JPH0679168A - Preparation of organic superfine particle - Google Patents

Preparation of organic superfine particle

Info

Publication number
JPH0679168A
JPH0679168A JP23816092A JP23816092A JPH0679168A JP H0679168 A JPH0679168 A JP H0679168A JP 23816092 A JP23816092 A JP 23816092A JP 23816092 A JP23816092 A JP 23816092A JP H0679168 A JPH0679168 A JP H0679168A
Authority
JP
Japan
Prior art keywords
solvent
organic
organic material
ultrafine particles
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23816092A
Other languages
Japanese (ja)
Other versions
JP2723200B2 (en
Inventor
Hitoshi Kasai
均 笠井
Hidetoshi Oikawa
英俊 及川
Katsumichi Ono
勝道 小野
Hachiro Nakanishi
八郎 中西
Shuji Okada
修司 岡田
Hiroo Matsuda
宏雄 松田
Shinji Minami
信次 南
Shingu Naruwa Hari
シング ナルワ ハリ
Atsushi Tsunoda
角田  敦
Akio Kobi
昭夫 向尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Hitachi Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP23816092A priority Critical patent/JP2723200B2/en
Publication of JPH0679168A publication Critical patent/JPH0679168A/en
Application granted granted Critical
Publication of JP2723200B2 publication Critical patent/JP2723200B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prepare a superfine particle wherein mol.wt., degree of crystalinity, etc., are controlled in accordance with the use by mixing a soln. of an org. material dissolved in a good solvent in a poor solvent for the org. material being compatible with this solvent and preparing an org. superfine particle consisting of a crystal or an associated body with a specified particle diameter or smaller. CONSTITUTION:A functional org. material such as a conjugated molecule with a pi atom conjugated system and a color element molecule is dissolved in a good solvent such as ethanol. Then, the soln. is mixed in a poor solvent which is compatible with this solvent and is a poor solvent for the org. material, such as water to prepare an org. superfine particle with a particle diameter of at most 1mum consisting of a crystal or an associated body. By treating like this, the good solvent dissolving the sample is dispersed as a droplet after it is mixed in the poor solvent and with evaporation gradually, the droplet loses the solvent to make a supersaturated condition and a fine crystal is finally deposited.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種エレクトロニク
ス、医薬品等広範な分野に適用できる有機超微粒子の製
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing organic ultrafine particles applicable to a wide range of fields such as various electronics and pharmaceuticals.

【0002】[0002]

【従来の技術】近年のマイクロエレクトロニクスの進歩
により、従来のバルクまたは分子サイズの中間領域を構
成するナノメーター(nm)スケールの超微粒子の材料
に対する要求が急増している。上記の微結晶は、特異な
表面構造に基づく触媒効果、サイズ効果による光物性、
非線形光学特性等の極めて興味深い様々な性質を発現す
る。これまで、エレクトロニクス、触媒及び非線形光学
の分野への適用を意図して、無機半導体、金属及びセラ
ミックスの微結晶の製法が検討されてきた。
2. Description of the Related Art Recent advances in microelectronics have rapidly increased the demand for nanometer (nm) -scale ultrafine particle materials that constitute the conventional bulk or molecular size intermediate region. The above crystallites have a catalytic effect based on a unique surface structure, optical properties due to a size effect,
It exhibits various extremely interesting properties such as nonlinear optical properties. Heretofore, methods for producing fine crystals of inorganic semiconductors, metals, and ceramics have been studied with the intention of being applied to the fields of electronics, catalysts, and nonlinear optics.

【0003】無機材料の微結晶は、一般に電気炉法、プ
ラズマ法等の気相法またはフリーズドライ法、スプレー
ドライ法等の液相法で調製されてきた。しかし、より高
機能が期待される有機材料の微結晶は、これまで不活性
ガス中で蒸発させる気相法が数例あるに留まっていた。
Microcrystals of inorganic materials have generally been prepared by a vapor phase method such as an electric furnace method, a plasma method or a liquid phase method such as a freeze dry method or a spray dry method. However, as for fine crystals of organic materials, which are expected to have higher functions, there have been only a few vapor phase methods of vaporizing them in an inert gas.

【0004】例えば、豊玉著、機能材料 第7巻 6号
44〜49頁(1987年6月号)には、アントラセ
ン、ピレン、フタロシアニン等の低分子量有機化合物、
ポリメチルメタクリレート、ポリスチレン等のポリマ微
粒子の気相成長法が記載されている。また、八瀬ほか
著、表面科学 第8巻 5号 434〜439頁(19
87年)には、ステアリン酸カルシウムの気相法による
微粒子作成の記載がある。
For example, in Toyodama, Functional Materials Vol. 7, No. 6, pp. 44-49 (June 1987), low-molecular-weight organic compounds such as anthracene, pyrene and phthalocyanine,
A vapor phase growth method for polymer fine particles such as polymethylmethacrylate and polystyrene is described. Also, Yase et al., Surface Science Vol. 8, No. 5, pp. 434-439 (19
1987) describes the preparation of fine particles of calcium stearate by the vapor phase method.

【0005】しかし、気相成長法には、(1)高温を要
すること、(2)分子量10,000以下程度の低分子
量化合物に限られること、等の本質的な制約がある。一
般に有機材料は耐熱性が低く劣化し易いため、この方法
の適用には限度があり、また、気相法では結晶化度、分
子量等を特定の範囲に規定することが難しく、応用する
上で問題を生じ易い。そのため、より効果的な製法が望
まれていた。
However, the vapor phase growth method has essential restrictions such as (1) high temperature is required and (2) it is limited to low molecular weight compounds having a molecular weight of about 10,000 or less. In general, since organic materials have low heat resistance and are easily deteriorated, there is a limit to the application of this method, and it is difficult to specify the crystallinity, the molecular weight, etc. in a specific range by the gas phase method. Prone to problems. Therefore, a more effective manufacturing method has been desired.

