JPH0680429A - Glass optical element molder - Google Patents

Glass optical element molder

Info

Publication number
JPH0680429A
JPH0680429A JP22840892A JP22840892A JPH0680429A JP H0680429 A JPH0680429 A JP H0680429A JP 22840892 A JP22840892 A JP 22840892A JP 22840892 A JP22840892 A JP 22840892A JP H0680429 A JPH0680429 A JP H0680429A
Authority
JP
Japan
Prior art keywords
molding
glass
press
lens
glass material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22840892A
Other languages
Japanese (ja)
Inventor
Koichi Kawakami
浩一 川上
Masashi Furuse
昌司 古瀬
Hideki Uchida
秀樹 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP22840892A priority Critical patent/JPH0680429A/en
Publication of JPH0680429A publication Critical patent/JPH0680429A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/66Means for providing special atmospheres, e.g. reduced pressure, inert gas, reducing gas, clean room

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To improve shape precision in press molding, by applying ultrasonic vibration to the molding die in the horizontal or vertical direction or in both horizontal and vertical directions. CONSTITUTION:In the press-molding machine depicted in the Figure, PBL6 (LLF6) is used as a starting glass, to form a biconvex lens of 33mm phi outer diameter, 6.6mm thickness, R1=35mm and R2=71mm. The glass material is set on the bottom force 10 and heated by induction in a non-oxidative atmosphere up to 590 deg.C and maintained at this temperature for 120 seconds, then the hydraulic cylinder 14 is operated to raise the bottom shaft 12 to effect pressing with 500kgf pressure for 120 seconds. During this pressing process, the PZT actuator 3 is oscillated at 10kHz frequency and 0.1mum amplitude in the vertical direction to the molding die. After press-molding, the mold is cooled down below 200 deg.C, the hydraulic cylinder 14 is operated to sink the bottom shaft 12 whereby the biconvex lens formed is taken out. The lens has no untransferred part and molding precision of less than lambda/2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガラス光学素子を直接
プレス成形により製造するためのガラス光学素子成形装
置に関するものであって、特に成形中に超音波振動を加
える成形装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass optical element molding apparatus for directly manufacturing a glass optical element by press molding, and more particularly to a molding apparatus for applying ultrasonic vibration during molding.

【0002】[0002]

【従来の技術】近年、光学ガラスを素材としたレンズの
製造方法は、従来の研削、研磨による製造方法に代え
て、高精度な金型を用いて加熱軟化したガラス材料を精
密プレスすることにより、所定の性能を有するガラス光
学素子を得る方法が注目されている。
2. Description of the Related Art In recent years, a method of manufacturing a lens made of an optical glass is carried out by precision press of a softened glass material using a highly accurate mold, instead of the conventional grinding and polishing manufacturing method. Attention has been paid to a method of obtaining a glass optical element having a predetermined performance.

【0003】このガラス光学素子を直接プレス成形する
方法は、いろいろ提案されている。現在量産に用いられ
ている一般的な方法は、成形用金型の上にガラス材料を
セットし、非酸化性雰囲気中で、成形用金型及びガラス
材料を誘導加熱方式あるいは赤外線ランプ等による熱輻
射加熱方式によりガラスの軟化点近傍の温度まで加熱
し、プレス成形した後、ガラスの転移点以下の温度にな
ったところで成形されたガラス光学素子を取り出し、所
定の性能を有するガラス光学素子を得る方法である。
Various methods for directly press-molding this glass optical element have been proposed. The general method currently used for mass production is to set the glass material on the molding die and heat the molding die and glass material in an non-oxidizing atmosphere with an induction heating method or an infrared lamp. After heating to a temperature near the softening point of the glass by a radiant heating method and press molding, the molded glass optical element is taken out at a temperature below the glass transition point to obtain a glass optical element having a predetermined performance. Is the way.

