JPH0679652B2 - Radiation irradiation exhaust gas treatment method and device - Google Patents

Radiation irradiation exhaust gas treatment method and device

Info

Publication number
JPH0679652B2
JPH0679652B2 JP33115287A JP33115287A JPH0679652B2 JP H0679652 B2 JPH0679652 B2 JP H0679652B2 JP 33115287 A JP33115287 A JP 33115287A JP 33115287 A JP33115287 A JP 33115287A JP H0679652 B2 JPH0679652 B2 JP H0679652B2
Authority
JP
Japan
Prior art keywords
exhaust gas
wet
dust collector
dry
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33115287A
Other languages
Japanese (ja)
Other versions
JPH01171623A (en
Inventor
慎治 青木
章彦 前沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP33115287A priority Critical patent/JPH0679652B2/en
Publication of JPH01171623A publication Critical patent/JPH01171623A/en
Publication of JPH0679652B2 publication Critical patent/JPH0679652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Electrostatic Separation (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はSOXおよび/またはNOX等の有害ガス成分を含む
排ガスの処理方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for treating exhaust gas containing harmful gas components such as SO X and / or NO X.

(従来の技術) 従来重油燃焼炉等からのSOXおよび/またはNOXを含む排
ガスを処理して無害のガスとするためには第1図に示す
如く、例えばボイラー設備1からの排ガス(通常130℃
以上)を排ガス導管2を経て冷却塔3に導く。こゝで排
ガスは冷却水管4からスプレーされる冷却水により露点
以上100℃以下の温度に冷却され、しかる後排ガス導管
5を経て反応管7に導かれる。この際排ガス導管5の途
中で流量調節弁6からアンモニアを添加する。
(Prior Art) In order to process the exhaust gas containing SO X and / or NO X from a conventional heavy oil combustion furnace into a harmless gas, as shown in FIG. 1, for example, the exhaust gas from the boiler equipment 1 (usually 130 ° C
The above) is introduced into the cooling tower 3 via the exhaust gas conduit 2. Here, the exhaust gas is cooled to a temperature not lower than the dew point and not higher than 100 ° C. by the cooling water sprayed from the cooling water pipe 4, and then guided to the reaction pipe 7 through the exhaust gas pipe 5. At this time, ammonia is added from the flow rate control valve 6 in the middle of the exhaust gas conduit 5.

反応器7に導入された排ガスは電子線発生装置9からの
電子線を照射され、ガス中のSOXおよび/またはNOXがア
ンモニアと反応して硫安および/または硝安に変化す
る。次にこれを集じん機11で除去し、浄化された排ガス
は煙突13から大気中に放出される。除去された硫安およ
び/または硝安は副生品として排出管12から回収され
る。なお電子線照射による発熱および脱硫脱硝に伴なう
発熱による排ガスの温度上昇を防止し、最適温度に維持
するため、反応器中の照射前、照射中、照射後のいずれ
かの位置またはこれらを組合せた位置で、冷却水スプレ
ー装置8から冷却水をスプレーする。最も望ましいのは
照射後である(本件については昭和62年12月7日に特許
出願済である)。
The exhaust gas introduced into the reactor 7 is irradiated with the electron beam from the electron beam generator 9, and SO X and / or NO X in the gas reacts with ammonia to change into ammonium sulfate and / or ammonium nitrate. Next, this is removed by the dust collector 11, and the purified exhaust gas is discharged from the chimney 13 into the atmosphere. The removed ammonium sulfate and / or ammonium nitrate is recovered from the discharge pipe 12 as a by-product. In order to prevent the temperature of exhaust gas from rising due to heat generated by electron beam irradiation and heat generated by desulfurization and denitration, and to maintain the optimum temperature, either before irradiation in the reactor, during irradiation, after irradiation, or at any of these positions, Cooling water is sprayed from the cooling water spray device 8 at the combined position. The most desirable is after irradiation (patent pending for this case on December 7, 1987).

上記の工程に使用される集じん機としては電気集じん機
(EP)とバグフィルターとの組合せ型、EP単独型および
バグフィルター単独型等があるが、いずれも問題点を有
しているのでこれについて説明する。
The dust collectors used in the above steps include a combination type of an electric dust collector (EP) and a bag filter, an EP single type and a bag filter single type, but all have problems. This will be described.