【0006】一方、有機物を含め各種材料の微粒子の製
法としては、化学的凝縮法が知られており、例えば、
B.ヤーゲンスほか著、玉虫訳、「コロイド化学」 2
0頁及び256頁(1967年培風館出版)には、イオ
ウを無水アルコールに溶解後、水中に注ぎ入れる方法、
カロチンをアセトンに溶解後同様に水中に注ぐ方法等が
開示されている。しかし、上記を除く大半は無機材料に
関するもので、実用上、有意義な機能性有機材料、特
に、その結晶性微粒子については何らの報告もなされて
いなかった。
On the other hand, a chemical condensation method is known as a method for producing fine particles of various materials including organic substances.
B. Jagens et al., Tamamushi Translation, "Colloid Chemistry" 2
On pages 0 and 256 (Baifukan Publishing Co., 1967), a method of dissolving sulfur in anhydrous alcohol and then pouring it into water,
A method of dissolving carotene in acetone and then pouring it into water is disclosed. However, most of the materials other than those mentioned above are related to inorganic materials, and no functional organic materials, especially crystalline fine particles thereof, which are meaningful in practical use have been reported.

【0007】また、高分子微粒子を界面活性剤の存在下
で重合して得る乳化重合と称される方法があるが、機能
性の点で特長の少ないアクリル樹脂、スチレン樹脂等の
非晶質汎用高分子類に限定され、同時に製造時の制約か
ら少量の乳化剤の内部への混入が避けられず、均一良質
の微粒子は得られなかった。
Further, there is a method called emulsion polymerization which is obtained by polymerizing fine polymer particles in the presence of a surfactant, but it is an amorphous general-purpose material such as acrylic resin and styrene resin which has few features in terms of functionality. It was limited to polymers, and at the same time, a small amount of emulsifier was inevitably mixed into the inside due to restrictions in production, and uniform fine particles could not be obtained.

【0008】他方、通常の溶媒に溶解しないフタロシア
ニン顔料等の有機顔料を半ば反応させつゝ硫酸に溶解
後、水中に分散,混練して微小粒子を得るアシドペース
ティング法が、例えば、F.H.モーザ(Moser)ほか
著「ザ フタロシアニンズ(The Phthlocyanines)第I
I巻」35〜37頁(1983年CRCプレス出版)に
開示されている。これは、多晶質の顔料微粒子を得る特
殊方法であり、強酸を用いるために適用できる材料の種
類が限定され、かつ、一般に純度が低下するため機能性
の点で有為な殆どの有機材料には用いることができなか
った。
On the other hand, an acid pasting method in which an organic pigment such as a phthalocyanine pigment which is not dissolved in a usual solvent is partially reacted and then dissolved in sulfuric acid and then dispersed and kneaded in water to obtain fine particles is described in, for example, F.S. H. Moser et al., The Phthlocyanines, Part I
Volume I ", pp. 35-37 (1983, CRC Press Publishing). This is a special method for obtaining polycrystalline pigment fine particles, the types of materials that can be applied are limited because a strong acid is used, and most of the organic materials that are significant in terms of functionality because their purity decreases Could not be used for.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、用途
に応じた望ましい範囲の分子量、結晶化度、粒径を制御
した有機超微粒子の製法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing organic ultrafine particles in which the molecular weight, crystallinity and particle size are controlled in a desirable range according to the application.

【0010】本発明の他の目的は、実用上有用なπ電子
共役系を有する共役系分子及び高分子、色素分子、光導
電材料、光記録材料、光学材料、非線形光学材料、導電
材料、磁性材料等の機能性有機材料の超微粒子の製法を
提供することにある。
Another object of the present invention is to provide practically useful conjugated molecules and polymers having a π-electron conjugated system, dye molecules, photoconductive materials, optical recording materials, optical materials, nonlinear optical materials, conductive materials, magnetic materials. It is to provide a method for producing ultrafine particles of a functional organic material such as a material.

【0011】更に、本発明の他の目的は、粒径が1μm
以下、特に、500nm以下の有機超微粒子の製法を提
供することにある。
Still another object of the present invention is that the particle size is 1 μm.
In particular, the present invention is to provide a method for producing organic ultrafine particles of 500 nm or less.

【0012】[0012]

【課題を解決するための手段】前記課題を解決する本発
明の要旨は次のとおりである。
Means for Solving the Problems The gist of the present invention for solving the above problems is as follows.

【0013】(1)良溶媒に溶解した有機材料の溶液
を、該溶媒と相溶する前記有機材料の貧溶媒中に混入
し、粒径1μm以下の結晶または会合体からなる有機超
微粒子の製法。
(1) A method for producing organic ultrafine particles composed of crystals or aggregates having a particle size of 1 μm or less by mixing a solution of an organic material dissolved in a good solvent into a poor solvent of the organic material compatible with the solvent. .

【0014】(2)良溶媒に溶解した有機材料を、該溶
媒と相溶する前記有機材料の貧溶媒中に混入し、粒径5
00nm以下の結晶または会合体からなる有機超微粒子
の製法。
(2) An organic material dissolved in a good solvent is mixed in a poor solvent of the organic material compatible with the solvent to give a particle size of 5
A method for producing organic ultrafine particles consisting of crystals or aggregates of 00 nm or less.

【0015】重合または会合可能な有機高分子モノマま
たはその溶液を、該有機高分子モノマの貧溶媒中に分散
後、活性電子線、X線または紫外線等の光を照射あるい
はアミン等の酸性度変化剤の配合により、必要とされる
重合または会合形成を行う方法も含まれる。
An organic polymer monomer or a solution thereof capable of polymerizing or associating is dispersed in a poor solvent for the organic polymer monomer, and then irradiated with light such as active electron beam, X-ray or ultraviolet ray, or acidity change of amine or the like. It also includes a method of performing required polymerization or association formation by blending the agent.

【0016】また、前記有機材料の溶媒中に界面活性剤
等の荷電調整剤を添加して酸性度を変化することにより
必要とされる重合または会合形成を行うことにより有機
超微粒子を得る方法も含まれる。
Further, there is also a method of obtaining organic ultrafine particles by adding a charge control agent such as a surfactant to the solvent of the organic material to change the acidity to perform the required polymerization or association formation. included.

【0017】前記有機材料がπ電子共役系を有する分子
中に2個以上の2重結合または3重結合を有する分子か
らなる有機超微粒子であってもよい。
The organic material may be organic ultrafine particles composed of molecules having two or more double bonds or triple bonds in a molecule having a π-electron conjugated system.