【0004】プレス成形に用いられるガラス材料の形状
は球体、立方体、円柱体、四角柱等であるが、円柱体の
ガラス材料が安価であるため量産に用いられている。し
かしながら、円柱体のガラス材料は、成形されたレンズ
の中心部に金型の成形面がガラス材料に十分転写されな
い未転写部分が発生したり、また、両凹レンズやメニス
カスレンズ等をプレス成形した場合は、コバ部やエッジ
部までガラスの充填が進みにくいという問題があった。
そのため、例えば特開昭60−246231号公報で示
されるような振動加圧成形方法は、成形用金型及びガラ
ス材料をガラスの軟化点近傍の温度まで加熱してプレス
成形する際に、上型がガラス材料に接触してから型閉め
に至るまでの全加圧ストロークのおよそ9/10までの
加圧ストロークを、上型を下降、上昇を繰り返しながら
振動加圧し、それ以後型閉めに至るまでの加圧ストロー
クを定常加圧するものである。
The shape of the glass material used for press molding is a sphere, a cube, a cylinder, a quadrangular prism or the like, but the glass material of the cylinder is inexpensive and is used for mass production. However, in the case of a cylindrical glass material, there is an untransferred portion in the center of the molded lens where the molding surface of the mold is not sufficiently transferred to the glass material, or when a biconcave lens or a meniscus lens is press molded. Had a problem that it was difficult to fill the glass to the edge portion and the edge portion.
Therefore, for example, in the vibration pressure molding method disclosed in Japanese Patent Laid-Open No. 60-246231, the upper mold is used when the molding die and the glass material are heated to a temperature near the softening point of the glass and press-molded. Approximately 9/10 of the total pressure stroke from the time when the glass comes into contact with the glass material until the mold is closed, the upper mold is repeatedly vibrated and pressured by repeatedly descending and ascending until the mold is closed. The pressurizing stroke of No. 2 is constantly applied.

【0005】また、特開平2−252629号公報で示
されるような成形方法は、ガラス材料、及び成形用金型
をガラスの軟化点近傍の温度まで加熱しプレス成形した
後、一旦プレス圧力を減圧しその後冷却しながらプレス
成形するか、あるいは一旦プレス圧力を零にし、その後
冷却しながらプレス成形するものである。
Further, in the molding method as disclosed in JP-A-2-252629, the glass material and the molding die are heated to a temperature near the softening point of the glass and press-molded, and then the press pressure is once reduced. Then, the press molding is performed while cooling, or the press pressure is once set to zero, and then the press molding is performed while cooling.

【0006】[0006]

【従来技術の課題】上述したように振動加圧成形方法
は、成形中に上型をガラス材料に対して接触させたり、
離したりしながら成形するため成形されたガラス光学素
子の表面に気泡が発生しやすく、また、金型及びガラス
材料の間で熱を奪ったり奪われたりするため、金型及び
ガラス材料の温度が不均一になってしまう。そのため、
未転写部分が減少する反面、レンズの口径が大きくなる
ほど形状が出しにくくなってしまう。
2. Description of the Related Art As described above, in the vibration pressure molding method, the upper die is brought into contact with the glass material during molding,
Since the glass optical element is molded while being separated from each other, bubbles are likely to be generated on the surface of the molded glass optical element, and heat is taken or taken between the mold and the glass material. It becomes uneven. for that reason,
On the other hand, the untransferred portion decreases, but the larger the aperture of the lens, the more difficult it is to form the shape.

【0007】また、加熱しプレス成形した後、プレス圧
力を減圧あるいは零にする方法は、ガラス材料の硝種、
レンズの形状、及び口径等によってガラス材料の粘性及
び流動性が変化するため、プレス圧力を制御しても成形
されたレンズの表面に未転写部分が小さく残ってしま
う。
Further, after heating and press-molding, the method of reducing the pressure of the press or reducing it to zero is as follows:
Since the viscosity and fluidity of the glass material change depending on the shape and aperture of the lens, the untransferred portion remains small on the surface of the molded lens even if the pressing pressure is controlled.

【0008】また、両凸レンズの場合は未転写部分の減
少が図れるが、両凹レンズやメニスカスレンズ等のコバ
部やエッジ部の未転写部分は、ガラスの充填が進みにく
く形状が出しにくいという問題がある。
Further, in the case of the biconvex lens, the untransferred portion can be reduced, but the untransferred portion of the edge portion and the edge portion of the biconcave lens or the meniscus lens has a problem that it is difficult to fill the glass and it is difficult to form the shape. is there.

