JPH0678588B2 - Aluminum surface treatment method - Google Patents

Aluminum surface treatment method

Info

Publication number
JPH0678588B2
JPH0678588B2 JP28746687A JP28746687A JPH0678588B2 JP H0678588 B2 JPH0678588 B2 JP H0678588B2 JP 28746687 A JP28746687 A JP 28746687A JP 28746687 A JP28746687 A JP 28746687A JP H0678588 B2 JPH0678588 B2 JP H0678588B2
Authority
JP
Japan
Prior art keywords
aluminum
treatment
oxine
corrosion resistance
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28746687A
Other languages
Japanese (ja)
Other versions
JPH01129979A (en
Inventor
恵美子 室伏
史朗 小林
雅彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28746687A priority Critical patent/JPH0678588B2/en
Publication of JPH01129979A publication Critical patent/JPH01129979A/en
Publication of JPH0678588B2 publication Critical patent/JPH0678588B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/149Heterocyclic compounds containing nitrogen as hetero atom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アルミニウムの表面処理方法に係り、耐食性
且つ光反射性に優れた表面保護皮膜の形成に好適なアル
ミニウムの表面処理方法に関する。
TECHNICAL FIELD The present invention relates to a surface treatment method for aluminum, and more particularly to a surface treatment method for aluminum suitable for forming a surface protective film having excellent corrosion resistance and light reflectivity.

〔従来の技術〕[Conventional technology]

アルミニウムは大気中において、安定な酸化皮膜で覆わ
れているが、酸性及びアルカリ性環境下では腐食され易
く、また一般条件下においても長期にわたつて使用する
場合には、十分な耐食性を維持できない。したがつて、
アルミニウムの使用に関しては、何らかの表面処理が必
要である。
Although aluminum is covered with a stable oxide film in the atmosphere, it is easily corroded in acidic and alkaline environments, and it cannot maintain sufficient corrosion resistance when used for a long period under general conditions. Therefore,
Some surface treatment is required for the use of aluminum.

防食を目的としたアルミニウムの表面処理方法には、無
機系溶液により処理する方法及び有機系溶液により処理
する方法がある。
The surface treatment method of aluminum for the purpose of anticorrosion includes a method of treating with an inorganic solution and a method of treating with an organic solution.

無機系溶液として代表的なものは、電解質溶液中でアル
ミニウムを陽極として電解する陽極酸化処理、クロム酸
塩、リン酸−クロム酸塩系等の溶液中に浸漬し、化成皮
膜を形成させる化成処理等がある。
A typical example of an inorganic solution is an anodizing treatment in which aluminum is used as an anode in an electrolyte solution for electrolysis, and a chemical conversion treatment for forming a chemical conversion film by immersing it in a solution of chromate, phosphoric acid-chromate, etc. Etc.

一方、有機系溶液処理としては、塗装及び有機溶液によ
る浸漬処理がある。例えば、特開昭50−44945号、同50
−44946号各公報に記載のように、それぞれ炭素原子が
1〜20個で分子中にカルボキシル基を1〜20個もつ一般
式ACH2CH2CB(C6H5)CH2CH2COOH(A及びBは同一又は
異なり、カルボニル基を含む原子団である)で示される
置換エナント酸と脂肪族アミンとを含む化合物を金属類
に接触させる方法がある。
On the other hand, as the organic solution treatment, there are coating and immersion treatment with an organic solution. For example, JP-A-50-44945 and JP-A-50-44945.
As described in each publication, the general formula ACH 2 CH 2 CB (C 6 H 5 ) CH 2 CH 2 COOH (having 1 to 20 carbon atoms and 1 to 20 carboxyl groups in the molecule, respectively. A and B are the same or different and each is an atomic group containing a carbonyl group) and a compound containing a substituted enanthic acid and an aliphatic amine is brought into contact with a metal.

また、特開昭55−113348号公報に記載のように、半導体
素子及びリードフレームの少なくとも一方の表面にアル
ミキレート化合物を塗布する方法がある。
Further, as described in JP-A-55-113348, there is a method of applying an aluminum chelate compound on the surface of at least one of the semiconductor element and the lead frame.

