are to be made into a composite alloy. Hereinafter, the reason for this and the reason for limiting the composition range of each component will be described.

【0010】Mo:0.05〜2.5 wt% Moは、焼結−熱処理材の強度向上に有効な成分であり、
また予合金化してもNiほど圧縮性を低下させない。しか
し、Moを金属粉または、酸化物粉で添加すると焼結体組
織の不均一化の原因となり、寸法精度の低下を招くので
予合金化により合金化を図ることとする。また、含有量
が0.05wt%未満であると強度の向上効果が十分でなく、
逆に2.5wt%を超えて含有させると圧縮性が低下して焼
結- 熱処理材の高密度化が図れなく、強度、疲労特性が
低下する。したがって、その含有量は0.05wt%以上、2.
5wt%以下とする。
Mo: 0.05-2.5 wt% Mo is a component effective for improving the strength of the sintered-heat treated material,
Moreover, even if pre-alloyed, the compressibility does not decrease as much as Ni. However, addition of Mo in the form of metal powder or oxide powder causes non-uniformity of the structure of the sintered body, leading to a decrease in dimensional accuracy. Therefore, alloying is performed by prealloying. Further, if the content is less than 0.05 wt%, the effect of improving the strength is not sufficient,
On the other hand, if the content exceeds 2.5 wt%, the compressibility decreases and the density of the sintered-heat treated material cannot be increased, and the strength and fatigue properties deteriorate. Therefore, its content is 0.05 wt% or more, 2.
5 wt% or less.

【0011】V,Ti及びNb:各0.005 〜0.08wt% V,Ti及びNbは予合金化してもNiほど圧縮性を低下させ
ないので、予合金化により合金化を図るものとする。
V,Ti及びNbの予合金化はこの発明の特徴の一つである
が、焼結−熱処理材の組織の微細化作用及び炭窒化物の
析出強化により焼結−熱処理材の強度を高める。また炭
化物の析出により固溶C量を低減させ、焼結体の熱処理
時の膨張を小さくし、寸法精度を向上させる。これら
は、いずれも含有量が0.005 wt%未満では上記した効果
が不十分であり、0.08wt%を超えて含有させると圧縮性
が低下し、むしろ焼結−熱処理材の強度が低下する。ま
た、V,Ti及びNbの含有量が増加すると過剰の析出物の
作用により、強度、疲労特性が低下する。したがって、
それらの含有量はそれぞれ0.005wt%以上、0.08wt%以
下とする。
V, Ti and Nb: 0.005 to 0.08 wt% each V, Ti and Nb do not lower the compressibility as much as Ni even when prealloyed, so alloying should be performed by prealloying.
The pre-alloying of V, Ti and Nb is one of the features of the present invention, but the strength of the sintered-heat treated material is increased by the refinement of the structure of the sintered-heat treated material and the precipitation strengthening of carbonitride. Further, the amount of solid solution C is reduced by the precipitation of carbides, the expansion of the sintered body during heat treatment is reduced, and the dimensional accuracy is improved. If the content of each of these is less than 0.005 wt%, the above-mentioned effects are insufficient, and if the content exceeds 0.08 wt%, the compressibility decreases, and the strength of the sintered-heat treated material decreases rather. Further, as the contents of V, Ti and Nb increase, the strength and fatigue properties deteriorate due to the action of excessive precipitates. Therefore,
Their contents are 0.005 wt% or more and 0.08 wt% or less, respectively.

【0012】Ni:0.5 〜5wt% Niは、予合金化すると圧縮性を著しく低下させる。した
がって、Ni粉末として合金鋼粉表面に拡散付着させる複
合合金化により合金化を図るものとする。ここに複合合
金化は、予合金鋼粉にNi粉末を混合し、例えば750 〜10
50℃の水素雰囲気中で拡散焼鈍したのち、解砕、分級処
理することでよい。さて、Niは、焼結−熱処理材の強度
を向上させる有効な成分であり、そのためには0.5 wt%
以上含有させることを必要とするが、5wt%を超えて含
有させると過剰のオーステナイトが生成され、むしろ強
度が低下する。したがって、その含有量は0.5 wt%以
上、5wt%以下とする。
Ni: 0.5-5 wt% Ni significantly reduces the compressibility when pre-alloyed. Therefore, alloying should be achieved by complex alloying in which Ni powder is diffused and adhered to the surface of the alloy steel powder. Here, complex alloying involves mixing Ni powder with prealloyed steel powder, for example, 750 to 10
After diffusion annealing in a hydrogen atmosphere at 50 ° C., crushing and classification may be performed. By the way, Ni is an effective component for improving the strength of the sintered-heat treated material.
Although it is necessary to contain the alloy as described above, if it is contained in excess of 5 wt%, excessive austenite is produced, and the strength is rather lowered. Therefore, the content is 0.5 wt% or more and 5 wt% or less.