【0009】[0009]

【課題を解決するための手段】本発明は、プレス成形中
に超音波振動発生装置により、成形用金型に水平方向、
または垂直方向、あるいは同時に水平及び垂直方向に超
音波振動を加える。また、ガラスの硝種、レンズの形
状、及び口径等に応じて、振動数を1kHz〜100k
Hz、振幅を0.01〜10μmの範囲で変化させる。
SUMMARY OF THE INVENTION The present invention uses an ultrasonic vibration generator during press molding to horizontally move a molding die,
Alternatively, ultrasonic vibration is applied in the vertical direction, or simultaneously in the horizontal and vertical directions. In addition, depending on the glass type of glass, the shape of the lens, the aperture, etc., the frequency is 1 kHz to 100 kHz.
Hz and amplitude are changed in the range of 0.01 to 10 μm.

【0010】[0010]

【作用】前記構成によれば、プレス成形中に成形用金型
に超音波振動を加え、ガラスの流動性を促進することが
できるため、成形されたレンズの中心部に未転写部分が
発生することなく、また、コバ部やエッジ部までガラス
の充填を促進し、形状精度を向上させることができる。
また、ガラス材料の硝種、レンズの形状、及び口径等に
よりガラスの粘性、及び流動性が変化しても、超音波振
動の振動数、及び振幅を変化させることにより、ガラス
の流動性を良くし、ガラスの充填を促進することができ
る。
According to the above construction, since ultrasonic vibration can be applied to the molding die during press molding to promote the fluidity of the glass, an untransferred portion is generated at the center of the molded lens. Further, it is possible to promote the filling of the glass even to the edge portion and the edge portion, and improve the shape accuracy.
In addition, even if the viscosity and fluidity of the glass changes depending on the glass type of the glass material, the shape of the lens, the aperture, etc., the fluidity of the glass can be improved by changing the frequency and amplitude of ultrasonic vibration. The glass filling can be promoted.

【0011】[0011]

【実施例】本発明の実施例を図面を用いて説明する。Embodiments of the present invention will be described with reference to the drawings.

【0012】実験例1 図1は、レンズを成形するためのプレス成形装置の概略
図である。金型8、10は、型母材に炭化珪素(Si
C)を用い、その成形面にSiC膜を成膜し、その表面
をRa=1nm以下になるように鏡面仕上げする。この
金型8、10をそれぞれ保持する胴型9、11は、タン
グステン合金、あるいはモリブデン合金等の誘導加熱さ
れる材料で構成されている。上軸2は、上端部がフレー
ム1に固定された固定軸で、上軸2と継ぎ手(断熱体)
5との間に図示していないPZT駆動用電源により駆動
されるPZTアクチェータ3を構成し、継ぎ手(断熱
体)5の下端部に上型用金型8を保持した上型用胴型9
が機械的に取り付けられている。下軸12は、ロードセ
ル13を介して油圧シリンダ14により上下方向に駆動
することができる移動軸で、上軸2と同様に継ぎ手(断
熱体)6をはさんで、下型用金型10を保持した下型用
胴型11が機械的に取り付けられている。また、金型
8、10、及び胴型9、11は石英ガラス管4により密
閉され、この石英ガラス管4の周りには、誘導加熱用の
誘導加熱コイル7が配置されている。
Experimental Example 1 FIG. 1 is a schematic view of a press molding apparatus for molding a lens. The metal molds 8 and 10 have silicon carbide (Si
C) is used to form a SiC film on the molding surface, and the surface is mirror-finished so that Ra = 1 nm or less. The barrel dies 9 and 11 that respectively hold the dies 8 and 10 are made of an induction-heated material such as a tungsten alloy or a molybdenum alloy. The upper shaft 2 is a fixed shaft whose upper end is fixed to the frame 1, and the upper shaft 2 and a joint (insulator)
5, a PZT actuator 3 driven by a PZT driving power source (not shown), and an upper mold barrel 9 holding an upper mold 8 at the lower end of a joint (heat insulator) 5.
Are mechanically attached. The lower shaft 12 is a moving shaft that can be driven in the vertical direction by a hydraulic cylinder 14 via a load cell 13. Like the upper shaft 2, the joint (heat insulating body) 6 is sandwiched between the lower shaft 12 and the lower mold 10 to hold the lower mold 10 in place. The held lower die body 11 is mechanically attached. The molds 8 and 10 and the body molds 9 and 11 are sealed by a quartz glass tube 4, and an induction heating coil 7 for induction heating is arranged around the quartz glass tube 4.