【0018】次に、本発明において用いられる化合物の
例を以下に示す。これらは、非線形光学、色素、生理活
性物等の分野で有用な化合物である。なお、本発明はこ
れらの材料に限定されるものではない。
Next, examples of the compounds used in the present invention are shown below. These are compounds useful in the fields of nonlinear optics, dyes, physiologically active substances and the like. The present invention is not limited to these materials.

【0019】(1)次式で示されるジアセチレン系化合
物、及びそれらを重合して得られるポリジアセチレン系
化合物
(1) Diacetylene compounds represented by the following formula, and polydiacetylene compounds obtained by polymerizing them

【0020】[0020]

【化1】 [Chemical 1]

【0021】(2)次式で示されるジエン系化合物、及
びそれらを固相重合して得られる高分子化合物
(2) Diene compounds represented by the following formula, and polymer compounds obtained by solid-phase polymerization of them

【0022】[0022]

【化2】 [Chemical 2]

【0023】(3)次式で示される多環芳香族化合物(3) Polycyclic aromatic compound represented by the following formula

【0024】[0024]

【化3】 [Chemical 3]

【0025】(4)次式で示される長鎖化合物(4) Long chain compound represented by the following formula

【0026】[0026]

【化4】 [Chemical 4]

【0027】(5)次式で示される色素化合物(5) Dye compound represented by the following formula

【0028】[0028]

【化5】 [Chemical 5]

【0029】本発明の製法としては様々な手法が適用で
きる。典型的なものに下記のエタノール法、溶融法など
があるが、本発明には溶媒変化等容易に類推できる多様
な変形があり、これらは全て本発明に包含される。
Various methods can be applied as the manufacturing method of the present invention. Typical methods include the following ethanol method and melting method, but the present invention has various modifications such as solvent changes that can be easily analogized, and all of them are included in the present invention.

【0030】エタノール法では、目的とする試料化合物
のエタノール溶液をシリンジ、注射器等の注入手段によ
り撹拌している水中に滴下し、必要に応じ界面活性剤を
添加して以下の処理を行う。例えば、ジアセチレンモノ
マ及びその誘導体を試料化合物とする場合は、紫外線
(UV)を照射して重合し、対応するポリジアセチレン
及びその誘導体高分子の超微結晶粒子を得る。
In the ethanol method, an ethanol solution of a target sample compound is dropped into water which is being stirred by an injection means such as a syringe and a syringe, and a surfactant is added if necessary to carry out the following treatment. For example, when diacetylene monomer and its derivative are used as sample compounds, they are polymerized by irradiation with ultraviolet rays (UV) to obtain ultrafine crystal particles of corresponding polydiacetylene and its derivative polymer.

【0031】また、シアニン色素分子を試料化合物とす
る場合は、アミンによる処理を行い、対応する色素のJ
−会合体の超微結晶粒子を得る。ここで、望ましい性状
の超微粒子を得るには、溶液の濃度、滴下の条件、水
温、撹拌速度、界面活性剤の種類、その滴下後の安定
性、紫外線強度及び照射時間、アミン処理時間等の処理
条件を最適範囲に選定する必要がある。
When a cyanine dye molecule is used as a sample compound, it is treated with an amine and the corresponding dye J
Obtaining ultra-fine crystalline particles of aggregates. Here, in order to obtain ultrafine particles having desired properties, solution concentration, dropping conditions, water temperature, stirring speed, type of surfactant, stability after the dropping, ultraviolet intensity and irradiation time, amine treatment time, etc. It is necessary to select processing conditions within the optimum range.

【0032】有機材料の濃度としては、飽和濃度乃至こ
れの1/100程度の範囲が望ましい。水に対するエタ
ノール溶液の量としては、飽和溶解量乃至これの1/1
5程度が望ましい。滴下時の撹拌速度としては、50
0〜1000rpm程度が望ましい。上記より低速では
マイクロエマルジョン化もしくは凝集を生じ易く、ま
た、高速では液中に複雑な流れを生じて好ましくない。
The concentration of the organic material is preferably in the range of saturation concentration to about 1/100 of this. The amount of ethanol solution to water is the saturated dissolution amount or 1/1 of this.
About 0 5 is desirable. The stirring speed during dropping is 50
About 0 to 1000 rpm is desirable. At a lower speed than the above, microemulsion or aggregation is likely to occur, and at a higher speed, a complicated flow occurs in the liquid, which is not preferable.

【0033】特に限定されるものではないが、ジアセチ
レンモノマ誘導体等の場合を例述すると、溶液濃度は1
0~1〜10~3M(モル濃度)の範囲で、濃度が増すに伴
い粒径も増す傾向がある。アントラセン等の多環芳香族
化合物、シアニン色素等の色素化合物及び長鎖化合物で
は、最適濃度は10~2〜10~5Mといくぶん低濃度側に
存在する傾向がある。
Although not particularly limited, when a diacetylene monomer derivative or the like is used as an example, the solution concentration is 1
In the range of 0 ~ 1 ~10 ~ 3 M (molar), it tends to increase even particle diameter due to density increase. For polycyclic aromatic compounds such as anthracene, dye compounds such as cyanine dyes, and long-chain compounds, the optimum concentration tends to be on the low concentration side of 10 to 2 to 10 to 5 M.

【0034】水温は0〜90℃の範囲であり、最小粒径
を与える最適温度は室温付近に存在する。低温側では、
結晶成長の速度が大きくなって粒径が増大し、高温側で
は粒径のコントロールが困難となり易い。
The water temperature is in the range of 0 to 90 ° C., and the optimum temperature that gives the minimum particle size exists near room temperature. On the low temperature side,
The crystal growth rate increases and the grain size increases, and it becomes difficult to control the grain size on the high temperature side.

【0035】紫外光照射は1〜90分の範囲であるが、
材料及び粒径によっては、著しく短時間の方が好適な場
合もある。
Irradiation with ultraviolet light is in the range of 1 to 90 minutes,
Depending on the material and particle size, a significantly shorter time may be preferable.

【0036】界面活性剤はSDS(ラウリル硫酸ナトリ
ウム)等が好適であるが使用しなくてもよい。
The surfactant is preferably SDS (sodium lauryl sulfate) or the like, but may not be used.