【0013】Cu:0.5 〜2.5 wt% Cuは、予合金化すると圧縮性を著しく低下させる。した
がって、Niと同様にCu粉末として複合合金化により合金
化を図るものとする。このCuは、焼入性の向上、固溶強
化などによって、強度を向上させるが、含有量が0.5 wt
%未満ではその効果が十分でなく、2.5 wt%を超えて含
有させると強度、靭性が低下する。したがって、その含
有量は0.5 wt%以上、2.5 wt%以下とする。
Cu: 0.5-2.5 wt% Cu significantly reduces the compressibility when prealloyed. Therefore, similar to Ni, Cu powder should be alloyed by complex alloying. This Cu improves strength by improving hardenability and solid solution strengthening, but its content is 0.5 wt.
If it is less than 2.5%, the effect is not sufficient, and if it exceeds 2.5% by weight, the strength and toughness decrease. Therefore, its content should be 0.5 wt% or more and 2.5 wt% or less.

【0014】なお、粉末冶金部品を製造する場合、合金
鋼粉を圧縮成形後焼結するが、その条件としては、4〜
8tf/cm2 の圧力による圧縮成形後、N2、AX, RXなどの
ガス雰囲気中で1100〜1300℃の温度での焼結が好適であ
り、また必要に応じて、圧縮成形に先立ち合金鋼粉に黒
鉛粉を添加し強度の向上を図ることもよく、その添加量
は0.05〜1.0 wt%の範囲がよい。
In the case of producing powder metallurgy parts, alloy steel powder is sintered after compression molding under the following conditions:
After compression molding with a pressure of 8 tf / cm 2 , sintering at a temperature of 1100 to 1300 ° C in a gas atmosphere of N 2 , AX, RX, etc. is suitable, and if necessary, prior to compression molding, alloy steel Graphite powder may be added to the powder to improve the strength, and the addition amount is preferably in the range of 0.05 to 1.0 wt%.

【0015】[0015]

【実施例】【Example】

実施例1 表1に示す化学成分組成になる合金鋼粉に、黒鉛を0.1w
t %及びステアリン酸亜鉛を1wt%添加混合したのち、
圧縮成形により密度:7.0 g /cm3 の成形体を作成し
た。これらの成形体を窒素雰囲気中で温度:1150℃、時
間:60分間の条件で焼結を行ったのち、温度:880 ℃、
時間:120 分間の浸炭処理(カーボンポテンシャル:0.
9 %) に続いて油焼入れし、その後さらに温度:170
℃、時間:60分間の焼戻しを施した。
Example 1 Graphite was added to an alloy steel powder having the chemical composition shown in Table 1 with 0.1 w of graphite.
After adding 1% by weight of t% and zinc stearate and mixing,
A compact having a density of 7.0 g / cm 3 was prepared by compression molding. After sintering these compacts in a nitrogen atmosphere under the conditions of temperature: 1150 ° C, time: 60 minutes, temperature: 880 ° C,
Time: Carburizing for 120 minutes (carbon potential: 0.
9%) followed by oil quenching and then temperature: 170
C., time: tempered for 60 minutes.

【0016】[0016]

【表1】 [Table 1]

【0017】このようにして得られた焼結−熱処理材に
ついて、森式面圧疲労試験による耐久疲れ強さ及び引張
強さを調査した。また、外径:60mm、内径:20mm、厚
さ:5.5 mmのリング状試験片について、図1(a), (b)に
示す測定要領にて熱処理(焼入れ焼戻し処理)前後の外
径を測定し、熱処理による寸法ひずみのばらつきの標準
偏差を以下により求め寸法精度とした。
With respect to the sintered-heat treated material thus obtained, the endurance fatigue strength and tensile strength were examined by the Mori-type surface pressure fatigue test. In addition, the outer diameter before and after heat treatment (quenching and tempering treatment) was measured on a ring-shaped test piece with an outer diameter of 60 mm, an inner diameter of 20 mm, and a thickness of 5.5 mm according to the measurement procedure shown in FIGS. 1 (a) and (b). Then, the standard deviation of the dimensional strain variation due to the heat treatment was determined as follows and used as the dimensional accuracy.