【0013】図3は、プレス成形に用いられる円柱体の
ガラス材料の外形図である。この円柱体の加工単価は、
円柱状のガラス材料を研削加工によりカットするため、
ガラス材料としては非常に安価である。しかし、円柱体
のガラス材料は研削加工により表面が荒れているため表
面粗さが非常に悪く、表面も汚れている。そのため、表
面付近の加工変質層の除去と表面粗さ向上のため、化学
研磨処理、及び熱処理が施され、外形φ、及び高さhに
より体積管理されている。
FIG. 3 is an outline view of a cylindrical glass material used for press molding. The processing unit price of this cylinder is
Since the cylindrical glass material is cut by grinding,
It is very inexpensive as a glass material. However, since the surface of the cylindrical glass material is roughened by grinding, the surface roughness is very poor and the surface is also soiled. Therefore, in order to remove the work-affected layer near the surface and improve the surface roughness, chemical polishing and heat treatment are performed, and the volume is controlled by the outer diameter φ and the height h.

【0014】図1のプレス成形装置において、ガラス材
料としてPBL6(LLF6)を用いて、外形φ33m
m、肉厚6.6mm、R1=35mm、R2=71mm
の両凸レンズを試作した。ガラス材料を下型用金型10
の上にセットし、非酸化性雰囲気中(N2 ガス中)で誘
導加熱により590℃まで加熱し、120sec保持し
た後、油圧シリンダ14により下軸12を上昇させて5
00kgfの圧力で120sec間加圧した。この加圧
プロセスにおいて、PZTアクチェータ3を周波数10
kHz、振幅0.1μmで振動させ、成形用金型に垂直
方向に超音波振動を加えた。プレス成形後、200℃以
下の温度まで冷却した後、油圧シリンダ14により下軸
12を降下させ、成形された両凸レンズを取り出した。
In the press molding apparatus of FIG. 1, PBL6 (LLF6) is used as the glass material, and the outer diameter is 33 m.
m, wall thickness 6.6 mm, R1 = 35 mm, R2 = 71 mm
A biconvex lens was prototyped. Mold 10 for lower mold made of glass material
Set to the above temperature, heated to 590 ° C. by induction heating in a non-oxidizing atmosphere (in N 2 gas) and held for 120 seconds, and then the lower shaft 12 is raised by the hydraulic cylinder 14 to 5
A pressure of 00 kgf was applied for 120 seconds. In this pressurization process, the PZT actuator 3 is operated at a frequency of 10
It was oscillated at a frequency of kHz and an amplitude of 0.1 μm, and ultrasonic vibration was applied vertically to the molding die. After press molding, after cooling to a temperature of 200 ° C. or lower, the lower shaft 12 was lowered by the hydraulic cylinder 14 and the molded biconvex lens was taken out.

【0015】従来は、成形されたレンズの中心部に未転
写部分が発生しやすく、形状精度がλ程度であったが、
実験例1で試作した両凸レンズは、中心部に未転写部分
が全くなく、形状精度がλ/2以下に向上した。
Conventionally, an untransferred portion is apt to occur in the center of the molded lens, and the shape accuracy is about λ.
The biconvex lens prototyped in Experimental Example 1 had no untransferred portion at the center, and the shape accuracy was improved to λ / 2 or less.

【0016】実験例2 次に、実験例2について図面を用いて説明する。 Experimental Example 2 Next, Experimental Example 2 will be described with reference to the drawings.