【0037】注入滴下の条件として、液滴形状もしくは
ジェット流類似の噴出形状とする方法があるが、ジェッ
ト流の場合の方が粒径は小さい。但し、過度に流速を増
しても、水の粘性のために効果は減少する。
As a condition for the injection and dropping, there is a method of forming a droplet shape or a jet shape similar to a jet flow, but the particle size is smaller in the case of jet flow. However, even if the flow velocity is increased excessively, the effect is reduced due to the viscosity of water.

【0038】本発明における溶媒としては、水、アルコ
ール類、ケトン類、エステル類、芳香族、ハロゲン系化
合物等様々なものが使用できる。有機材料を有機溶剤に
溶解し水中に注入する方法、有機溶剤の溶液を有機溶剤
中に注入する方法がある。注入の方法としては、シリン
ジによるのが簡便で好ましいが、注入速度、溶解性、温
度、撹拌状態を満足する方法であれば特に限定しない。
分散後の処理としては、紫外線、電子線等による光重
合、熱重合、またはアミン等による酸性度制御等の公知
の技術が適用できる。
Various solvents such as water, alcohols, ketones, esters, aromatic compounds and halogen compounds can be used as the solvent in the present invention. There are a method of dissolving an organic material in an organic solvent and injecting it into water, and a method of injecting a solution of the organic solvent into the organic solvent. The injection method is preferably a syringe because it is simple and preferable, but is not particularly limited as long as the injection rate, solubility, temperature, and stirring state are satisfied.
As the treatment after dispersion, known techniques such as photopolymerization by ultraviolet rays and electron beams, thermal polymerization, or acidity control by amines can be applied.

【0039】一方、溶融法では、試料化合物の結晶粒子
を水中で撹拌、超音波振動を加えながら分散した状態で
加温を行い、次いで冷却することにより超微結晶粒子を
得る。この時、水温、保持時間、超音波振動の有無、撹
拌速度、冷却速度等の最適範囲を選定する。
On the other hand, in the melting method, the crystal particles of the sample compound are stirred in water, heated while being dispersed while applying ultrasonic vibration, and then cooled to obtain ultrafine crystal particles. At this time, optimum ranges such as water temperature, holding time, presence / absence of ultrasonic vibration, stirring speed, cooling speed, etc. are selected.

【0040】本発明の有機超微粒子は、それ自身、液中
または固体中に分散、他の材料との混合、他の材料の被
覆等様々な形状にて利用することができる。また、分散
のマトリックスとしては高分子、ガラス、半導体、ゾル
ゲル物、ゼオライト等が用いられる。
The organic ultrafine particles of the present invention can be used in various forms such as dispersion in a liquid or solid, mixing with other materials, coating with other materials, and the like. As the dispersion matrix, polymer, glass, semiconductor, sol-gel material, zeolite, etc. are used.

【0041】本発明により、π(パイ)電子共役系高分
子の粒径、分子量の整った単分散の有機超微粒子が得ら
れる。また、粒径の揃った多環芳香族分子結晶を用いる
ことにより、励起子(エキシトン)形成を詳細に解析す
ることが可能となる。更に、色素分子の微結晶の粒径と
J−会合体形成の関連性に関し、定量的な検討が可能と
なる。
According to the present invention, monodisperse organic ultrafine particles in which the particle size and molecular weight of the π (pi) electron conjugated polymer are adjusted can be obtained. Further, by using a polycyclic aromatic molecular crystal having a uniform particle size, it becomes possible to analyze the exciton formation in detail. Furthermore, it becomes possible to quantitatively examine the relationship between the grain size of fine crystals of dye molecules and the formation of J-aggregates.

【0042】[0042]

【作用】本発明により、有機超微結晶粒子が得られる理
由は未だ判明していないが、概略次のように推定され
る。
The reason why the organic ultrafine crystal particles can be obtained by the present invention has not been clarified yet, but it is presumed as follows.

【0043】試料化合物を溶解させたエタノール溶液
は、水中に混入後液滴(ドロップレット)として分散
し、次第に蒸発もしくはエタノールの水相へ溶出によ
り、該液滴は溶媒を失って過飽和状態となり、終には微
結晶を析出するものと考える。水中に界面活性剤等が存
在すると該液滴が水中で安定化し、溶媒消失及び過飽和
状態への移行が阻害されることがある。
The ethanol solution in which the sample compound is dissolved is dispersed as droplets after being mixed in water and gradually evaporated or eluted into the aqueous phase of ethanol to lose the solvent and become supersaturated. At the end, it is considered that fine crystals are precipitated. If a surfactant or the like is present in water, the droplets may be stabilized in water, and solvent disappearance and transition to a supersaturated state may be hindered.

【0044】[0044]

【実施例】以下実施例を用いて、本発明を更に詳細に説
明する。
The present invention will be described in more detail with reference to the following examples.

【0045】〔実施例1〕下記〔化6〕で示す構造の4
−BCMU〔5,7−(ビス−1,12−n−ブチルカル
ボキシメチレン−ウレタン)ドデカジイン〕80mgを
5mlのエタノール中に溶解し、3.2×10~2Mの溶
液とした。
Example 1 4 of the structure shown in the following [Chemical formula 6]
-BCMU [5,7 (bis-1,12-n-butyl-carboxymethylene - urethane) Dodekajiin] was dissolved 80mg of ethanol 5 ml, and a solution of 3.2 × 10 ~ 2 M.

【0046】[0046]

【化6】R−C≡C−C≡C−R 〔但し、Rは(CH2)4OCONHCH2COOC49
示す〕次に、室温で10mlの純水をビーカー中にて激
しく撹拌し、これに50μlの上記4−BCMU溶液を
マイクロシリンジを用いて滴下した。滴下開始直後から
白色の沈殿が形成するが、更に、撹拌しつゝ数分で全量
を滴下し分散液とする。少量の該分散液を石英のセルに
移し、高圧水銀灯を照射して光重合した。照射時間は、
1、3、5、20分の4種類である。
Embedded image R—C≡C—C≡C—R [where R represents (CH 2 ) 4 OCONHCH 2 COOC 4 H 9 ] Next, 10 ml of pure water was vigorously stirred in a beaker at room temperature. Then, 50 μl of the above 4-BCMU solution was added dropwise thereto using a microsyringe. Although a white precipitate is formed immediately after the start of dropping, the whole amount is dropped with stirring for a few minutes to obtain a dispersion liquid. A small amount of the dispersion liquid was transferred to a quartz cell and irradiated with a high pressure mercury lamp for photopolymerization. The irradiation time is
There are four types: 1, 3, 5, 20 minutes.