【数1】ΔX=(X2 −X1)/X1 × 100 (%) ΔY=(Y2 −Y1)/Y1 × 100 (%) 寸法精度:|ΔX−ΔY|の標準偏差 ここに図1(a), (b)は外径の測定要領を示す説明図で、
焼結体の熱処理前(a)及び熱処理後(b) の外径はそれぞ
れ直交する2方向(X1,Y1,X2,Y2)で測定した。
[Formula 1] ΔX = (X 2 −X 1 ) / X 1 × 100 (%) ΔY = (Y 2 −Y 1 ) / Y 1 × 100 (%) Dimensional accuracy: standard deviation of | ΔX−ΔY | 1 (a) and 1 (b) are explanatory diagrams showing the measuring procedure of the outer diameter,
The outer diameters of the sintered body before (a) and after heat treatment (b) were measured in two directions (X 1 , Y 1 , X 2 , Y 2 ) orthogonal to each other.

【0018】これらの調査結果を上記表1に併記した。
表1から明らかなように、この発明の適合例は引張強
さ、面圧耐久疲れ強さ及び寸法精度ともに優れた焼結−
熱処理材を得ることができる。
The results of these investigations are also shown in Table 1 above.
As is clear from Table 1, the applicable example of the present invention is a sintered body which is excellent in tensile strength, surface pressure endurance fatigue strength and dimensional accuracy.
A heat-treated material can be obtained.

【0019】実施例2 表2に示すように、Ni,Mo,Nb及びCuをそれぞれ予合金
化又は複合合金化した合金鋼粉に黒鉛を0.1 wt%及びス
テアリン酸亜鉛を1wt%を添加混合したのち、成形圧力
6tf/cm2 で圧縮成形体を作製した。その後、実施例1
と同様の方法で焼結及び熱処理を施し、実施例1と同様
の調査を同様の方法で行った。
Example 2 As shown in Table 2, 0.1 wt% of graphite and 1 wt% of zinc stearate were added to and mixed with alloy steel powder in which Ni, Mo, Nb and Cu were prealloyed or composite alloyed, respectively. After that, a compression molded body was produced at a molding pressure of 6 tf / cm 2 . Then, Example 1
Sintering and heat treatment were performed in the same manner as in, and the same investigation as in Example 1 was performed in the same manner.

【表2】 [Table 2]

【0020】これらの調査結果を表2に併記した。表2
から明らかなように、この発明に適合する場合は引張強
さ、面圧耐久疲れ強さ、寸法精度とも優れた値を示して
いる。
The results of these investigations are also shown in Table 2. Table 2
As is apparent from the above, when this invention is applied, the tensile strength, the fatigue strength under contact pressure, and the dimensional accuracy show excellent values.

【0021】[0021]