【0017】図1のプレス成形装置において、ガラス材
料としてBSL7(BK7)を用いて、外形φ13m
m、肉厚3.5mm、R1=11mm、R2=41mm
の両凸レンズを試作した。ガラス材料を下型用金型10
の上にセットし、非酸化性雰囲気中(N2 ガス中)で誘
導加熱により650℃まで加熱し、60sec保持した
後、油圧シリンダ14により下軸12を上昇させて、2
00kgfの圧力で90sec間加圧した。この加圧プ
ロセスにおいて、PZTアクチェータ3を周波数6kH
z、振幅2μmで振動させ、成形用金型に垂直方向に超
音波振動を加えた。プレス成形後、200℃以下の温度
まで冷却した後、油圧シリンダ14により下軸12を降
下させ、成形された両凸レンズを取り出した。
In the press molding apparatus of FIG. 1, BSL7 (BK7) is used as the glass material, and the outer diameter is 13 m.
m, wall thickness 3.5 mm, R1 = 11 mm, R2 = 41 mm
A biconvex lens was prototyped. Mold 10 for lower mold made of glass material
Set to the above temperature, heated to 650 ° C. by induction heating in a non-oxidizing atmosphere (in N 2 gas) and held for 60 seconds, then the lower shaft 12 is raised by the hydraulic cylinder 14 to
A pressure of 00 kgf was applied for 90 seconds. In this pressurizing process, the frequency of the PZT actuator 3 is set to 6 kHz.
The ultrasonic vibration was applied to the molding die in the vertical direction by vibrating at z and an amplitude of 2 μm. After press molding, after cooling to a temperature of 200 ° C. or lower, the lower shaft 12 was lowered by the hydraulic cylinder 14 and the molded biconvex lens was taken out.

【0018】従来は、成形されたレンズの中心部に未転
写部分が発生しやすく、形状精度がλ程度であったが、
実験例2で試作した両凸レンズは、中心部に未転写部分
が全くなく、形状精度がλ/4以下に向上した。
Conventionally, an untransferred portion is likely to occur at the center of the molded lens, and the shape accuracy is about λ.
The biconvex lens prototyped in Experimental Example 2 had no untransferred portion at the center, and the shape accuracy was improved to λ / 4 or less.

【0019】実験例3 次に、実験例3について図面を用いて説明する。 Experimental Example 3 Next, Experimental Example 3 will be described with reference to the drawings.

【0020】図1のプレス成形装置において、ガラス材
料としてLAM60(LaF010)を用いて、外形φ
10mm、肉厚2.2mm、R1=13mm、R2=1
36mmの両凸レンズを試作した。ガラス材料を下型用
金型10の上にセットし、非酸化性雰囲気中(N2 ガス
中)で誘導加熱により670℃まで加熱し、60sec
保持した後、油圧シリンダ14により下軸12を上昇さ
せて、200kgfの圧力で90sec間加圧した。こ
の加圧プロセスにおいて、PZTアクチェータ3を周波
数1kHz、振幅10μmで振動させ、成形用金型に垂
直方向に超音波振動を加えた。プレス成形後、200℃
以下の温度まで冷却した後、油圧シリンダ14により下
軸12を降下させ、成形された両凸レンズを取り出し
た。
In the press molding apparatus of FIG. 1, LAM60 (LaF010) is used as the glass material, and the outer diameter φ
10 mm, wall thickness 2.2 mm, R1 = 13 mm, R2 = 1
A 36 mm biconvex lens was prototyped. A glass material is set on the lower die 10 and heated to 670 ° C. by induction heating in a non-oxidizing atmosphere (in N 2 gas) for 60 seconds.
After the holding, the lower shaft 12 was raised by the hydraulic cylinder 14 and pressurized at a pressure of 200 kgf for 90 seconds. In this pressurizing process, the PZT actuator 3 was vibrated at a frequency of 1 kHz and an amplitude of 10 μm, and ultrasonic vibration was applied vertically to the molding die. After press molding, 200 ℃
After cooling to the temperature below, the lower shaft 12 was lowered by the hydraulic cylinder 14 and the molded biconvex lens was taken out.