更に、特開昭61−287155号公報に記載のように、半導体
素子及びこれに対する電気的接続部材の一部の表面に金
属トリアゾール類の有機物の反応生成物から成る保護層
を形成する方法がある。
Further, as described in JP-A-61-287155, there is a method of forming a protective layer made of a reaction product of an organic compound of a metal triazole on a surface of a part of a semiconductor element and an electrical connecting member for the same. .

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術のうち、無機系溶液処理である陽極酸化処
理及び化成処理においては、アルミニウム表面に強固な
皮膜を形成できる利点を有する反面、処理浴中にクロム
イオン、フツ素イオン等の有害物質を含むため、環境汚
染並びに人体に関する毒性、及び廃水処理等の問題が付
随する。そのため、多大な設備を要し、電力の消費が多
く、経済的にも不利である。
Among the above-mentioned conventional techniques, in the anodic oxidation treatment and the chemical conversion treatment, which are the inorganic solution treatment, while having the advantage that a strong film can be formed on the aluminum surface, chromium ions in the treatment bath, harmful ions such as fluorine ions Therefore, problems such as environmental pollution and human toxicity, and wastewater treatment are included. Therefore, it requires a large amount of equipment, consumes a large amount of electric power, and is economically disadvantageous.

一方、有機系溶液処理である有機溶液による浸漬処理法
は、比較的簡易で毒性の低い表面処理法として知られて
いる。その抑制作用機構は、陽イオンとなつた有機物が
金属面の負荷電部分に吸着する物理吸着、電子供与基と
金属との間の化学吸着による。しかしながら、単純な金
属表面への吸着のため、溶液中においては抑制効果を示
すが、別環境、例えば大気中などでは十分な耐食性を示
さない。
On the other hand, an immersion treatment method using an organic solution, which is an organic solution treatment, is known as a relatively simple surface treatment method with low toxicity. The inhibitory mechanism is based on physical adsorption in which an organic substance, which becomes a cation, is adsorbed on the negatively charged portion of the metal surface, and chemisorption between the electron-donating group and the metal. However, since it is simply adsorbed on the metal surface, it exhibits a suppressing effect in a solution, but does not exhibit sufficient corrosion resistance in another environment, for example, in the atmosphere.

また、アルミキレート化合物を塗布する方法は、アルミ
キレート化合物を塗布した後、ベーク処理を行い、アル
ミニウム表面に酸化アルミニウム皮膜を形成することを
目的としている。しかしながら、高温でベーク処理を行
うため、アルミキレート化合物が破壊され、逆に耐食性
を低下させる可能性がある。
Further, the method of applying an aluminum chelate compound aims at forming an aluminum oxide film on the aluminum surface by applying a baking treatment after applying the aluminum chelate compound. However, since the baking treatment is performed at a high temperature, the aluminum chelate compound may be destroyed and conversely the corrosion resistance may be lowered.

更に、金属表面に金属とトリアゾール類の有機物の保護
層を形成させる方法は、金属と有機物間の強固な化学結
合に着眼した耐食性の高い金属表面を得る方法である。
しかしながら、アルミニウムに関しては、トリアゾール
類は酸性環境下では高い耐食性を示すものの、アルカリ
性環境下では効果のないことが確認された。
Further, a method of forming a protective layer of a metal and an organic substance of a triazole on the metal surface is a method of obtaining a metal surface having high corrosion resistance, which is focused on a strong chemical bond between the metal and the organic substance.
However, regarding aluminum, it was confirmed that triazoles have high corrosion resistance in an acidic environment, but have no effect in an alkaline environment.

更に、一般に耐食性向上を目的とした表面処理法におい
ては、素地金属を保護するため何らかの皮膜を付着させ
ている。このため、処理後の光反射率が著しく低下す
る。従来の陽極酸化処理、有機物による浸漬処理等は、
処理後のアルミニウム表面の光反射率に比べ、著しく低
下することが問題となる。
Further, generally, in a surface treatment method aimed at improving corrosion resistance, some kind of film is attached to protect the base metal. Therefore, the light reflectance after the treatment is significantly reduced. Conventional anodizing treatment, organic immersion treatment, etc.
The problem is that the light reflectance is significantly lower than the light reflectance of the aluminum surface after the treatment.