【0047】得られたポリジアセチレン微粒子の吸収ス
ペクトルを図1に示す。627及び573nmに吸収極
大を示し、ポリ−4−BCMU高分子であることが確認
できた。627nmの極大は、照射時間と共に増加する
するものゝ3分の時を最大として、以降低下した。3分
照射後のものを走査電子顕微鏡(SEM)で観察したと
ころ、図2に示すように、一辺が約100〜200nm
のサイズの立方体ないし直方体形状の良好な微結晶粒子
1が形成されていることを確認した。なお、図3は図2
のSEM写真の模写図である。
The absorption spectrum of the obtained polydiacetylene fine particles is shown in FIG. It showed absorption maximums at 627 and 573 nm, and was confirmed to be a poly-4-BCMU polymer. The maximum of 627 nm increased with the irradiation time, reaching a maximum at 3 minutes, and then decreased. When the thing after 3 minutes irradiation was observed with the scanning electron microscope (SEM), one side is about 100-200 nm as shown in FIG.
It was confirmed that fine crystal particles 1 having a cubic shape or a rectangular parallelepiped shape having a size of 4 mm were formed. In addition, FIG.
It is a copy drawing of the SEM photograph of.

【0048】なお、照射時間20分の場合のSEMによ
る粒子形状の観察結果では、3分の場合に比べその形状
はやゝ不明瞭となる、これは、過剰な紫外線照射によっ
て重合終了後の高分子粒子の表面層が一部解離したもの
と見受けられる。
In the observation result of the particle shape by SEM when the irradiation time is 20 minutes, the shape is slightly unclear as compared with the case where the irradiation time is 3 minutes. It seems that the surface layer of the molecular particles was partially dissociated.

【0049】〔実施例2〕前記、実施例1と同様にして
4−BCMUの溶液を作製し、ジェット流状に急激に純
水中に噴射して、紫外線照射したところ、粒径約20n
mのポリ−4−BCMU微結晶粒子を得た。得られた高
分子微粒子のSEMで観察したところ、粒径約20nm
のサイズの立方体ないし直方体形状の良好な微結晶が形
成されていることを確認した。
[Example 2] A 4-BCMU solution was prepared in the same manner as in Example 1 above, and was rapidly jetted into pure water in a jet stream and irradiated with ultraviolet rays.
m poly-4-BCMU microcrystalline particles were obtained. When observed by SEM of the obtained polymer fine particles, the particle size is about 20 nm.
It was confirmed that fine crystallites having a cubic shape or a rectangular parallelepiped shape having a size of 1 were formed.

【0050】〔実施例3〕下記〔化7〕で示すメロシア
ニン色素MCSe−C18[3−カルボキシメチル−5
〔2−(3−オクタデシル−2−ベンゾセレナゾリニリ
デン−エチリデン−ローダニン)〕]をエタノール溶液
から水中に分散し、アミン処理してJ−会合体の微粒子
分散体を製造した。
[Example 3] Merocyanine dye MCSe-C18 [3-carboxymethyl-5] represented by the following [Chemical formula 7]
[2- (3-Octadecyl-2-benzoselenazolinylidene-ethylidene-rhodamine)] was dispersed from an ethanol solution in water and treated with an amine to prepare a fine particle dispersion of J-aggregates.

【0051】[0051]

【化7】 [Chemical 7]

【0052】図4はアミンの処理時間を0、100、2
00及び1000分と変化した時の吸収スペクトルの変
化を示すグラフである。アミン添加により、明瞭なJ−
会合体の鋭い吸収極大が出現する。ところが、その分散
液の性状は色素溶液と殆ど変わらず、SEMによる観察
の結果、極めて超微粒子に分散し、粒径約20nmのサ
イズの立方体ないし直方体形状の良好な微結晶が形成さ
れていることを確認した。
In FIG. 4, the treatment time of amine is 0, 100, 2
It is a graph which shows the change of the absorption spectrum when it changes with 00 and 1000 minutes. Clear J- due to addition of amine
The sharp absorption maximum of the aggregate appears. However, the properties of the dispersion were almost the same as those of the dye solution, and as a result of observation by SEM, it was found that they were dispersed in ultrafine particles, and fine crystallites having a cubic or rectangular parallelepiped shape with a particle size of about 20 nm were formed. It was confirmed.

【0053】〔実施例4〕下記〔化8〕で示す長鎖化合
物PNA−C18(N−オクタデシル−4−ニトロアニ
リン)を実施例3と同様にして超微粒子化した。得られ
た微粒子のSEMによる観察の結果、極めて超微粒子に
分散し、約100〜300nmのサイズの直方体形状の
良好な微粒子が形成されていることを確認した。
Example 4 A long chain compound PNA-C18 (N-octadecyl-4-nitroaniline) represented by the following [Chemical formula 8] was made into ultrafine particles in the same manner as in Example 3. As a result of SEM observation of the obtained fine particles, it was confirmed that the fine particles were extremely dispersed in ultrafine particles, and fine particles having a rectangular parallelepiped shape with a size of about 100 to 300 nm were formed.

【0054】[0054]

【化8】 [Chemical 8]

【0055】[0055]

【発明の効果】本発明により、各種エレクトロニクス、
医薬品等の広範な分野に適用できる1μm以下の有機超
微粒子を得ることができる。
According to the present invention, various electronics,
It is possible to obtain organic ultrafine particles of 1 μm or less which can be applied to a wide range of fields such as pharmaceuticals.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の有機微結晶粒子のUV吸収スペクト
ルである。
1 is a UV absorption spectrum of organic microcrystalline particles of Example 1. FIG.

【図2】実施例1の有機微結晶粒子のSEM写真であ
る。
2 is an SEM photograph of organic microcrystalline particles of Example 1. FIG.

【図3】図2の有機微結晶粒子のSEM写真の模写図で
ある。
FIG. 3 is a copy of an SEM photograph of the organic microcrystalline particles of FIG.

【図4】実施例3の有機微結晶粒子のUV吸収スペクト
ルである。
FIG. 4 is a UV absorption spectrum of the organic microcrystalline particles of Example 3.