すなわち、上記の処理法で生成する硫安および硝安は付
着性、凝集性、吸湿性に富んだ極めて微細な粉体粒子な
ので、バグフィルターのような炉過集じん方式では、特
に粉体量の多いときに排ガスの圧力損失が短時間に増大
する(150mmH2O以上)という問題がある。これが対策と
しては炉過面を極端に大きくするとか、または粒子同志
のフィルター上での付着凝集を防ぐために、バグフィル
ター上流の排ガスに多量のケイソウ土、クレー等の炉過
助材を添加して炉過面の閉塞を防ぐ等の方法があるが、
いずれも設備費、運転費の増加につながることになる。
That is, since ammonium sulfate and ammonium nitrate produced by the above treatment method are extremely fine powder particles having a high adhesive property, a cohesive property, and a hygroscopic property, a furnace dust collecting method such as a bag filter has a particularly large amount of powder. Sometimes, there is a problem that the pressure loss of exhaust gas increases in a short time (150 mmH 2 O or more). To prevent this, the furnace surface should be made extremely large, or a large amount of diatomaceous earth, clay, or other furnace-assisting material should be added to the exhaust gas upstream of the bag filter in order to prevent the particles from adhering and coagulating on the filter. There is a method to prevent blockage of the furnace surface,
Both will lead to an increase in equipment costs and operating costs.

一方、EP単独型ではバグフィルターのような閉塞問題が
生じないが、煤塵規制が例えば10mg/Nm3以下と、特別に
厳しい条件下では、EP内ガス流速を例えば0.3m/s以下に
下げて対応するため設備容量が大きくなる。そこで今後
益々厳しくなることが予想される煤塵規制に克つために
大容量のEPが必要となりこれも設備費、運転費の増加に
つながる。
On the other hand, the EP alone type does not cause a clogging problem like a bag filter, but the dust regulation is, for example, 10 mg / Nm 3 or less, and under particularly severe conditions, the EP gas flow rate can be reduced to 0.3 m / s or less. As a result, the equipment capacity will increase. Therefore, a large-capacity EP is required to overcome the dust regulations, which are expected to become more and more severe in the future, which also leads to an increase in equipment costs and operating costs.

次にEPとバグフィルターとの組合せ方式では、EPの下流
にバグフィルターを備えてあるのでEP内でのガス流速を
最大3m/sと、比較的大きくとることができ、且つ、下流
のバグフィルターではガス中の粉体含有量が減少し、炉
過抵抗が短時間には増大せず、従って炉過面積を極端に
大きくとる必要がない。この方法はEP、バグフィルター
ともに小型となり、厳しい煤塵規制に対応できる有効な
方法であり、本発明者等により、既に特許出願された、
(USP SN 055969 June 1987)。しかしながら、本方式
においてもバグフィルターにおける圧損失の問題が完全
に解決されたわけではなく、さらに近年、有害成分の排
出量を低減させるためガス処理設備には脱硫率90%以
上、脱硝率80%以上、リークアンモニア10ppm以下と、
極めて厳しい規制値が要求されてきており、今後更に厳
しさを増すものと予想される。
Next, in the combination method of EP and bag filter, since the bag filter is provided downstream of the EP, the gas flow velocity in the EP can be set to a relatively large maximum of 3 m / s, and the bag filter downstream In that case, the content of powder in the gas is reduced, and the furnace over-resistance does not increase in a short time. Therefore, it is not necessary to take an extremely large furnace over-area. This method is an effective method that both EP and bag filter become small in size and can comply with strict soot and dust regulations, and the present inventors have already applied for a patent,
(USP SN 055969 June 1987). However, even with this method, the problem of pressure loss in the bag filter has not been completely solved, and more recently, in order to reduce the emission of harmful components, the gas treatment equipment has a desulfurization rate of 90% or more and a denitration rate of 80% or more. , Leak ammonia less than 10ppm,
Extremely strict regulation values are required, and it is expected that they will become even more severe in the future.