本発明の目的は、上記従来の技術問題点を解決し、アル
ミニウム表面にキレート結合による耐食性且つ反射率の
高い安定なAlキレート化合物皮膜を形成することによ
り、アルミニウムの耐食信頼性を著しく向上させ、更に
アルミニウム表面の光反射率を低下させない表面処理方
法を提供することにある。
The object of the present invention is to solve the above conventional technical problems, by forming a stable Al chelate compound coating having high corrosion resistance and reflectance by a chelate bond on the aluminum surface, significantly improving the corrosion resistance reliability of aluminum, Another object of the present invention is to provide a surface treatment method which does not reduce the light reflectance of the aluminum surface.

〔問題点を解決するための手段〕[Means for solving problems]

本発明を概説すれば、本発明はアルミニウムの表面処理
方法に関する発明であつて、アルミニウムの表面処理に
おいて、アルミニウムを、8−ヒドロキシキノリン(以
下、オキシンと略記する)を少なくとも0.001重量%含
有し、そのpHが3.5〜10.0の範囲にある処理溶液と接触
させることを特徴とする。
Briefly describing the present invention, the present invention is an invention relating to a method for surface treatment of aluminum, which comprises at least 0.001% by weight of 8-hydroxyquinoline (hereinafter abbreviated as oxine) in the surface treatment of aluminum. It is characterized in that it is brought into contact with a treatment solution whose pH is in the range of 3.5 to 10.0.

本発明者らは、酸性からアルカリ性の幅広い領域で抑制
効果の高いオキシンについて検当した結果、高耐食性を
示すばかりか、オキシン濃度、pHを制御することによ
り、光射率の著しく高いアルミニウム表面が得られるこ
とを見出した。
The present inventors, as a result of detecting oxine having a high inhibitory effect in a wide range from acidic to alkaline, show not only high corrosion resistance, but also by controlling the oxine concentration and pH, the aluminum surface having a remarkably high emissivity is It was found that it can be obtained.

前記目的は、アルミニウム表面をキレート化剤であるオ
キシンと接触させ、耐食性且つ反射性の優れたAl−オキ
シンキレート化合物皮膜を形成することにより達成され
る。
The above object is achieved by bringing the surface of aluminum into contact with oxine, which is a chelating agent, to form an Al-oxine chelate compound film having excellent corrosion resistance and reflectivity.

本発明においては、比較的簡便な有機溶液による処理に
おいて、アルミニウムの吸着結合に比べ格段に結合力の
大きいキレート結合により、アルミニウム表面に難溶性
錯体を形成させる。すなわち、アルミニウムのキレート
の安定度定数に着眼し、安定度定数の著しく大きなオキ
シンをアルミニウムと接触させ、Al−オキシンのち密な
キレート皮膜を形成することにより、耐食信頼性を向上
させる。更に、オキシン濃度、pHを制御することによ
り、光反射性に優れたアルミニウムの表面処理方法を提
供するものである。
In the present invention, in a relatively simple treatment with an organic solution, a sparingly soluble complex is formed on the aluminum surface by a chelate bond having a bond strength significantly larger than the adsorptive bond of aluminum. That is, the corrosion resistance is improved by paying attention to the stability constant of the chelate of aluminum, contacting oxine having a significantly large stability constant with aluminum, and forming a dense chelate film of Al-oxine. Further, the present invention provides a surface treatment method for aluminum having excellent light reflectivity by controlling the oxine concentration and pH.

オキシンは次のような作用によりアルミニウムに高耐食
性且つ高光反射性を付与する。
Oxin imparts high corrosion resistance and high light reflectivity to aluminum by the following actions.