【発明の効果】この発明の合金鋼粉は、Moと、V,Ti及
びNbのうちの1種以上を予合金化により、Ni及びCuのう
ちの少なくとも1種を複合合金化により含有させるもの
であって、焼結−熱処理材において、強度及び疲労特性
に優れるだけでなく、極めて良好な寸法精度を維持する
ことができ、例えば自動車のカムギアのような、高水準
の強度、疲労特性及び寸法精度が要求される焼結部品の
原料合金鋼粉として優れた効果を発揮する。
The alloy steel powder of the present invention contains Mo and at least one of V, Ti and Nb by pre-alloying, and at least one of Ni and Cu by complex alloying. The sintered-heat treated material is not only excellent in strength and fatigue characteristics, but also can maintain extremely good dimensional accuracy, and has a high level of strength, fatigue characteristics and dimensions such as that of an automobile cam gear. It exhibits excellent effects as a raw material alloy steel powder for sintered parts that require precision.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a) は熱処理前試験片の外径測定要領を示す説
明図である。(b) は熱処理後試験片の外径測定要領を示
す説明図である。
FIG. 1A is an explanatory diagram showing a procedure for measuring an outer diameter of a test piece before heat treatment. (b) is an explanatory view showing a procedure for measuring the outer diameter of the test piece after heat treatment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 義昭 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 初谷 栄治 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshiaki Maeda 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Chiba Steel Works (72) Inventor Eiji Hattani, Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Chiba Steel Works, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Moを、V,Ti,Nbのうちの1種又は2種
以上とともに、 Moは0.05wt%以上、2.5 wt%以下、 V,Ti及びNbはそれぞれ0.005 wt%以上、0.08wt%以
下、 の各範囲内の予合金鋼粉成分として含有し、かつNi:0.
5 wt%以上、5wt%以下及びCu:0.5 wt%以上、2.5 wt
%以下のうちの少なくとも一種を複合合金鋼粉成分とし
て含み、残余は鉄及び不可避的混入不純物の組成にな
り、成形、焼結を経たのちの熱処理材における寸法精
度、強度及び疲労特性に優れることを特徴とする合金鋼
粉。
1. Mo together with one or more of V, Ti, and Nb, Mo is 0.05 wt% or more and 2.5 wt% or less, and V, Ti, and Nb are 0.005 wt% or more and 0.08 wt%, respectively. % Or less, contained as a prealloyed steel powder component in each range of, and Ni: 0.
5 wt% or more, 5 wt% or less and Cu: 0.5 wt% or more, 2.5 wt
% Or less as a composite alloy steel powder component, with the balance being the composition of iron and inevitable mixed impurities, and having excellent dimensional accuracy, strength and fatigue properties in the heat treated material after forming and sintering. Alloy steel powder characterized by.
JP4234662A 1992-09-02 1992-09-02 Alloy steel powder Pending JPH0681001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4234662A JPH0681001A (en) 1992-09-02 1992-09-02 Alloy steel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4234662A JPH0681001A (en) 1992-09-02 1992-09-02 Alloy steel powder

Publications (1)

Publication Number Publication Date
JPH0681001A true JPH0681001A (en) 1994-03-22

Family

ID=16974521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4234662A Pending JPH0681001A (en) 1992-09-02 1992-09-02 Alloy steel powder

Country Status (1)

Country Link
JP (1) JPH0681001A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5605559A (en) * 1994-04-15 1997-02-25 Kawasaki Steel Corporation Alloy steel powders, sintered bodies and method
WO2000023631A1 (en) * 1998-10-16 2000-04-27 Eurotungstene Poudres Micronic pre-alloyed metal powder based on three-dimensional transition metal
JP2004232004A (en) * 2003-01-29 2004-08-19 Jfe Steel Kk Alloy steel powder for iron-based sintered, heat-treated material superior in bearing fatigue characteristic
US7347884B2 (en) 2003-08-18 2008-03-25 Jfe Steel Corporation Alloy steel powder for powder metallurgy
US7384446B2 (en) 2004-04-22 2008-06-10 Jfe Steel Corporation Mixed powder for powder metallurgy
JP2008528811A (en) * 2005-02-04 2008-07-31 ホガナス アクチボラゲット Iron-based composite powder
JP2009209410A (en) * 2008-03-04 2009-09-17 Kobe Steel Ltd Mixed powder for powder metallurgy, and iron powder sintered compact
CN102343436A (en) * 2011-09-23 2012-02-08 常熟市华德粉末冶金有限公司 In-situ sintered dispersion particle-reinforced warm-compacting powder metallurgy material and preparation method thereof
CN102534349A (en) * 2010-12-16 2012-07-04 杰富意钢铁株式会社 Alloy steel powder for powder metallurgy, iron-based sintering material and manufacturing method thereof
CN102528020A (en) * 2010-12-16 2012-07-04 杰富意钢铁株式会社 Alloy steel powder for powder metallurgy, iron-based sintering material and manufacturing method thereof
CN102554213A (en) * 2010-12-16 2012-07-11 杰富意钢铁株式会社 Alloy steel powder for powder metallurgy, iron-based sintering material and manufacturing method thereof
WO2021059621A1 (en) * 2019-09-27 2021-04-01 Jfeスチール株式会社 Alloy steel powder for powder metallurgy, iron-based mixed powder for powder metallurgy, and sintered body