【0021】従来は、成形されたレンズの中心部に未転
写部分が発生しやすく、形状精度がλ程度であったが、
実験例3で試作した両凸レンズは、中心部に未転写部分
が全くなく、形状精度がλ/4以下に向上した。
Conventionally, an untransferred portion is likely to occur at the center of the molded lens, and the shape accuracy is about λ.
The biconvex lens prototyped in Experimental Example 3 had no untransferred portion at the center, and the shape accuracy was improved to λ / 4 or less.

【0022】実験例4 次に、実験例4について図面を用いて説明する。 Experimental Example 4 Next, Experimental Example 4 will be described with reference to the drawings.

【0023】図2は、レンズを成形するためのプレス成
形装置の概略図である。上軸2は、上端部がフレーム1
に固定された固定軸で、上軸2の横にPZT駆動用電源
により駆動されるPZTアクチェータ3を構成し、上軸
2の下端部に継ぎ手(断熱体)5をはさんで、上型用金
型8を保持した上型用胴型9が機械的に取り付けられて
いる。また、金型8、10、胴型9、11、及び下軸1
2の構成は、図1のプレス成形装置と全く同様である。
FIG. 2 is a schematic view of a press molding apparatus for molding a lens. The upper shaft 2 has a frame 1 at the upper end.
A PZT actuator 3 driven by a power source for PZT drive is configured beside the upper shaft 2 with a fixed shaft fixed to the upper shaft 2, and a joint (heat insulating body) 5 is sandwiched at the lower end of the upper shaft 2 for the upper mold. An upper die barrel die 9 holding a die 8 is mechanically attached. Further, the molds 8, 10, the body molds 9, 11, and the lower shaft 1
The configuration of 2 is exactly the same as that of the press molding apparatus of FIG.

【0024】図2のプレス成形装置において、ガラス材
料としてPBM5(F5)を用いて、外形φ15mm、
肉厚0.8mm、R1=11mm、R2=28mmの両
凹レンズを試作した。ガラス材料を下型用金型10の上
にセットし、非酸化性雰囲気中(N2 ガス中)で誘導加
熱により560℃まで加熱し、240sec保持した
後、油圧シリンダ14により下軸12を上昇させて、3
50kgfの圧力で30sec間加圧した。この加圧プ
ロセスにおいて、最初、PZTアクチェータ3を周波数
14kHz、振幅2μmで20sec振動させ、次に周
波数10kHz、振幅0.1μmで10sec振動さ
せ、成形用金型に水平方向に超音波振動を加えた。プレ
ス成形後、200℃以下の温度まで冷却した後、油圧シ
リンダ14により下軸12を降下させ、成形された両凹
レンズを取り出した。
In the press molding apparatus of FIG. 2, PBM5 (F5) was used as the glass material, and the outer diameter was 15 mm.
A biconcave lens having a wall thickness of 0.8 mm, R1 = 11 mm, and R2 = 28 mm was experimentally manufactured. The glass material is set on the lower die 10 and heated to 560 ° C. by induction heating in a non-oxidizing atmosphere (in N 2 gas) and held for 240 seconds, after which the lower shaft 12 is raised by the hydraulic cylinder 14. Let me 3
A pressure of 50 kgf was applied for 30 seconds. In this pressurizing process, first, the PZT actuator 3 was vibrated at a frequency of 14 kHz and an amplitude of 2 μm for 20 sec, and then at a frequency of 10 kHz and an amplitude of 0.1 μm for 10 sec, and ultrasonic vibration was horizontally applied to the molding die. . After press molding, after cooling to a temperature of 200 ° C. or lower, the lower shaft 12 was lowered by the hydraulic cylinder 14, and the molded biconcave lens was taken out.

【0025】従来は、成形されたレンズのエッジ部まで
ガラスが充填しにくく、形状精度は2λ程度であった
が、実験例4で試作した両凹レンズは、ガラスの充填が
エッジ部まで進み、形状精度はλ/2〜λ/4程度に向
上した。
Conventionally, it was difficult to fill the edge of the molded lens with glass, and the shape accuracy was about 2λ. However, the biconcave lens prototyped in Experimental Example 4 has a shape in which the glass filling advances to the edge. The accuracy has improved to about λ / 2 to λ / 4.