図中の符号14,15,16は夫々SOX分析計、NOX分析計および
排ガス流量計を示し、アンモニアの添加量(NH3)は<
排ガス流量(Q Nm3/h)、SOX濃度(〔SOX〕ppm)、NOX
濃度(〔NOX〕ppm)、脱硫率(ηSOx)及び脱硝率(η
NOx)により次式で求めることができる。
Reference numerals 14, 15 and 16 in the figure respectively represent a SO X analyzer, a NO X analyzer and an exhaust gas flow meter, and the ammonia addition amount (NH 3 ) is <
Exhaust gas flow rate (Q Nm 3 / h), SO X concentration ([SO X ] ppm), NO X
Concentration ([NO x ] ppm), desulfurization rate (η SOx ) and denitration rate (η
NOx ) can be calculated by the following formula.

(解決を要する技術上の問題点) しかるに上記従来技術の方法においては工程の途中で添
加するアンモニアの量的調整が困難であったことから別
の問題が発生するに至った。以下、従来のアンモニアの
添加量調整につき更に詳しく述べる。
(Technical problem that needs to be solved) However, in the above-mentioned method of the prior art, it was difficult to quantitatively control the amount of ammonia added during the process, and thus another problem occurred. Hereinafter, the conventional adjustment of the amount of ammonia added will be described in more detail.

第2図は石灰燃焼排ガスにおけるSOX濃度、NOX濃度変動
の代表的チャートを示す。SOX濃度は平均値1500ppmに対
し約±100ppmの変動が、またNOX濃度は平均値300ppmに
対して約±20ppmの変動がみられる。脱硫率90%、脱硝
率80%の場合の添加すべきアンモニアを(1)式により
求める。
FIG. 2 shows a typical chart of changes in SO X concentration and NO X concentration in lime combustion exhaust gas. The SO X concentration fluctuates about ± 100 ppm from the average value of 1500 ppm, and the NO X concentration fluctuates about ± 20 ppm from the average value of 300 ppm. Ammonia to be added when the desulfurization rate is 90% and the denitration rate is 80% is calculated by the equation (1).

添加すべき最大濃度= 2×1600×0.9+320×0.8=3136ppm 添加すべき最低濃度= 2×1400×0.9+280×0.8=2744ppm 添加すべき平均濃度= 2×1500×0.9+300×0.8=2940ppm 許容リークアンモニア濃度を前述の10ppmとすれば2744p
pmから3136ppmの範囲のアンモニアを±10ppmの精度で供
給する必要がある。
Maximum concentration to be added = 2 x 1600 x 0.9 + 320 x 0.8 = 3136ppm Minimum concentration to be added = 2 x 1400 x 0.9 + 280 x 0.8 = 2744ppm Average concentration to be added = 2 x 1500 x 0.9 + 300 x 0.8 = 2940ppm Allowable leak Assuming that the ammonia concentration is 10 ppm, it is 2744p.
Ammonia in the range of pm to 3136ppm needs to be supplied with an accuracy of ± 10ppm.

これは0.3〜0.4%(10/3136,10/2744)という精度を意
味しており、通常のコントロール精度(フルスケールの
1〜2%)に比較して、かなり小さく、リークアンモニ
アを10ppm以下にコントロールすることは非常に困難で
あった。
This means an accuracy of 0.3 to 0.4% (10 / 3136,10 / 2744), which is considerably smaller than the normal control accuracy (1 to 2% of full scale), and the leak ammonia is less than 10ppm. It was very difficult to control.

そこで脱硫率90%以上、脱硝率80%以上、リークアンモ
ニア10ppm以下、排出煤塵濃度10mg/Nm3以下というよう
に今後益々規制が厳しくなることが予想される状況に対
し、SOX、NOXの濃度及び排ガスの流量変動に対して十分
対応できる方法及び装置が要求されている。
Therefore, in the situation where the regulations are expected to become stricter in the future such as desulfurization rate of 90% or more, denitrification rate of 80% or more, leaked ammonia 10 ppm or less, and emission dust concentration 10 mg / Nm 3 or less, SO X and NO X There is a demand for a method and an apparatus that can sufficiently cope with fluctuations in concentration and exhaust gas flow rate.