すなわち、酸性溶液中ではオキシンはフエノール型をと
り、アルミニウムと作用して、HO−のHと置換し、Nと
配位結合して五員環のAl−オキシンキレート(I)を形
成する。一方、アルカリ性溶液中では、オキシンはキノ
ン型をとり、アルミニウムと作用して、Nと結合し、O
と配位結合してAl−オキシンキレート(II)を形成す
る。
That is, in an acidic solution, oxine takes a phenol form, acts on aluminum to substitute with H of HO- and coordinate-bonds with N to form a 5-membered Al-oxine chelate (I). On the other hand, in an alkaline solution, oxine takes a quinone type, acts on aluminum, bonds with N, and forms O.
It forms a coordinate bond with Al-oxine chelate (II).

上記のように形成されたAl−オキシンキレートの安定度
は非常に大きく、このため腐食性環境においても安定
で、アルミニウム素地の保護作用が強いため、高い耐食
性を発揮する。
The Al-oxine chelate formed as described above has a very high stability, and therefore is stable even in a corrosive environment and has a strong protective effect on the aluminum substrate, and thus exhibits high corrosion resistance.

更に、オキシンの水溶液の代りに、アルコール等の有機
溶媒を用いると、更に次のような作用により、より一層
の耐食性が発揮される。すなわち、処理液中に水分が存
在しないため、処理後の水分残留の影響は極めて小さ
い。更に有機物は有機溶媒に溶解し易いので、揮発性溶
媒に溶かした溶液を使えば、処理後の洗浄工程の省力化
が図れる点等の工程上優れた利点がある。
Furthermore, when an organic solvent such as alcohol is used instead of the aqueous solution of oxine, the corrosion resistance is further enhanced by the following action. That is, since there is no water in the processing liquid, the effect of residual water after the processing is extremely small. Further, since organic substances are easily dissolved in an organic solvent, use of a solution dissolved in a volatile solvent has an advantage in that the cleaning process after treatment can be labor-saving.

オキシンはpHが3.5〜10.8に調整された溶液中で最も安
定なAl−オキシンキレートを形成する。すなわち、上記
のpH範囲の処理浴中でアルミニウム表面に形成されるキ
レート化合物皮膜は、難溶性で保護力が高く、耐食性が
格段に向上する。
Oxine forms the most stable Al-oxine chelate in solution adjusted to pH 3.5-10.8. That is, the chelate compound film formed on the aluminum surface in the treatment bath in the above pH range is sparingly soluble, has high protective power, and has significantly improved corrosion resistance.

更に、オキシンは少なくとも、0.001重量%含有すれ
ば、耐食性の高いAl−オキシンキレート化合物皮膜が形
成される。オキシンは水に溶解しにくいため、処理液を
加温してやれば、適量のオキシンが溶解し、Al−オキシ
ンキレートが得やすくなる。
Further, if the oxine content is at least 0.001% by weight, an Al-oxine chelate compound film having high corrosion resistance is formed. Since oxine is difficult to dissolve in water, if the treatment liquid is heated, an appropriate amount of oxine will be dissolved and an Al-oxine chelate will be easily obtained.

また、アルミニウムは紫外から赤外までほぼ一定で、90
%近い大きな反射率を示す。通常アルミニウムを表面処
理すると、アルミニウム表面上に保護膜が形成されるた
め、光反射率は50%以下と格段に低下する。しかしなが
ら、オキシン濃度を0.01〜0.05重量%とし、酸性溶液に
おいて処理すると、処理前の反射率と比較して、ほぼ同
程度の高い反射率を得ることができる。
Aluminum is almost constant from ultraviolet to infrared,
It shows a large reflectance close to%. Usually, when aluminum is surface-treated, a light-reflectance is significantly reduced to 50% or less because a protective film is formed on the aluminum surface. However, when the oxine concentration is set to 0.01 to 0.05% by weight and the treatment is performed in an acidic solution, it is possible to obtain almost the same high reflectance as the reflectance before the treatment.

以上のことから、キレート化剤であるオキシンによる表
面処理方法は、処理浴中のpH、濃度の調整により、アル
ミニウム表面に耐食性且つ反射性の高い保護皮膜を形成
する。また、公害問題も解決され、比較的簡便で低コス
ト等の利点も有する。
From the above, the surface treatment method using oxine as a chelating agent forms a protective film having high corrosion resistance and high reflectivity on the aluminum surface by adjusting pH and concentration in the treatment bath. In addition, the problem of pollution is solved, and there are advantages such as relatively simple and low cost.