【符号の説明】[Explanation of symbols]

1…微結晶粒子、2…ガラス基板 1 ... Microcrystalline particles, 2 ... Glass substrate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C08F 6/00 MFK 7242−4J 38/00 MPU 8416−4J (71)出願人 592191276 中西 八郎 宮城県仙台市宮城野区苦竹2−3−20− 404 (71)出願人 000005108 株式会社日立製作所 東京都千代田区神田駿河台四丁目6番地 (74)上記5名の代理人 弁理士 高橋 明夫 (外1名 ) (71)出願人 000001144 工業技術院長 東京都千代田区霞が関1丁目3番1号 (74)上記1名の指定代理人 工業技術院物質工学工業技 術研究所長 (外2名) (72)発明者 笠井 均 宮城県仙台市青葉区川内山屋敷67 (72)発明者 及川 英俊 宮城県仙台市若林区南小泉3−7−10− 508 (72)発明者 小野 勝道 宮城県仙台市泉区将監2−17−14 (72)発明者 中西 八郎 宮城県仙台市宮城野区苦竹2−3−20− 404 (72)発明者 岡田 修司 茨城県つくば市東1丁目1番4 工業技術 院 繊維高分子材料研究所内 (72)発明者 松田 宏雄 茨城県つくば市東1丁目1番4 工業技術 院 繊維高分子材料研究所内 (72)発明者 南 信次 茨城県つくば市東1丁目1番4 工業技術 院 繊維高分子材料研究所内 (72)発明者 ハリ シング ナルワ 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 角田 敦 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 向尾 昭夫 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical indication location C08F 6/00 MFK 7242-4J 38/00 MPU 8416-4J (71) Applicant 592191276 Hachiro Nakanishi Miyagi Prefecture 2-3-20-404, Maitake, Miyagino-ku, Sendai (71) Applicant 000005108 Hitachi, Ltd. 4-6 Kanda Surugadai, Chiyoda-ku, Tokyo (74) Attorney Akio Takahashi (1 outside) (71) Applicant 000001144 Director of the Agency of Industrial Science and Technology 1-3-1, Kasumigaseki, Chiyoda-ku, Tokyo (74) Designated agent of the above 1 Director of the Institute of Materials Engineering and Technology (2 outside) (72) Inventor Hitoshi Kasai 67 Kawauchiyama Yashiki, Aoba-ku, Sendai-shi, Miyagi Prefecture (72) Inventor Hidetoshi Oikawa 3-7-10-508 Minamikoizumi, Wakabayashi-ku, Sendai City, Miyagi Prefecture Inventor Katsudo Ono Sen, Miyagi Prefecture 2-17-14 Izumi Ward, Izumi-ku (72) Inventor Hachiro Nakanishi 2-3-20-404, Miyatakeno-ku, Sendai-shi, Miyagi Prefecture 2-3-20-404 (72) Inventor Shuji Okada 1-4-1 Higashi, Tsukuba-shi, Ibaraki Institute of Technology Within the Institute for Polymer Materials (72) Hiroo Matsuda, 1st-4 East Higashi, Tsukuba City, Ibaraki Prefecture, Institute of Industrial Technology (72) Inside the Institute for Textile Polymers Shinji Minami, 1st-4 East, Tsukuba City, Ibaraki Prefecture Industrial Technology Institute In the Institute of Advanced Polymers and Polymers (72) Inventor Harishing Narwa 4026 Kuji Town, Hitachi City, Hitachi, Ibaraki Prefecture Hitate Manufacturing Co., Ltd.In Hitachi Research Institute (72) Atsushi Tsunoda 4026 Kuji Town, Hitachi City, Ibaraki Hitachi Co., Ltd. In Hitachi Research Laboratory (72) Inventor Akio Mukai 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi, Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 良溶媒に溶解した有機材料を、該溶媒と
相溶する前記有機材料の貧溶媒中に混入し、粒径1μm
以下の結晶または会合体からなる有機超微粒子の製法。
1. An organic material dissolved in a good solvent is mixed in a poor solvent of the organic material compatible with the solvent, and the particle size is 1 μm.
A method for producing organic ultrafine particles consisting of the following crystals or aggregates.
【請求項2】 良溶媒に溶解した有機材料を、該溶媒と
相溶する前記有機材料の貧溶媒中に混入し、粒径500
nm以下の結晶または会合体からなる有機超微粒子の製
法。
2. An organic material dissolved in a good solvent is mixed in a poor solvent of the organic material compatible with the solvent to obtain a particle size of 500.
A method for producing organic ultrafine particles composed of crystals or aggregates of nm or less.
【請求項3】 良溶媒に溶解した有機材料を、該溶媒と
相溶する前記有機材料の貧溶媒中に混入し、ガンマ線、
電子線、X線または光線を照射することを特徴とする請
求項1または2に記載の有機超微粒子の製法。
3. An organic material dissolved in a good solvent is mixed in a poor solvent of the organic material compatible with the solvent, and gamma rays,
Irradiating with an electron beam, an X-ray, or a light ray, The manufacturing method of the organic ultrafine particle of Claim 1 or 2 characterized by the above-mentioned.
【請求項4】 良溶媒に溶解した有機材料を、該溶媒と
相溶する前記有機材料の貧溶媒中に混入し、荷電調整剤
を添加して酸性度を変化することを特徴とする請求項
1,2または3に記載の有機超微粒子の製法。
4. An organic material dissolved in a good solvent is mixed in a poor solvent of the organic material compatible with the solvent, and a charge control agent is added to change the acidity. The method for producing organic ultrafine particles according to 1, 2, or 3.
【請求項5】 前記有機材料の溶媒に界面活性剤を配合
すること特徴とする請求項1〜4のいずれかに記載の有
機超微粒子の製法。
5. The method for producing organic ultrafine particles according to claim 1, wherein a surfactant is added to the solvent of the organic material.
【請求項6】 良溶媒に溶解した有機材料を、該溶媒と
相溶する前記有機材料の貧溶媒中に混入し、熱処理して
粒径を変化することを特徴とする請求項1〜5のいずれ
かに記載の有機超微粒子の製法。
6. An organic material dissolved in a good solvent is mixed in a poor solvent of the organic material compatible with the solvent, and heat-treated to change the particle size. The method for producing organic ultrafine particles according to any one of claims.
【請求項7】 前記有機材料がπ(パイ)電子共役系を
有する分子中に2個以上の2重結合または3重結合を有
する分子であることを特徴とする請求項1〜6のいずれ
かに記載の有機超微粒子の製法。
7. The organic material is a molecule having two or more double bonds or triple bonds in a molecule having a π (pi) electron conjugated system, according to any one of claims 1 to 6. The method for producing organic ultrafine particles according to [4].
【請求項8】 良溶媒に溶解した有機材料を、該溶媒と
相溶する前記有機材料の貧溶媒中に混入し、粒径1μm
以下の結晶または会合体からなる有機超微粒子を形成
し、該有機超微粒子の表面を他の材料で被覆またはマイ
クロカプセル化することを特徴とする有機超微粒子の製
法。
8. An organic material dissolved in a good solvent is mixed in a poor solvent of the organic material compatible with the solvent, and the particle size is 1 μm.
A process for producing organic ultrafine particles, which comprises forming organic ultrafine particles comprising the following crystals or aggregates, and coating or microencapsulating the surface of the organic ultrafine particles with another material.
【請求項9】 良溶媒に溶解した有機材料を、該溶媒と
相溶する前記有機材料の貧溶媒中に混入し、粒径1μm
以下の結晶または会合体からなる有機超微粒子を形成し
する方法において、前記有機超微粒子が非線形光学材
料、色素、生理活性物及びこれらと分子結合または混合
可能な化合物とすることを特徴とする有機超微粒子の製
法。
9. An organic material dissolved in a good solvent is mixed in a poor solvent of the organic material compatible with the solvent, and the particle size is 1 μm.
In the following method for forming organic ultrafine particles composed of crystals or aggregates, the organic ultrafine particles are a nonlinear optical material, a dye, a physiologically active substance, and a compound capable of being molecularly bound or mixed with them. Ultrafine particle manufacturing method.
JP23816092A 1992-09-07 1992-09-07 Manufacturing method of organic microcrystal for nonlinear optics Expired - Lifetime JP2723200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23816092A JP2723200B2 (en) 1992-09-07 1992-09-07 Manufacturing method of organic microcrystal for nonlinear optics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23816092A JP2723200B2 (en) 1992-09-07 1992-09-07 Manufacturing method of organic microcrystal for nonlinear optics

Publications (2)

Publication Number Publication Date
JPH0679168A true JPH0679168A (en) 1994-03-22
JP2723200B2 JP2723200B2 (en) 1998-03-09

Family

ID=17026083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23816092A Expired - Lifetime JP2723200B2 (en) 1992-09-07 1992-09-07 Manufacturing method of organic microcrystal for nonlinear optics

Country Status (1)

Country Link
JP (1) JP2723200B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004026967A1 (en) * 2002-08-30 2004-04-01 Japan Science And Technology Agency Novel process for producing pigment nanoparticle
EP1388573A4 (en) * 2001-05-15 2005-04-27 Japan Science & Tech Agency Process for producing quinacridone pigment microcrystals
WO2005051511A1 (en) * 2003-11-28 2005-06-09 Mitsubishi Chemical Corporation Method for producing fine organic compound particles
JP2006124573A (en) * 2004-10-29 2006-05-18 National Institute Of Advanced Industrial & Technology Hydrophobic organic pigment particulate dispersion liquid or method for producing hydrophobic organic pigment particulate and vaporizer, spraying apparatus, and particle-restricting hood suitable for use in the method
JP2006193681A (en) * 2005-01-17 2006-07-27 Dainippon Ink & Chem Inc Method for producing organic pigment particulate
JP2006231100A (en) * 2005-02-22 2006-09-07 Yamaguchi Univ Nano-particle aggregate thin film and non-linear optical material comprising the thin film
WO2006121016A1 (en) * 2005-05-09 2006-11-16 Fujifilm Corporation Method for producing organic particle dispersion liquid
WO2006121018A1 (en) * 2005-05-09 2006-11-16 Fujifilm Corporation Process for production of organic particles and unit for production thereof
JP2007008924A (en) * 2005-05-31 2007-01-18 Kao Corp Method for producing organic compound fine particle, organic fine particle prepared by the same and method for controlling particle diameter
WO2007034583A1 (en) * 2005-09-20 2007-03-29 Japan Science And Technology Agency Process for producing metal covering-type organic crystal
WO2007148460A1 (en) * 2006-06-21 2007-12-27 3R Corporation PROCESS FOR PRODUCING NANOPARTICLE WITH PARTICLE DIAMETER OF 200 nm OR SMALLER
JP2008174756A (en) * 1996-09-18 2008-07-31 Advanced Gel Technology Ltd Polymeric material
EP1992326A2 (en) 2007-05-16 2008-11-19 FUJIFILM Corporation External dermatologic preparation
EP1997477A1 (en) 2007-05-31 2008-12-03 FUJIFILM Corporation Anti-acne skin agent for external use
US7578880B2 (en) 2005-09-06 2009-08-25 Fujifilm Corporation Method of producing fine particles of metal complex pigment and dispersion containing fine particles of metal complex pigment obtained by the method
EP2113287A2 (en) 2008-05-02 2009-11-04 FUJIFILM Corporation Composition for hair
JP2010180310A (en) * 2009-02-04 2010-08-19 Fujifilm Corp Method for producing organic pigment particles and method for producing pigment dispersion
WO2011155501A1 (en) 2010-06-11 2011-12-15 独立行政法人科学技術振興機構 Pharmaceutical multimeric particles, and manufacturing method for same
US8319916B2 (en) 2006-01-23 2012-11-27 Fujifilm Corporation Method of producing organic nanoparticles, organic nanoparticles thus obtained, inkjet ink for color filter, colored photosensitive resin composition and photosensitive resin transfer material, containing the same, and color filter, liquid crystal display device and CCD device, prepared using the same
US8679341B2 (en) 2005-05-06 2014-03-25 Fujifilm Corporation Method of concentrating nanoparticles and method of deaggregating aggregated nanoparticles
JP2019202979A (en) * 2018-05-25 2019-11-28 信越化学工業株式会社 Method of purifying amino acid n-carboxy anhydride

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102280843B1 (en) 2020-02-24 2021-07-22 인하대학교 산학협력단 Method for adjusting full width at half maximum in photoluminescence spectrum of rubrene nano particle