(問題点を解決するための手段) 本発明者等は脱硫率、脱硝率の低下を伴うことなく、リ
ークアンモニア及び排出ダストを低滅せしむる方法につ
き、種々研究を重ねた結果、SOX、NOXの濃度変動によっ
て生ずる未反応のアンモニア、SOX及びNOXを湿式集じん
機によって回収することにより、上記問題点を解決する
ことができた。
(Means for Solving Problems) The present inventors have conducted various studies on a method for reducing the leakage ammonia and exhaust dust without lowering the desulfurization rate and the denitration rate, and as a result, SO X It was possible to solve the above problems by recovering unreacted ammonia, SO X and NO X generated by fluctuations in the NO X concentration with a wet dust collector.

(発明の構成と作用) すなわち、本発明の放射線照射を含む排ガス処理法は、
硫黄酸化物(SOX)および/または窒素酸化物(NOX)を
含む排ガスを放射区域に誘導すること、照射中または照
射前後の排ガスにアンモニア(NH3)を添加すること、
そして生成した硫安および/または硝安を集じん機で捕
集した後、大気中に放出することからなり、計算量より
若干、過剰量のアンモニアを添加し、生成した上記副生
品の捕集のために直列に設けた乾式電気集じん機と、湿
式電気集じん機を用うることを特徴とするものである。
(Structure and operation of the invention) That is, the exhaust gas treatment method including radiation irradiation of the present invention is
Directing an exhaust gas containing sulfur oxides (SO X ) and / or nitrogen oxides (NO X ) to the radiation zone, adding ammonia (NH 3 ) to the exhaust gas during or before and after irradiation,
The generated ammonium sulfate and / or ammonium nitrate is collected by a dust collector and then released into the atmosphere. A slight excess of the calculated amount of ammonia is added to collect the generated by-product. Therefore, a dry type electrostatic precipitator provided in series and a wet type electrostatic precipitator can be used.

第3図は本発明の一実施態様を示したものであり、ボイ
ラー設備1からの排ガス(通常130℃)が排ガス導管2
を経てガス−ガス熱交換器19に導かれる。ここで排ガス
は処理済みの低温排ガスと熱交換され、露点以上で100
℃以下の範囲の温度迄冷却された後、排ガス導管5を経
て反応器7に導かれる。排ガス導管5の途中で流量調節
弁6から、前記(1)式から求められた量より若干過剰
のアンモニアが添加される。
FIG. 3 shows an embodiment of the present invention, in which the exhaust gas from the boiler equipment 1 (usually 130 ° C.) is the exhaust gas conduit 2
And is led to the gas-gas heat exchanger 19. Here, the exhaust gas is heat-exchanged with the treated low-temperature exhaust gas, and at 100% above the dew point.
After being cooled to a temperature in the range of ℃ or less, it is introduced into the reactor 7 via the exhaust gas conduit 5. A little excess ammonia is added from the flow control valve 6 in the middle of the exhaust gas conduit 5 compared to the amount calculated from the above equation (1).