〔実施例〕〔Example〕

以下、本発明を実施例により、更に具体的に説明する
が、本発明はこれら実施例に限定されない。
Hereinafter, the present invention will be described more specifically by way of examples, but the present invention is not limited to these examples.

実施例1 99.99%アルミニウム板(面積:10cm2)を酢酸−過塩素
酸浴中で電解研磨し、水洗、乾燥したものを試験片とし
た。この試験片を0.01重量%、pH9に調整したオキシ水
溶液中に、常温及び80℃で10分間浸漬し、水洗、乾燥し
た。この試験片を80℃の3%食塩水に浸漬し、200時間
腐食試験した。その結果を第1表に示す。第1表は比較
例として、従来法の中で、トリカルバリル酸−N−メチ
ルイミドについて、同様の表面処理を施したもの、及び
表面処理を施さないアルミニウムについて腐食した結果
も示す。
Example 1 A 99.99% aluminum plate (area: 10 cm 2 ) was electrolytically polished in an acetic acid-perchloric acid bath, washed with water, and dried to obtain a test piece. This test piece was immersed in an aqueous oxy solution adjusted to 0.01% by weight and pH 9 at room temperature and 80 ° C. for 10 minutes, washed with water and dried. This test piece was immersed in a 3% saline solution at 80 ° C. and subjected to a corrosion test for 200 hours. The results are shown in Table 1. Table 1 also shows, as a comparative example, the results of corrosion of tricarballylic acid-N-methylimide subjected to the same surface treatment and aluminum not subjected to the surface treatment in the conventional method.

第1表より明らかなように、本発明によるオキシン処理
したアルミニウムは、処理しないものに比べ、腐食量が
格段に小さく、耐食性の高いキレート皮膜が形成されて
いることがわかる。それに対し、従来方法によるトリガ
ルバリル酸−N−メチルイミドによる処理は、本発明に
よるオキシン処理に比べ腐食量が大きく、十分な耐食性
を示していないことがわかる。
As is clear from Table 1, the aluminum treated with oxine according to the present invention has a much smaller amount of corrosion and a chelate film having higher corrosion resistance than the untreated aluminum. On the other hand, it can be seen that the conventional treatment with trivalvalyl-N-methylimide has a larger amount of corrosion than the oxine treatment according to the present invention and does not show sufficient corrosion resistance.

実施例2 実施例1と同様なアルミニウム試験片を、オキシン(0.
01重量%)処理pHを変えて、80℃の3%食塩水で200時
間腐食試験した結果を第1図に示す。比較例として、表
面処理を施さない腐食量をpH(横軸)と腐食量(μm、
縦軸)との関係で示すグラフである。第1図より明らか
なように、本発明によるオキシン処理は、pH3.5〜10.0
の範囲において腐食量が格段に小さく、十分な耐食性を
示していることがわかる。
Example 2 An aluminum test piece similar to that of Example 1 was tested for oxine (0.
(01% by weight) Fig. 1 shows the results of a corrosion test for 200 hours using a 3% saline solution at 80 ° C while changing the treatment pH. As a comparative example, the amount of corrosion without surface treatment is the pH (horizontal axis) and the amount of corrosion (μm,
It is a graph shown in the relationship with (vertical axis). As is clear from FIG. 1, the oxine treatment according to the present invention has a pH of 3.5 to 10.0.
It can be seen that the amount of corrosion is remarkably small in the range of 1 and shows sufficient corrosion resistance.