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174756A (en) * 1996-09-18 2008-07-31 Advanced Gel Technology Ltd Polymeric material
EP1388573A4 (en) * 2001-05-15 2005-04-27 Japan Science & Tech Agency Process for producing quinacridone pigment microcrystals
US7192477B2 (en) 2002-08-30 2007-03-20 Japan Science And Technology Agency Process for producing pigment nanoparticle
WO2004026967A1 (en) * 2002-08-30 2004-04-01 Japan Science And Technology Agency Novel process for producing pigment nanoparticle
CN100351318C (en) * 2002-08-30 2007-11-28 独立行政法人科学技术振兴机构 Novel process for producing pigment nanoparticle
WO2005051511A1 (en) * 2003-11-28 2005-06-09 Mitsubishi Chemical Corporation Method for producing fine organic compound particles
JP2006124573A (en) * 2004-10-29 2006-05-18 National Institute Of Advanced Industrial & Technology Hydrophobic organic pigment particulate dispersion liquid or method for producing hydrophobic organic pigment particulate and vaporizer, spraying apparatus, and particle-restricting hood suitable for use in the method
JP2006193681A (en) * 2005-01-17 2006-07-27 Dainippon Ink & Chem Inc Method for producing organic pigment particulate
JP2006231100A (en) * 2005-02-22 2006-09-07 Yamaguchi Univ Nano-particle aggregate thin film and non-linear optical material comprising the thin film
US8679341B2 (en) 2005-05-06 2014-03-25 Fujifilm Corporation Method of concentrating nanoparticles and method of deaggregating aggregated nanoparticles
WO2006121018A1 (en) * 2005-05-09 2006-11-16 Fujifilm Corporation Process for production of organic particles and unit for production thereof
WO2006121016A1 (en) * 2005-05-09 2006-11-16 Fujifilm Corporation Method for producing organic particle dispersion liquid
US8283395B2 (en) 2005-05-09 2012-10-09 Fujifilm Corporation Method of producing organic-particles-dispersion liquid
JP2007008924A (en) * 2005-05-31 2007-01-18 Kao Corp Method for producing organic compound fine particle, organic fine particle prepared by the same and method for controlling particle diameter
US7578880B2 (en) 2005-09-06 2009-08-25 Fujifilm Corporation Method of producing fine particles of metal complex pigment and dispersion containing fine particles of metal complex pigment obtained by the method
WO2007034583A1 (en) * 2005-09-20 2007-03-29 Japan Science And Technology Agency Process for producing metal covering-type organic crystal
US8025930B2 (en) 2005-09-20 2011-09-27 Japan Science And Technology Agency Method for fabricating metal-coated organic crystal
US8319916B2 (en) 2006-01-23 2012-11-27 Fujifilm Corporation Method of producing organic nanoparticles, organic nanoparticles thus obtained, inkjet ink for color filter, colored photosensitive resin composition and photosensitive resin transfer material, containing the same, and color filter, liquid crystal display device and CCD device, prepared using the same
WO2007148460A1 (en) * 2006-06-21 2007-12-27 3R Corporation PROCESS FOR PRODUCING NANOPARTICLE WITH PARTICLE DIAMETER OF 200 nm OR SMALLER
EP1992326A2 (en) 2007-05-16 2008-11-19 FUJIFILM Corporation External dermatologic preparation
EP1997477A1 (en) 2007-05-31 2008-12-03 FUJIFILM Corporation Anti-acne skin agent for external use
EP2113287A2 (en) 2008-05-02 2009-11-04 FUJIFILM Corporation Composition for hair
JP2010180310A (en) * 2009-02-04 2010-08-19 Fujifilm Corp Method for producing organic pigment particles and method for producing pigment dispersion
WO2011155501A1 (en) 2010-06-11 2011-12-15 独立行政法人科学技術振興機構 Pharmaceutical multimeric particles, and manufacturing method for same
JP5113958B2 (en) * 2010-06-11 2013-01-09 独立行政法人科学技術振興機構 Drug multimer fine particles and method for producing the same
JP2019202979A (en) * 2018-05-25 2019-11-28 信越化学工業株式会社 Method of purifying amino acid n-carboxy anhydride

Also Published As

Publication number Publication date
JP2723200B2 (en) 1998-03-09

Similar Documents

Publication Publication Date Title
JP2723200B2 (en) Manufacturing method of organic microcrystal for nonlinear optics
DE69822270T2 (en) Method and device for the production of modified particles
US5030669A (en) Pigment dispersions
US5106533A (en) Pigment dispersions
US9606440B2 (en) Lithographically produced features
US8288001B1 (en) Method of making monodisperse nanoparticles
JPS63135409A (en) Production of dispersion of core-shell particle
CN113939544B (en) non-core-shell polymer particles
JP4774214B2 (en) Method for synthesizing metal nanoparticles
JP2006507409A (en) Method for the synthesis of metal nanoparticles
JPH03221137A (en) Fine capsule and its manufacturing method and use
Fateminia et al. Nanocrystallization: an effective approach to enhance the performance of organic molecules
JP2011051911A (en) Method for producing organic crystal microparticle
JP4961323B2 (en) Carbon nanotubes having a surface coated with a surfactant and method for producing the same
Haldorai et al. Core‐shell ZrO2/PMMA composites via dispersion polymerization in supercritical fluid: Synthesis, characterization and mechanism
US11753424B2 (en) Crystalline form of phenyl bis (2,4,6-trimethylbenzoyl) phosphine oxide with large particle size and crystallization method for making same
CN109970896A (en) A method of building temperature sensitive type carbon nano tube compound material is modified based on carbon dots
Nakanishi et al. Reprecipitation method for organic nanocrystals
Wang et al. Hollow particles templated from Pickering emulsion with high thermal stability and solvent resistance: Young investigator perspective
EP1660415A2 (en) Use of core-shell particles
Oshikiri et al. Fabrication of polydiacetylene fibrous microcrystals by the reprecipitation method
JP2894614B2 (en) Dispersion
CN114479132A (en) Polymer material for light-operated sequence dissociation and preparation method and application thereof
Chen et al. Synthesis and characterization of CdS nanocrystals in poly (styrene-co-maleic anhydride) copolymer
JP3584266B2 (en) Method for producing organic microcrystal for optoelectronic function

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20081128

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20081128

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term