反応器7に導入された排ガスは電子線発生装置9から電
子線を照射され、該排ガス中のSOXおよび/またはNOX
硫安および/または硝安に変化する。これらの粉体の大
部分を先ず乾式EP17により副生品として回収した後、排
ガスが湿式EP18に導入され未反応のアンモニア、SOX
よびNOXを吸収液(水)22で吸収除去する。湿式EP18で
は前段の乾式EP17で捕集されなかった微量の粉体をも捕
集し、除塵率を高めることができる。またNH3、SOX、NO
X及び粉体を吸収した吸収液20は硫安及び硝安の水溶液
であるので液体肥料として利用できる。湿式EP18からの
清浄化された排ガスはガス−ガス熱交換器19にて入口排
ガスを冷却した後大気中に放出される。なお乾式EP17を
出た排ガスの温度は、入口ガス中のSOX、NOX濃度および
要求される脱硫率、脱硝率等によって、露点以上100℃
以下の範囲内に定められるが、この温度が排ガスの露点
よりかなり大きい場合は、乾式EP17と湿式EP18との間で
冷却水21をスプレーし、排ガスを冷却することが望まし
い。露点との温度差が大きい場合、湿式EPの集じん板上
で水膜を形成するための水が蒸発するため、湿式EPの性
能が劣化する恐れがあり、これを防止するために上記ス
プレーを用いる。
The exhaust gas introduced into the reactor 7 is irradiated with an electron beam from the electron beam generator 9, so that SO X and / or NO X in the exhaust gas changes to ammonium sulfate and / or ammonium nitrate. Most of these powders are first recovered as by-products by the dry EP17, and then the exhaust gas is introduced into the wet EP18 to absorb and remove unreacted ammonia, SO X and NO X with the absorbing liquid (water) 22. The wet EP18 can collect even a small amount of powder that was not collected by the dry EP17 in the previous stage, and can increase the dust removal rate. Also NH 3 , SO X , NO
Since the absorbing liquid 20 which has absorbed X and powder is an aqueous solution of ammonium sulfate and ammonium nitrate, it can be used as a liquid fertilizer. The purified exhaust gas from the wet type EP 18 is discharged into the atmosphere after cooling the inlet exhaust gas in the gas-gas heat exchanger 19. The temperature of the exhaust gas discharged from the dry EP17 is 100 ° C or more depending on the concentration of SO X and NO X in the inlet gas and the required desulfurization rate and denitrification rate.
Although it is set within the following range, when this temperature is considerably higher than the dew point of the exhaust gas, it is desirable to spray the cooling water 21 between the dry EP 17 and the wet EP 18 to cool the exhaust gas. If the temperature difference from the dew point is large, the water for forming the water film on the dust collecting plate of the wet EP evaporates, which may deteriorate the performance of the wet EP.To prevent this, the above spray is used. To use.

電子線照射によって生成する硫安、硝安の粉体は、共
に、よく水に溶解し、非水溶性ダストに比較して捕集/
回収が容易であるし、粉体の再飛散がないので集じん率
が高くなる利点がある。
The ammonium sulfate and ammonium nitrate powders produced by electron beam irradiation both dissolve well in water and are collected / compared to non-water-soluble dust.
Since it is easy to collect and there is no re-scattering of powder, there is an advantage that the dust collection rate is high.

入口有害成分の組成及び排ガス量の変動が大きい場合又
は未反応アンモニア濃度が高い場合には吸収液として硫
酸水溶液を使用することもできる。
When the composition of the harmful components at the inlet and the amount of exhaust gas fluctuate greatly or the unreacted ammonia concentration is high, an aqueous sulfuric acid solution can be used as the absorbing liquid.

第4図に本発明の他の実施態様を示す。FIG. 4 shows another embodiment of the present invention.

第4図には湿式EP18からの抽出液20を反応温度調整のた
めの冷却水として利用している点が、第3図の実施態様
と異なっている。
FIG. 4 differs from the embodiment of FIG. 3 in that the extract 20 from the wet EP 18 is used as cooling water for adjusting the reaction temperature.

本発明方法におけるアンモニア添加量は(1)式で求め
た量に対し1〜2%の過剰量が望ましい。これは前述の
如く通常のコントロール精度がフルスケールの1〜2%
であるから、SOX、NOXの濃度変動が特に大きな場合に計
算量のアンモニアを添加したのでは1〜2%の不足とな
る恐れがあるからである。
The amount of ammonia added in the method of the present invention is preferably an excess amount of 1 to 2% with respect to the amount determined by the equation (1). As mentioned above, the normal control accuracy is 1-2% of full scale.
Therefore, if the calculated amount of ammonia is added when the concentration fluctuations of SO X and NO X are particularly large, it may result in a deficiency of 1 to 2%.