実施例3 実施例1と同様なアルミニウム試験片を、オキシン(pH
9)処理濃度を変えて、80℃の3%食塩水で200時間腐食
試験した結果を第2図に示す。比較例として、表面処理
を施さない腐食量を破線で示す。すなわち、第2図はオ
キシン重量%を変えた処理後の腐食量をオキシン重量%
(横軸)と腐食量(μm、縦軸)との関係で示したグラ
フである。第2図より明らかなように、本発明によるオ
キシン処理は、0.001重量%以上含有すれば十分な耐食
性を示し、安定なキレート皮膜を形成していることがわ
かる。
Example 3 An aluminum test piece similar to that in Example 1 was treated with oxine (pH
9) Fig. 2 shows the results of a 200-hour corrosion test with a 3% saline solution at 80 ° C while changing the treatment concentration. As a comparative example, the broken line shows the amount of corrosion without surface treatment. That is, Fig. 2 shows the amount of corrosion after the treatment with the oxine weight% changed.
6 is a graph showing the relationship between (horizontal axis) and corrosion amount (μm, vertical axis). As is clear from FIG. 2, the oxine treatment according to the present invention shows sufficient corrosion resistance and forms a stable chelate film when contained in an amount of 0.001% by weight or more.

実施例4 実施例1と同様なアルミニウム試験片を、オキシンを0.
015重量%、pH4.0に調整し、この処理浴中に80℃で20分
間浸漬した。処理前の反射率を1としたときの処理後及
び腐食試験後の反射率を第2表に示す。比較例として、
表面処理を施ささない場合及び従来表面処理による光反
射率も示す。
Example 4 An aluminum test piece similar to that in Example 1 was treated with 0.
It was adjusted to 015% by weight and pH 4.0, and immersed in this treatment bath at 80 ° C. for 20 minutes. Table 2 shows the reflectances after the treatment and after the corrosion test, where the reflectance before the treatment is 1. As a comparative example,
The light reflectance obtained when no surface treatment is applied and the light reflectance obtained by the conventional surface treatment are also shown.

第2表より明らかなように、本発明によるオキシン処理
は、処理前の反射率の0.9以上の高い値を示し、処理後
及び腐食試験後の光反射率は処理前のアルミニウムに比
べて、ほとんど変化がなく、反射率の低下が著しく小さ
いことを示している。それに対し、従来方法による硫酸
を電解液とする陽極酸化処理及びベンゾトリアゾールに
よる処理は、本発明によるオキシン処理に比べ、処理後
及び腐食試験後の光反射率が格段に小さく、表面処理に
より反射率が著しく低下することがわかる。
As is clear from Table 2, the oxine treatment according to the present invention shows a high reflectance of 0.9 or more before the treatment, and the light reflectance after the treatment and after the corrosion test is almost equal to that of the aluminum before the treatment. There is no change, indicating that the decrease in reflectance is extremely small. On the other hand, the anodizing treatment using sulfuric acid as an electrolytic solution and the treatment with benzotriazole by the conventional method have a remarkably small light reflectance after the treatment and after the corrosion test as compared with the oxine treatment according to the present invention. It can be seen that is significantly reduced.

〔発明の効果〕〔The invention's effect〕

本発明によれば、公害問題を解決し、簡便でしかも耐食
性且つ光反射性の優れたアルミニウム表面処理方法を提
供することができ、これにより、アルミニウムの耐食信
頼性且つ光反射性を著しく向上することができる。
ADVANTAGE OF THE INVENTION According to this invention, the pollution problem can be solved and the aluminum surface treatment method which is simple and is excellent in corrosion resistance and light reflectivity can be provided, and thereby, corrosion resistance and light reflectivity of aluminum are significantly improved. be able to.

【図面の簡単な説明】[Brief description of drawings]