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5605559A (en) * 1994-04-15 1997-02-25 Kawasaki Steel Corporation Alloy steel powders, sintered bodies and method
WO2000023631A1 (en) * 1998-10-16 2000-04-27 Eurotungstene Poudres Micronic pre-alloyed metal powder based on three-dimensional transition metal
JP2004232004A (en) * 2003-01-29 2004-08-19 Jfe Steel Kk Alloy steel powder for iron-based sintered, heat-treated material superior in bearing fatigue characteristic
US7347884B2 (en) 2003-08-18 2008-03-25 Jfe Steel Corporation Alloy steel powder for powder metallurgy
US7384446B2 (en) 2004-04-22 2008-06-10 Jfe Steel Corporation Mixed powder for powder metallurgy
JP2008528811A (en) * 2005-02-04 2008-07-31 ホガナス アクチボラゲット Iron-based composite powder
JP2009209410A (en) * 2008-03-04 2009-09-17 Kobe Steel Ltd Mixed powder for powder metallurgy, and iron powder sintered compact
CN102534349A (en) * 2010-12-16 2012-07-04 杰富意钢铁株式会社 Alloy steel powder for powder metallurgy, iron-based sintering material and manufacturing method thereof
CN102528020A (en) * 2010-12-16 2012-07-04 杰富意钢铁株式会社 Alloy steel powder for powder metallurgy, iron-based sintering material and manufacturing method thereof
CN102554213A (en) * 2010-12-16 2012-07-11 杰富意钢铁株式会社 Alloy steel powder for powder metallurgy, iron-based sintering material and manufacturing method thereof
CN102528020B (en) * 2010-12-16 2015-10-07 杰富意钢铁株式会社 Alloy steel powder for powder metallurgy and iron based material and manufacture method thereof
CN102343436A (en) * 2011-09-23 2012-02-08 常熟市华德粉末冶金有限公司 In-situ sintered dispersion particle-reinforced warm-compacting powder metallurgy material and preparation method thereof
WO2021059621A1 (en) * 2019-09-27 2021-04-01 Jfeスチール株式会社 Alloy steel powder for powder metallurgy, iron-based mixed powder for powder metallurgy, and sintered body
JPWO2021059621A1 (en) * 2019-09-27 2021-10-14 Jfeスチール株式会社 Alloy steel powder for powder metallurgy, iron-based mixed powder for powder metallurgy and sintered body
CN114450102A (en) * 2019-09-27 2022-05-06 杰富意钢铁株式会社 Alloy steel powder for powder metallurgy, iron-based mixed powder for powder metallurgy, and sintered body
EP4035798A4 (en) * 2019-09-27 2022-12-07 JFE Steel Corporation Alloy steel powder for powder metallurgy, iron-based mixed powder for powder metallurgy, and sintered body

Similar Documents

Publication Publication Date Title
CA2355559C (en) Alloyed steel powder for powder metallurgy
KR102014620B1 (en) Alloy steel powder for powder metallurgy, and sintered body
US8870997B2 (en) Iron-based pre-alloyed powder
DE69913650T2 (en) STEEL POWDER FOR THE PRODUCTION OF Sintered Products
US4954171A (en) Composite alloy steel powder and sintered alloy steel
SE1751537A1 (en) Method of producing mixed powder for powder metallurgy, method of producing sintered body, and sintered body
US20070089562A1 (en) Mixed powder for powder metallurgy
GB2237029A (en) Sintered alloy body
JPH0681001A (en) Alloy steel powder
EP0677591B1 (en) Alloy steel powders, sintered bodies and method
WO2016088333A1 (en) Alloy steel powder for powder metallurgy, and sintered compact
JP3177482B2 (en) Low alloy steel powder for sinter hardening
WO1994027764A1 (en) Alloy steel powder for sinter with high strength, high fatigue strength and high toughness, sinter, and process for producing the sinter
US4804409A (en) Alloy steel powder for powder metallurgy
JP3351844B2 (en) Alloy steel powder for iron-based sintered material and method for producing the same
WO2018142778A1 (en) Mixed powder for powder metallurgy, sintered body, and method for producing sintered body
Chagnon et al. Effect of sintering parameters on mechanical properties of sinter hardened materials
JP4093070B2 (en) Alloy steel powder
JP2003147405A (en) Alloy steel powder for iron sintering heat treatment material
EP0334968B1 (en) Composite alloy steel powder and sintered alloy steel
WO2018143088A1 (en) Mixed powder for powder metallurgy, sintered body, and method for producing sintered body
JPH0657301A (en) Alloy steel powder for sintered material
JP2606928B2 (en) High-strength, high-toughness, high-precision alloy steel powder for parts and method for producing sintered alloy steel using the same
JP3303026B2 (en) High strength iron-based sintered alloy and method for producing the same
JPH0711002B2 (en) Alloy steel powder with small dimensional variation in heat treatment and method for producing the same