反応室で使用する放射線としては電子線、X線、γ線、
β線、α線等があるが特に電子線発生装置からの電子線
が好ましい。かくして添加されたアンモニアの大部分は
反応室においてSOX、NOXと反応するが、残余のアンモニ
アがさらに湿式EPにおいて未反応のSOX、NOXと反応す
る。この場合湿式EPのぬれ壁即ち水膜にSOX1モルに対
し、NH32モルおよび、NOX1モルに対し、NH31モルの
比率で夫々の成分が吸収されて硫安、硝安として固定さ
れ、さらに過剰分のNH3も吸収される。
The radiation used in the reaction chamber is electron beam, X-ray, γ-ray,
Although there are β rays, α rays, etc., an electron beam from an electron beam generator is particularly preferable. Most of the ammonia thus added reacts with SO X , NO X in the reaction chamber, but the remaining ammonia further reacts with unreacted SO X , NO X in the wet EP. In this case the wet wall or film of water wet EP to SO X 1 mole, NH 3 2 mol and, NO X 1 mole of fixed NH 3 1 in molar ratio are absorbed components each are ammonium sulfate, as ammonium nitrate And excess NH 3 is also absorbed.

本発明においては乾式のEPの後に湿式EPを配置してある
ので乾式EP単独型のように、排ガス流速を0.3m/sのよう
に低くする必要がなく、0.5〜3.0m/sと高くとることが
でき、かつ、実質的に大部分の除塵が前段の乾式EPで行
われているので、後段の湿式EPも小型のものでよい。こ
のように、乾湿両式において小型のEPを使用でき、排ガ
スの圧力損失も、通常のEPと変らず数10mmAq程度(バグ
フィルターでは約100〜150mmAq)なので設備費、運転費
を節減できる。
In the present invention, since the wet EP is arranged after the dry EP, it is not necessary to reduce the exhaust gas flow rate to 0.3 m / s as in the dry EP single type, and it is set to 0.5 to 3.0 m / s as high as possible. In addition, since most of the dust is removed by the dry EP in the front stage, the wet EP in the rear stage may be small in size. In this way, a small EP can be used in both wet and dry types, and the pressure loss of the exhaust gas is about 10 mmAq (about 100 to 150 mmAq for a bag filter), which is the same as a normal EP, so equipment costs and operating costs can be reduced.

なお、本発明は、入口排ガス温度制御方式として、第1
図で示した冷却塔方式の場合にも適用でき、この場合は
この冷却塔で使用する冷却水として、湿式EP抽出液も使
用可能である。
It should be noted that the present invention provides the first exhaust gas temperature control method as a first method.
It can also be applied to the case of the cooling tower system shown in the figure, and in this case, a wet EP extract can also be used as the cooling water used in this cooling tower.

また上記湿式EPは乾式EPのケーシング中下流側に組み込
むことが可能化であり、設備を更に緊密化することがで
きる。
Further, the wet EP can be incorporated in the casing of the dry EP on the downstream side, and the equipment can be further compacted.

(実施例) 第4図に示す方式の実験装置を用い、脱硫率90%、脱硝
率80%、リークアンモニア10ppm以下、排出ダスト10mg/
m3を目標として下記の実験を実施した。即ちガス温度13
0℃、SOX平均濃度1500ppm、NOX平均濃度300ppm(各々の
変動は第2図に示す)の排ガス8000Nm3/hをガス−ガス
熱交換器19にて70℃に冷却した後2970ppmのアンモニア
を添加して反応器7に導入し、1.8Mradの電子線を照射
した。上記アンモニア添加量は(1)式で求めた計算量
に対し約30ppm(1%相当)過剰である。
(Example) Using the experimental apparatus of the system shown in FIG. 4, desulfurization rate 90%, denitration rate 80%, leak ammonia 10 ppm or less, exhaust dust 10 mg /
The following experiment was conducted with the target of m 3 . That is, gas temperature 13
Exhaust gas 8000 Nm 3 / h at 0 ° C, SO X average concentration 1500 ppm, NO X average concentration 300 ppm (each variation is shown in Fig. 2) was cooled to 70 ° C by the gas-gas heat exchanger 19, and then 2970 ppm ammonia. Was introduced into the reactor 7 and irradiated with an electron beam of 1.8 Mrad. The above-mentioned ammonia addition amount is about 30 ppm (corresponding to 1%) excess with respect to the calculation amount obtained by the equation (1).