第1図はpHを変えたオキシン処理後の腐食量を示すグラ
フ、第2図はオキシン重量%を変えた処理後の腐食量を
示すグラフである。
FIG. 1 is a graph showing the amount of corrosion after oxine treatment with different pH, and FIG. 2 is a graph showing the amount of corrosion after treatment with different oxine weight%.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】アルミニウムの表面処理において、アルミ
ニウムを、8−ヒドロキシキノリンを少なくとも0.001
重量%含有し、そのpHが3.5〜10.0の範囲にある処理溶
液と接触させることを特徴とするアルミニウムの表面処
理方法。
1. A surface treatment of aluminum comprising at least 0.001 of aluminum and 8-hydroxyquinoline.
A method for surface treatment of aluminum, which comprises contacting with a treatment solution containing 0.5% by weight and having a pH in the range of 3.5 to 10.0.
【請求項2】該処理後のアルミニウムの反射率が80%以
上となるように、該処理溶液中の8−ヒドロキシキノリ
ンの濃度及びpHを制御する特許請求の範囲第1項記載の
アルミニウムの表面処理方法。
2. The surface of aluminum according to claim 1, wherein the concentration and pH of 8-hydroxyquinoline in the treatment solution are controlled so that the reflectance of the treated aluminum is 80% or more. Processing method.
JP28746687A 1987-11-16 1987-11-16 Aluminum surface treatment method Expired - Lifetime JPH0678588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28746687A JPH0678588B2 (en) 1987-11-16 1987-11-16 Aluminum surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28746687A JPH0678588B2 (en) 1987-11-16 1987-11-16 Aluminum surface treatment method

Publications (2)

Publication Number Publication Date
JPH01129979A JPH01129979A (en) 1989-05-23
JPH0678588B2 true JPH0678588B2 (en) 1994-10-05

Family

ID=17717703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28746687A Expired - Lifetime JPH0678588B2 (en) 1987-11-16 1987-11-16 Aluminum surface treatment method

Country Status (1)

Country Link
JP (1) JPH0678588B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3077193B2 (en) * 1990-11-23 2000-08-14 株式会社デンソー Method of forming corrosion resistant chemical conversion coating on aluminum surface
US5545307A (en) * 1995-04-06 1996-08-13 International Business Machines Corporation Process for patterned electroplating
US5516418A (en) * 1995-06-26 1996-05-14 International Business Machines Corporation Patterned electroplating
CN103184447B (en) * 2013-03-26 2015-04-08 大连理工大学 Aluminum and aluminum alloy surface self-repairing and corrosion-resisting conversion coating and preparation method thereof

Also Published As

Publication number Publication date
JPH01129979A (en) 1989-05-23

Similar Documents

Publication Publication Date Title
EP0534120B1 (en) Chromium-free method and composition to protect aluminium
EP0085701B1 (en) Copper-containing articles with a corrosion inhibitor coating and methods of producing the coating
US3961111A (en) Method of increasing corrosion resistance of anodized aluminum
JPH0778280B2 (en) Metal anti-corrosion surface treatment method
JP2008208464A (en) Metal material coated with metal oxide and/or metal hydroxide and method for production thereof
US4163083A (en) Process for improving corrosion resistant characteristics of chrome plated aluminum and aluminum alloys
US5891269A (en) Method of compacting anodized metals with lithium and fluoride-containing solutions without using heavy metals
US1946151A (en) Protecting aluminum from corrosion
US5582654A (en) Method for creating a corrosion-resistant surface on aluminum alloys having a high copper content
CA2204620A1 (en) Treatment of aluminium or aluminium alloys
Grafov et al. Adsorption of depocolin and inhibition of copper dissolution in aqueous solutions
JPH0678588B2 (en) Aluminum surface treatment method
US4083756A (en) Process for improving corrosion resistance of anodized metal surfaces and treated product
EP3034654B1 (en) Composition and method for micro etching of copper and copper alloys
JPH11501366A (en) Chromium-free treatment method to improve paint adhesion after thin layer anodic oxidation
Mori et al. Effect of triazine dithiols on the polymer plating of magnesium alloys
JP4783124B2 (en) A method for forming a lubricating film.
JPH01119684A (en) Corrosion preventive surface treatment of aluminum
Britton et al. Improvement of the corrosion resistance of tinplate by a chemical treatment
JPH02216811A (en) Manufacture of aluminum foil for electrolytic capacitor
JP3968438B2 (en) Method for forming organic film by light treatment
JPH09302499A (en) Aluminum material
JPH09302479A (en) Surface treated steel excellent in corrosion resistance and its surface treating method
JP2523654B2 (en) Method for manufacturing electrode foil for aluminum electrolytic capacitors
SU662624A1 (en) Method of preparing metal surface prior to electroplating