【0026】なお、プレス成形の加圧プロセスにおい
て、成形用金型に同時に水平、及び垂直方向に超音波振
動を加えても同様の効果が得られる。
In the pressing process of press molding, the same effect can be obtained by simultaneously applying ultrasonic vibrations to the molding die in horizontal and vertical directions.

【0027】[0027]

【発明の効果】以上説明したように本発明によれば、成
形用金型に水平方向、または垂直方向、あるいは同時に
水平及び垂直方向に超音波振動を加えるため、実験例で
示したようにガラス材料の硝種、レンズの形状、及び口
径等によりガラスの粘性及び流動性が変化しても、超音
波振動の周波数及び振幅を変化することにより、成形さ
れたレンズの中心部に未転写部分が発生することなく、
また、コバ部やエッジ部までガラスの充填を促進し形状
精度を向上させることができる。そのため、成形するガ
ラスの材料の硝種、レンズの形状、及び口径等を自由に
選択でき、両凸レンズのみならず両凹レンズ及びメニス
カスレンズ等のガラス光学素子を容易にプレス成形する
ことができる。
As described above, according to the present invention, ultrasonic vibration is applied to the molding die in the horizontal direction, the vertical direction, or the horizontal and vertical directions at the same time. Even if the viscosity and fluidity of the glass changes depending on the glass type of the material, the shape of the lens, the aperture, etc., the frequency and amplitude of the ultrasonic vibration change, which causes a non-transferred portion at the center of the molded lens. Without doing
Further, it is possible to promote the filling of the glass to the edge portion and the edge portion and improve the shape accuracy. Therefore, the glass type of the material of the glass to be molded, the shape of the lens, the aperture and the like can be freely selected, and not only the biconvex lens but also the glass optical element such as the biconcave lens and the meniscus lens can be easily press-molded.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実験例1〜3における、プレス成形装
置の概略構成図である。
FIG. 1 is a schematic configuration diagram of a press molding apparatus in Experimental Examples 1 to 3 of the present invention.

【図2】本発明の実験例4における、プレス成形装置の
概略構成図である。
FIG. 2 is a schematic configuration diagram of a press molding apparatus in Experimental Example 4 of the present invention.

【図3】本発明の実験例における、ガラス材料の外形図
である。
FIG. 3 is an outline view of a glass material in an experimental example of the present invention.

【符号の説明】[Explanation of symbols]

1 フレーム 2 上軸(固定軸) 3 PZTアクチェータ 4 石英ガラス管 5、6 継ぎ手(断熱体) 7 誘導加熱コイル 8、10 金型 9、11 胴型 12 下軸(移動軸) 13 ロードセル 14 油圧シリンダ 1 frame 2 upper shaft (fixed shaft) 3 PZT actuator 4 quartz glass tube 5, 6 joint (insulator) 7 induction heating coil 8, 10 mold 9, 11 body 12 lower shaft (moving shaft) 13 load cell 14 hydraulic cylinder

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ガラス光学素子のプレス成形装置におい
て、成形用金型と超音波振動発生装置とを具備し、プレ
ス成形中に該成形用金型に超音波振動を加えることを特
徴とするガラス光学素子成形装置。
1. A press molding apparatus for a glass optical element, comprising a molding die and an ultrasonic vibration generator, wherein ultrasonic vibration is applied to the molding die during press molding. Optical element molding equipment.
【請求項2】該成形用金型に水平方向、または垂直方
向、あるいは同時に水平及び垂直方向に超音波振動を加
えることを特徴とする請求項1記載のガラス光学素子成
形装置。
2. The glass optical element molding apparatus according to claim 1, wherein ultrasonic vibration is applied to the molding die in a horizontal direction, a vertical direction, or simultaneously in the horizontal and vertical directions.
JP22840892A 1992-08-27 1992-08-27 Glass optical element molder Pending JPH0680429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22840892A JPH0680429A (en) 1992-08-27 1992-08-27 Glass optical element molder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22840892A JPH0680429A (en) 1992-08-27 1992-08-27 Glass optical element molder

Publications (1)

Publication Number Publication Date
JPH0680429A true JPH0680429A (en) 1994-03-22

Family

ID=16876005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22840892A Pending JPH0680429A (en) 1992-08-27 1992-08-27 Glass optical element molder