照射直後の排ガスには湿式EP18の抽出液(硫安および硝
安の混合水溶液)20を約170kg/hスプレーし、乾式EP17
出口の排ガス温度を約70℃に調整した。EP17で副生品12
が回収され,分離された排ガスに冷却水21を93kg/hスプ
レーして湿式EP18に導入した。そして乾式EP17出口、湿
式EP18出口においてSOX、NOX、NH3及びダストの濃度を
測定した結果を次の表に示す。なお約49℃の湿式EP出口
排ガスはガス−ガス熱交換器にて約105℃,に昇温し大
気に放出した。
Immediately after the irradiation, a wet EP18 extract (a mixed aqueous solution of ammonium sulfate and ammonium nitrate) 20 was sprayed at about 170 kg / h, and a dry EP17 was used.
The exhaust gas temperature at the outlet was adjusted to about 70 ° C. EP17 by-product 12
The recovered exhaust gas was sprayed with cooling water 21 at 93 kg / h and introduced into the wet EP18. The following table shows the results of measurement of SO X , NO X , NH 3 and dust concentrations at the dry EP17 outlet and the wet EP18 outlet. The exhaust gas from the wet EP outlet at about 49 ° C was heated to about 105 ° C in a gas-gas heat exchanger and released to the atmosphere.

(発明の効果) 上記の如く本発明によれば排ガス組成が大きく変動して
もリークアンモニアの量を低く抑えることができ同時に
乾式電気集じん機で捕集できなかった粉体をも高除塵率
で捕集することができる。また本発明は従来の装置に特
別な変更を加える必要がないので産業上大きな利益を得
ることができる。
(Effects of the Invention) As described above, according to the present invention, the amount of leaked ammonia can be suppressed to a low level even when the composition of exhaust gas varies greatly, and at the same time, a high dust removal rate can be achieved even for powders that could not be collected by the dry electrostatic precipitator. Can be collected at. Further, the present invention does not require any special modification to the conventional device, so that a great industrial advantage can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来技術の工程図を表わす。 第2図は排ガス中のSOX、NOXの濃度の変動を表わす。 第3図は本発明の一実施例の工程図を表わす。 第4図は本発明の他の実施例の工程図を表わす。FIG. 1 shows a process diagram of the prior art. Fig. 2 shows the fluctuation of the concentration of SO X and NO X in the exhaust gas. FIG. 3 shows a process drawing of an embodiment of the present invention. FIG. 4 shows a process chart of another embodiment of the present invention.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】硫黄酸化物(SOX)および/または窒素酸
化物(NOX)を含む排ガスを放射線照射区域に誘導する
こと、照射前、照射中または照射後の排ガスにアンモニ
ア(NH3)を添加すること、並びに形成された副生品
(硫安および/または硝安)を集じん機で捕集した後、
排ガスを大気に放出することからなる排ガス処理であっ
て、乾式電気集じん機で副生品を回収した後、分離され
た排ガスを湿式電気集じん機で処理することを特徴とす
る排ガス処理法。
1. Induction of exhaust gas containing sulfur oxide (SO X ) and / or nitrogen oxide (NO X ) to a radiation irradiation area, and ammonia (NH 3 ) in exhaust gas before, during or after irradiation. And by collecting the formed by-product (ammonium sulfate and / or ammonium nitrate) with a dust collector,
An exhaust gas treatment method, which comprises discharging exhaust gas to the atmosphere, wherein by-products are collected by a dry electric dust collector and then the separated exhaust gas is treated by a wet electric dust collector. .
【請求項2】乾式電気集じん機および湿式電気集じん機
のガス流速を0.5〜3.0m/sとする特許請求の範囲第1項
に記載の方法。
2. The method according to claim 1, wherein the gas flow rates of the dry electrostatic precipitator and the wet electrostatic precipitator are 0.5 to 3.0 m / s.
【請求項3】乾式電気集じん機と湿式電気集じん機との
間に冷却水スプレー装置を設けた特許請求の範囲第1項
乃至第2項のいずれかに記載の方法。
3. The method according to any one of claims 1 and 2, wherein a cooling water spray device is provided between the dry electrostatic precipitator and the wet electrostatic precipitator.
【請求項4】湿式電気集じん機からの抽出液を排ガスの
冷却水として用いる特許請求の範囲第1項乃至第3項の
いずれかに記載の方法。
4. The method according to any one of claims 1 to 3, wherein an extract from a wet electrostatic precipitator is used as cooling water for exhaust gas.
【請求項5】放射線が電子線加速機からの電子線である
特許請求の範囲第1項乃至第4項のいずれかに記載の方
法。
5. The method according to any one of claims 1 to 4, wherein the radiation is an electron beam from an electron beam accelerator.
【請求項6】乾式電気集じん機のケーシング中に該集じ
ん機の下流側に湿式電気集じん機を組み込ませてなるこ
とを特徴とする放射線照射排ガス処理に使用する集じん
装置。
6. A dust collector for use in the treatment of radiation irradiation exhaust gas, characterized in that a wet type electrostatic dust collector is incorporated in the casing of the dry type electrostatic dust collector on the downstream side of the dust collector.
JP33115287A 1987-12-26 1987-12-26 Radiation irradiation exhaust gas treatment method and device Expired - Fee Related JPH0679652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33115287A JPH0679652B2 (en) 1987-12-26 1987-12-26 Radiation irradiation exhaust gas treatment method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33115287A JPH0679652B2 (en) 1987-12-26 1987-12-26 Radiation irradiation exhaust gas treatment method and device