Country Status (1)

Country Link
JP (1) JPH0680429A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4869237A (en) * 1987-03-02 1989-09-26 Olympus Optical Co., Ltd. Electronic endoscope apparatus
US4888639A (en) * 1987-05-22 1989-12-19 Olympous Optical Co., Ltd. Endoscope apparatus having integrated disconnectable light transmitting and image signal transmitting cord
JPH09188529A (en) * 1996-01-11 1997-07-22 Asahi Optical Co Ltd Device for forming optical element
JP2008239431A (en) * 2007-03-28 2008-10-09 Topcon Corp Lens forming method and apparatus
CN102173563A (en) * 2011-01-19 2011-09-07 湖南大学 Ultrasonic vibration-assisted method for precise mould pressing and shaping
JP2011256087A (en) * 2010-06-10 2011-12-22 Toshiba Mach Co Ltd Glass molding apparatus and glass molding method
WO2016081353A1 (en) * 2014-11-17 2016-05-26 Corning Incorporated Ultrasonic near field hot glass transportation and forming
CN106746512A (en) * 2016-12-21 2017-05-31 江苏省冶金设计院有限公司 The device and the method using device shaping of a kind of glass-ceramic matrix shaping

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4869237A (en) * 1987-03-02 1989-09-26 Olympus Optical Co., Ltd. Electronic endoscope apparatus
US4888639A (en) * 1987-05-22 1989-12-19 Olympous Optical Co., Ltd. Endoscope apparatus having integrated disconnectable light transmitting and image signal transmitting cord
JPH09188529A (en) * 1996-01-11 1997-07-22 Asahi Optical Co Ltd Device for forming optical element
JP2008239431A (en) * 2007-03-28 2008-10-09 Topcon Corp Lens forming method and apparatus
JP2011256087A (en) * 2010-06-10 2011-12-22 Toshiba Mach Co Ltd Glass molding apparatus and glass molding method
CN102173563A (en) * 2011-01-19 2011-09-07 湖南大学 Ultrasonic vibration-assisted method for precise mould pressing and shaping
WO2016081353A1 (en) * 2014-11-17 2016-05-26 Corning Incorporated Ultrasonic near field hot glass transportation and forming
CN107108304A (en) * 2014-11-17 2017-08-29 康宁公司 The transmission and formation of the hot glass in ultrasonic near field
US10407335B2 (en) 2014-11-17 2019-09-10 Corning Incorporated Ultrasonic near field hot glass transportation and forming
CN106746512A (en) * 2016-12-21 2017-05-31 江苏省冶金设计院有限公司 The device and the method using device shaping of a kind of glass-ceramic matrix shaping

Similar Documents

Publication Publication Date Title
TW201311422A (en) Resin molding apparatus and method for molding resin
JPH0680429A (en) Glass optical element molder
JP2577055B2 (en) Glass mold
JP2001180946A (en) Method for forming optical glass element and forming apparatus for optical glass with method
JPH01133948A (en) Manufacture of optical element
JPH0431328A (en) Mold structure for forming optical element and press-molding method
JPH06122525A (en) Apparatus for forming optical element, forming method and optical element
CN112936838A (en) Vibration-assisted linear friction imprinting device and method
JP2002316826A (en) Method for forming optical element
JPH11217229A (en) Production of quartz glass article
JP2002128530A (en) Method of forming optical element
JP2000086255A (en) Method for molding optical element
JP2010260775A (en) Glass aspheric lens and method for manufacturing the same
JP3753415B2 (en) Glass optical element molding method
JPH02196039A (en) Method for molding glass optical device
JPH0455134B2 (en)
JPH0741327A (en) Optical element forming method
JP4094587B2 (en) Glass optical element molding method
JPH05221664A (en) Method for forming optical element
JPH11199247A (en) Manufacture of optical element
JP2004277242A (en) Optical element molding die, method and apparatus
JPH0769650A (en) Production of optical element
JP4030799B2 (en) Optical element molding method
JPH10194754A (en) Optical device molding die
JP2825681B2 (en) Press forming method for optical elements