Publications (2)

Publication Number Publication Date
JPH01171623A JPH01171623A (en) 1989-07-06
JPH0679652B2 true JPH0679652B2 (en) 1994-10-12

Family

ID=18240452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33115287A Expired - Fee Related JPH0679652B2 (en) 1987-12-26 1987-12-26 Radiation irradiation exhaust gas treatment method and device

Country Status (1)

Country Link
JP (1) JPH0679652B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2571500A (en) * 1999-02-16 2000-09-04 Ebara Corporation Gas cooling device, gas treatment device, and boiler equipment
KR20110063759A (en) * 2008-08-22 2011-06-14 커먼웰쓰 사이언티픽 앤드 인더스트리얼 리서치 오가니제이션 Treatment of co2 depleted flue gases
JP5732204B2 (en) * 2010-06-02 2015-06-10 株式会社流機エンジニアリング Deodorizing device and deodorizing method
JP6804233B2 (en) * 2016-08-24 2020-12-23 三菱パワー環境ソリューション株式会社 Particle remover

Also Published As

Publication number Publication date
JPH01171623A (en) 1989-07-06

Similar Documents

Publication Publication Date Title
EP0474263B1 (en) Method of modifying a by-product of a waste gas treating process
EP2103339B1 (en) Exhaust gas treating method and apparatus
TWI276460B (en) Exhaust smoke-processing system
KR890000512B1 (en) Process for removal of nitrogen oxides and sulfur oxides from waste gases
CN1011858B (en) Process for treating waste gas
KR100287634B1 (en) Flue Gas Treatment Facility
EP1870155B1 (en) Regeneration of NT-SCR catalysts
JPS5824174B2 (en) Exhaust gas treatment method
GB2234232A (en) Desulphurizing flue gas with calcium salts
Namba et al. Pilot-scale test for electron beam purification of flue gas from coal-combustion boiler
JP2007245074A (en) Exhausted gas-treating device
CN87100906A (en) The processing method of flue gas
JPH01184311A (en) Coal fired boiler device with denitration device
WO1986000065A1 (en) Process for treating flue gas with alkali injection and electron beam
CN103104927A (en) Smoke denitration method of carbon monoxide (CO) heat recovery boiler of fluid catalytic cracking (FCC) device
CN104684627A (en) Flue gas treatment method and flue gas treatment device
JP2839028B2 (en) Desulfurization and denitrification method and desulfurization and denitrification equipment
KR930012041B1 (en) Simultaneous desulphurization and denitrogenation method
JPH0679652B2 (en) Radiation irradiation exhaust gas treatment method and device
JP2004154683A (en) Exhaust gas treatment equipment and its operation method
JP3785296B2 (en) Catalyst regeneration method
JP2561998B2 (en) By-product fertilizer treatment method
US5401480A (en) Removal of sulfur and nitrogen oxides from flue gases
JPH0570489B2 (en)
JP3112570B2 (en) Exhaust gas heating device for flue gas denitration equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees