JPH0678577B2 - Shape memory alloy - Google Patents

Shape memory alloy

Info

Publication number
JPH0678577B2
JPH0678577B2 JP1148456A JP14845689A JPH0678577B2 JP H0678577 B2 JPH0678577 B2 JP H0678577B2 JP 1148456 A JP1148456 A JP 1148456A JP 14845689 A JP14845689 A JP 14845689A JP H0678577 B2 JPH0678577 B2 JP H0678577B2
Authority
JP
Japan
Prior art keywords
alloy
shape memory
weight
aluminum
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1148456A
Other languages
Japanese (ja)
Other versions
JPH0313535A (en
Inventor
芳彦 礒部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KOGYO GINKO KK
Original Assignee
NIPPON KOGYO GINKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KOGYO GINKO KK filed Critical NIPPON KOGYO GINKO KK
Priority to JP1148456A priority Critical patent/JPH0678577B2/en
Publication of JPH0313535A publication Critical patent/JPH0313535A/en
Publication of JPH0678577B2 publication Critical patent/JPH0678577B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は貴金属、特に金を母材とする形状記憶合金の
提供に関し、より詳細には金・カドミウム合金に代る金
−アルミニウム系合金からなるAu基形状記憶合金の提供
に関する。
Description: TECHNICAL FIELD The present invention relates to the provision of a shape memory alloy having a precious metal, particularly gold as a base material, and more specifically, a gold-aluminum based alloy replacing a gold-cadmium alloy. To provide an Au-based shape memory alloy.

[従来の技術] 形状記憶合金は、いわゆる機能材料として工業用素材、
機械要素、電子部品ないし日用品の構成素材等として用
いられている。
[Prior Art] Shape memory alloys are industrial materials as so-called functional materials.
It is used as a mechanical element, an electronic component, or a constituent material for daily necessities.

特に、熱弾性型マルテンサイト変態をもつ合金の応用範
囲は広く、その用目的に合せた形状記憶合金が種々開発
されている。
In particular, alloys having thermoelastic martensitic transformation have a wide range of applications, and various shape memory alloys have been developed according to the purpose.

その典型的な合金としてチタン50対ニッケル50の形状記
憶合金がある。このチタン50対ニッケル50の金属間化合
物は、その引張り強さが60〜75kg/mm2と強く、所期変形
への回復力が特に良好であり、種々の目的に向けた利用
がなされている。
A typical alloy is a shape memory alloy of titanium 50 and nickel 50. This intermetallic compound of titanium 50 and nickel 50 has a strong tensile strength of 60 to 75 kg / mm 2, and has a particularly good recovery force for desired deformation, and is used for various purposes. .

又、これ以外にも代表的な熱弾性型マルテンサイト変態
をもつ形状記憶合金として、Ag−Cd、Au−Cd、Cu−Al−
Ni、Cu−Au−Zn、Cu−Sn、Cu−Zn、Cu−Zn−X、In−T
l、Ni−Al、Ti−Ni等が形状記憶効果をもつ合金として
開発されるにいたっている。
In addition to these, as typical shape memory alloys with thermoelastic martensitic transformation, Ag-Cd, Au-Cd, Cu-Al-
Ni, Cu-Au-Zn, Cu-Sn, Cu-Zn, Cu-Zn-X, In-T
l, Ni-Al, Ti-Ni, etc. have been developed as alloys having a shape memory effect.

[発明が解決しようとする課題] かゝる形状記憶合金は主としてニッケル−チタン合金等
のように工業的に用いられるものが多く、装飾的機能を
主眼としたものが少なかった。
[Problems to be Solved by the Invention] Many of such shape memory alloys are mainly used industrially, such as nickel-titanium alloys, and few of them have a decorative function.

又、ニッケル−チタン合金は成形性、加工性が悪く、機
能性の割にコスト高とされる難があった。
Further, the nickel-titanium alloy has poor moldability and workability, and it is difficult to increase the cost for its functionality.

又、比較的良好な引張り変形挙動を示し、しかも装飾的
機能をも合せ有する金−カドミウム系合金では、カドミ
ウムによる公害発生の問題があり形状記憶合金として必
ずしも満足し得るものではなかった。
Further, the gold-cadmium alloy which exhibits a relatively good tensile deformation behavior and also has a decorative function has a problem of pollution due to cadmium, and is not always satisfactory as a shape memory alloy.

かかる点から熱弾性型マルテンサイト変態をもつ金−ア
ルミニウム系合金の開発が試みられている。
From this point of view, development of a gold-aluminum alloy having a thermoelastic martensitic transformation has been attempted.

特に金−アルミニウムの二元合金では、3〜4重量%ア
ルミニウム域にマルテンサイト相が存在することが認め
られている。
In particular, in the gold-aluminum binary alloy, it is recognized that the martensite phase exists in the aluminum region of 3 to 4% by weight.

しかしながら、この金−アルミニウムの二元合金で3〜
4重量%のアルミニウム域に生ずるβ相では同時にAu4A
lの金属間化合物を供出し、合金としては非常に脆く実
用に供し得るものではなかった。
However, with this binary alloy of gold-aluminum,
At the same time, in the β phase generated in the aluminum region of 4% by weight, Au 4 A
The intermetallic compound (1) was provided, and as an alloy, it was very brittle and could not be put to practical use.

本発明では、特に装飾的機能にも優れているAu基形状記
憶合金の提供を目的とし、安定な熱弾性型マルテンサイ
ト変態をもつ二方向性の、しかも超弾性を有するAu基形
状記憶合金の提供を目的としている。
In the present invention, particularly for the purpose of providing an Au-based shape memory alloy that is also excellent in decorative function, a bidirectional, stable superelastic Au-based shape memory alloy having a martensitic transformation is used. It is intended to be provided.

[課題を解決するための手段] 本発明にかゝる形状記憶合金は、前記の目的を達成する
ものとして、 金73〜77重量%、 銅21〜23重量%と、 アルミニウム2〜4重量%との成分組成からなるAu基合
金、 又は、 金73〜77重量%と、 銅11〜13重量%及び銀9〜11重量%と、 アルミニウム2〜4重量%との成分組成からなるAu基合
金、 として形状記憶効果に優れたAu基合金とする。
[Means for Solving the Problems] The shape memory alloy according to the present invention achieves the above-mentioned object by 73 to 77% by weight of gold, 21 to 23% by weight of copper, and 2 to 4% by weight of aluminum. Or an Au-based alloy having a composition of 7 to 77% by weight of gold, 11 to 13% by weight of copper, 9 to 11% by weight of silver, and 2 to 4% by weight of aluminum. , And an Au-based alloy with excellent shape memory effect.

次いで請求項2の発明では、前記の成分組成に略0.05重
量%のイリジウムを含ませて形状記憶効果に優れたAu基
合金とする。
Next, in the invention of claim 2, about 0.05% by weight of iridium is added to the above-mentioned component composition to obtain an Au-based alloy having an excellent shape memory effect.

[実施例] 以下本発明にかゝる典型的な形状記憶合金について詳細
に説明する。
Example A typical shape memory alloy according to the present invention will be described in detail below.

先ず、Au−Cu−Al系合金、好ましくは金73〜77重量%、
銅21〜23重量%、アルミニウム2〜4重量%の成分組成
からなるAu基合金、さらに好ましくは金75重量%、銅22
重量%、アルミニウム3重量%の合金を得た。この合金
を700℃で1時間以上加熱した後、20℃以下の水で急冷
し、更に400℃で1.5時加熱したところβ相(マルテンサ
イト相)を晶出した。
First, Au-Cu-Al-based alloy, preferably 73-77 wt% gold,
An Au-based alloy having a composition of 21 to 23% by weight of copper and 2 to 4% by weight of aluminum, more preferably 75% by weight of gold, 22 of copper
An alloy of 1% by weight and 3% by weight of aluminum was obtained. After heating this alloy at 700 ° C. for 1 hour or more, quenching it with water at 20 ° C. or lower, and further heating at 400 ° C. for 1.5 hours, the β phase (martensite phase) was crystallized.

尚、前記の組成範囲外のAu基合金では良好な形状記憶効
果及び超弾性が認められなかった。
In addition, good shape memory effect and superelasticity were not observed in the Au-based alloy having a composition outside the above range.

次いでAu−Cu−Al系合金にイリジウムを添加した合金、
好まくは金73〜77重量%、銅21〜23重量%、アルミニウ
ム2〜4重量%に微量イリジウム、さらに好ましくは金
75重量%、銅21.95重量%、アルミニウム3重量%と0.0
5重量%のイリジウムを含ませた成分組成からなるAu基
合金を得た。この合金を700℃で1時間以上加熱した
後、20℃以下の水で急冷し、更に400℃で1.5時間加熱し
たところβ相(マルテンサイト相)を晶出した。
Next, an alloy obtained by adding iridium to an Au-Cu-Al-based alloy,
Preferably 73 to 77% by weight of gold, 21 to 23% by weight of copper, 2 to 4% by weight of aluminum, and a trace amount of iridium, more preferably gold.
75% by weight, 21.95% by weight of copper, 3% by weight of aluminum and 0.0
An Au-based alloy having a composition containing 5% by weight of iridium was obtained. After heating this alloy at 700 ° C. for 1 hour or more, quenching it with water at 20 ° C. or less and further heating at 400 ° C. for 1.5 hours, the β phase (martensite phase) was crystallized.

尚、前記の組成範囲外のAu基合金では良好な形状記憶効
果及び超弾性が認められなかった。
In addition, good shape memory effect and superelasticity were not observed in the Au-based alloy having a composition outside the above range.

更に、Au−Cu−Ag−Al系合金、好ましくは金73〜77重量
%、銅11〜13重量%、銀9〜11重量%、アルミニウム2
〜4重量%の成分組成からなるAu基合金、さらに好まし
くは金75重量%、銅12重量%、銀10重量%、アルミニウ
ム3重量%の合金を得た。この合金を700℃で1時間以
上加熱した後20℃以下に急冷し、更に400℃で1.5時間加
熱したところβ相(マルテンサイト相)を晶出した。
Further, an Au-Cu-Ag-Al-based alloy, preferably 73 to 77 wt% gold, 11 to 13 wt% copper, 9 to 11 wt% silver, 2 aluminum
An Au-based alloy having a component composition of ˜4 wt%, more preferably 75 wt% gold, 12 wt% copper, 10 wt% silver, 3 wt% aluminum was obtained. This alloy was heated at 700 ° C. for 1 hour or more, then rapidly cooled to 20 ° C. or less, and further heated at 400 ° C. for 1.5 hours to crystallize a β phase (martensite phase).

尚、前記の組成範囲外のAu基合金では良好な形状記憶効
果及び超弾性が認められなかった。
In addition, good shape memory effect and superelasticity were not observed in the Au-based alloy having a composition outside the above range.

このようにして得られた合金は、前記成分組成外の合金
に比較して顕著な超弾性が認られると共に、二方向の形
状記憶効果を有し、いわゆる熱弾性機能を有することが
認められた。
It was confirmed that the alloy thus obtained has a remarkable superelasticity as compared with alloys having other than the above-mentioned component compositions, has a bidirectional shape memory effect, and has a so-called thermoelastic function. .

そこで、前記で得られ且つ特性形状を記憶した合金に曲
げ加工を施し、これを再加熱たところ、前記合金中のマ
ルテンサイト相が消失し、加工前の特性形状に回復し
た。
Therefore, when the alloy obtained in the above and having the characteristic shape remembered was bent and reheated, the martensite phase in the alloy disappeared and the characteristic shape before processing was restored.

又、この加工前の特定形状に復帰した合金を冷却したと
ころ、この特定形状から前記の加工状態の形状に再変形
した、しかも、その回復性が良好であった。
Further, when the alloy which had returned to the specific shape before processing was cooled, it was re-deformed from this specific shape to the shape in the above-mentioned processed state, and its recoverability was good.

かゝる超弾性を有する形状記憶合金では、銅−アルミニ
ウム系合金で、10〜15重量%のアルミニウム域にβ相
(マルテンサイト相)が存在し、しかも同時に銅のアル
ミニウム固溶限が金に比較して広いことから、Au4Alの
晶出が効果的に抑制されるものと考えられる。
The shape memory alloy having such superelasticity is a copper-aluminum alloy, in which the β phase (martensite phase) exists in the aluminum region of 10 to 15% by weight, and at the same time, the aluminum solid solution limit of copper is gold. It is considered that the crystallization of Au 4 Al is effectively suppressed because it is wide in comparison.

このようにして得られた金−銅−アルミニウムからなる
三元合金は前記の形状記憶効果を示すと共に充分な加工
特性を有してた。
The gold-copper-aluminum ternary alloy thus obtained exhibited the above-mentioned shape memory effect and had sufficient working characteristics.

次いで、金−銅−アルミニウムの三元合金に微量のイリ
ジウムを含ませた前記の合金では、結晶組織が密で、ロ
ール加工等の加工性に優れていた。
Next, the above-mentioned alloy in which a trace amount of iridium was added to the ternary alloy of gold-copper-aluminum had a dense crystal structure and was excellent in workability such as roll processing.

更に、金−銅−銀−アルミニウムの成分組成からなる合
金においても前記の金−銅−アルミニウムの三元合金と
同様の加工特性を示し、この三元合金より稍々劣る形状
記憶効果を示した。
Further, the alloy composed of the compositional composition of gold-copper-silver-aluminum also showed the same processing characteristics as the ternary alloy of gold-copper-aluminum, and exhibited a shape memory effect which was slightly inferior to this ternary alloy. .

このようにして得られた形状記憶合金は、形状記憶後の
合金に対する加熱に際し、略80℃前後から、形状変化が
認められ、その回復性が良好であった。又、低温域では
20℃以下の温度で最も強いエネルギーでの回復が認めら
れた。
The shape memory alloy thus obtained exhibited a change in shape from about 80 ° C. upon heating the alloy after shape memory, and its recoverability was good. Also, in the low temperature range
Recovery with the strongest energy was observed at a temperature of 20 ° C or lower.

又、このようにして得られた形状記憶合金の色調は、稍
々白味を帯びた黄色であって、装飾品等に用いるのに適
していた。
Further, the color tone of the shape memory alloy thus obtained was slightly whitish yellow, which was suitable for use in ornaments and the like.

実施例1 金75重量%、銅21.95重量%、アルミニウム3重量%、
イリジウム0.05重量%の組成からなる合金線材を溶製
(鋳造)して10mm径の線状合金を得た。
Example 1 Gold 75 wt%, Copper 21.95 wt%, Aluminum 3 wt%,
An alloy wire rod having a composition of 0.05% by weight iridium was melted (cast) to obtain a linear alloy having a diameter of 10 mm.

この線状合金を、炉壁温度を700℃に設定した恒温マッ
スル炉中で1時間加熱し、ロール、ダイス加工により0.
6mm径の丸線とし、更に、700℃で1時間加熱した後20℃
以下の水で急冷し、更に400℃で1.5時間加熱した後20℃
以下の水で急冷してマルテンサイト相を有する試料を得
た。
This linear alloy is heated for 1 hour in a constant temperature muscle furnace with the furnace wall temperature set at 700 ° C, and rolled and die processed to 0.
Round wire with a diameter of 6 mm, further heated at 700 ℃ for 1 hour, then 20 ℃
Quench with the following water and heat at 400 ℃ for 1.5 hours, then at 20 ℃
A sample having a martensite phase was obtained by quenching with the following water.

この0.6mmの試料を第1図の形状に折曲げた。この試料
は、折曲げ端間aを12mmとし、折曲げ頂点を線端の距離
bを50mmとして円弧を呈するように折曲げて用いた。
This 0.6 mm sample was bent into the shape shown in FIG. This sample was used by bending it so that the bending distance a was 12 mm and the bending apex had a line end distance b of 50 mm to form an arc.

第2図は、この試料を90℃の熱水中に浸漬して該試料の
加熱をなした復元状態を示すものであり、a寸法が15mm
であり、復元寸法が3mmであった。
FIG. 2 shows a restored state in which the sample is heated by immersing the sample in hot water at 90 ° C., and the a dimension is 15 mm.
And the restored dimension was 3 mm.

第3図は、この試料を150℃に保持された炉を用いて加
熱した際の該試料の復元状態を示すものであって、a寸
法が17mm、復元寸法が5mmであった。
FIG. 3 shows the restored state of this sample when it was heated using a furnace held at 150 ° C. The a dimension was 17 mm and the restored dimension was 5 mm.

第4図は、この試料の加熱温度を200℃に保って加熱し
た際の該試料の復元状態を示すものであって、a寸法が
25mm、復元寸法が13mmであった。
FIG. 4 shows the restored state of the sample when the sample was heated at a heating temperature of 200 ° C.
The size was 25 mm and the restored size was 13 mm.

第5図は、この試料の加熱温度を250℃に保って加熱し
た際の該試料の復元状態を示すものであって、a寸法が
27mm、復元寸法が15mmであった。
FIG. 5 shows a restored state of the sample when the sample was heated at a heating temperature of 250 ° C.
It was 27 mm and the restoration size was 15 mm.

前記の90℃、150℃、200℃、250℃で加熱した各試料を1
6℃に冷却した。
1 sample for each sample heated at 90 ℃, 150 ℃, 200 ℃, 250 ℃
Cooled to 6 ° C.

この冷却された各試料は、いずれもa寸法が12mm、b寸
法が50mmであった。
Each of the cooled samples had an a dimension of 12 mm and a b dimension of 50 mm.

実施例2 試料となる線状合金を金75重量%、銅12重量%、銀10重
量%、アルミニウム3重量%の成分組成とした以外の条
件を実施例1と同一にして試料を用意し、これを加熱し
たところ、250℃でa寸法が17mmで復元寸法は5mmであっ
た。
Example 2 A sample was prepared under the same conditions as in Example 1 except that the composition of the linear alloy used as the sample was 75 wt% gold, 12 wt% copper, 10 wt% silver, and 3 wt% aluminum. When this was heated, at 250 ° C., the a dimension was 17 mm and the restored dimension was 5 mm.

又、この250℃で加熱した試料を16℃に冷却したところ
試料のa寸法が12mm、b寸法が50mmであった。
When the sample heated at 250 ° C. was cooled to 16 ° C., the a dimension of the sample was 12 mm and the b dimension was 50 mm.

比較例1 金97重量%、アルミニウム3重量%の成分組成のAu基合
金を得た。この得られた合金は極めて脆く実用に用いる
ことができなかった。
Comparative Example 1 An Au-based alloy having a composition of 97 wt% gold and 3 wt% aluminum was obtained. The obtained alloy was extremely brittle and could not be used for practical purposes.

[効果] 本発明にかゝる形状記憶合金は叙上の特長ある構成から
加工性に優れたAu基形状記憶合金とされた。
[Effect] The shape memory alloy according to the present invention is an Au-based shape memory alloy excellent in workability because of its characteristic structure.

又、この形状記憶合金における復元性は良好であり、常
温域で安定なマルテンサイト相を有するAu基形状記憶合
金とされた。
Further, the shape memory alloy has good resilience, and was determined to be an Au-based shape memory alloy having a stable martensite phase at room temperature.

更に、弾性歪み量が大きく、優れた超弾性を有するAu基
形状記憶合金とされた。
Furthermore, the Au-based shape memory alloy has a large elastic strain amount and excellent superelasticity.

特に、銅又は銀を形状記憶合金の組成々分として用いる
ことによって、チタン−ニッケル系の形状記憶合金ない
しは他のAu基形状記憶合金に比較して低廉なコストによ
るAu基形状記憶合金の提供が可能とされた。
In particular, by using copper or silver as the composition components of the shape memory alloy, it is possible to provide an Au-based shape memory alloy at a lower cost than titanium-nickel-based shape memory alloys or other Au-based shape memory alloys. It was possible.

かゝる点から本発明にかゝる形状記憶合金はネックレス
等の止め金具、装身用貴金属類の構成部品、スプリング
等の一般的な用途に向けた使用並びに形状の変化を楽し
む装飾品類として用いることができる。
From this point of view, the shape memory alloy according to the present invention is used as a fastener for necklaces, component parts of jewelry precious metals, springs, etc. for general purposes and as ornaments to enjoy shape changes. Can be used.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の形状記憶合金の一実施例である線状合
金の正面図、第2図〜第5図は該線状合金の加熱復元状
態を示す正面図である。
FIG. 1 is a front view of a linear alloy which is an embodiment of the shape memory alloy of the present invention, and FIGS. 2 to 5 are front views showing a restored state of the linear alloy by heating.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】金73〜77重量%、 銅21〜23重量%、又は銅11〜13重量%と銀9〜11重量
%、 アルミニウム2〜4重量% とからなる形状記憶合金。
1. A shape memory alloy comprising 73 to 77% by weight of gold, 21 to 23% by weight of copper, or 11 to 13% by weight of copper, 9 to 11% by weight of silver, and 2 to 4% by weight of aluminum.
【請求項2】イリジウムを略0.05重量%含む請求項1記
載の形状記憶合金。
2. The shape memory alloy according to claim 1, which contains approximately 0.05% by weight of iridium.
JP1148456A 1989-06-13 1989-06-13 Shape memory alloy Expired - Lifetime JPH0678577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1148456A JPH0678577B2 (en) 1989-06-13 1989-06-13 Shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1148456A JPH0678577B2 (en) 1989-06-13 1989-06-13 Shape memory alloy

Publications (2)

Publication Number Publication Date
JPH0313535A JPH0313535A (en) 1991-01-22
JPH0678577B2 true JPH0678577B2 (en) 1994-10-05

Family

ID=15453170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1148456A Expired - Lifetime JPH0678577B2 (en) 1989-06-13 1989-06-13 Shape memory alloy

Country Status (1)

Country Link
JP (1) JPH0678577B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3554703B2 (en) 2000-10-12 2004-08-18 リバーベル株式会社 Information terminal equipment
ATE466964T1 (en) 2004-10-15 2010-05-15 Liquidmetal Technologies Inc GLASS-FORMING AMORPHOUS ALLOYS BASED ON AU
EP2402467B1 (en) * 2010-06-30 2015-06-17 The Swatch Group Research and Development Ltd. Gold alloy with improved hardness
JP6661132B2 (en) * 2018-03-02 2020-03-11 国立大学法人東京工業大学 Shape memory alloy and shape memory alloy wire

Also Published As

Publication number Publication date
JPH0313535A (en) 1991-01-22

Similar Documents

Publication Publication Date Title
US4165983A (en) Jewelry alloys
JPH0372046A (en) Shape memory alloy
JP3335224B2 (en) Method for producing high formability copper-based shape memory alloy
WO2012169285A1 (en) Fine crystallite high-performance metal alloy member and method for manufacturing same
JPWO2008072485A1 (en) High performance elastic metal alloy member and manufacturing method thereof
JPH0678577B2 (en) Shape memory alloy
JPS5920440A (en) Shape memory copper alloy
EP1383149A3 (en) Alloy type thermal fuse and wire member for a thermal fuse element
Gervais ZA alloys--a challenge to the metals industry
JPS63262434A (en) Platinum alloy for accessories having elasticity
US4464213A (en) Nobleization of beta brass
JPH048494B2 (en)
JPS61106736A (en) Ornamental hard platinum alloy
JPS6216260B2 (en)
JPS622017B2 (en)
CN1045130A (en) But the gold shape-memory alloy of machine-shaping and manufacturing thereof
JPH0437149B2 (en)
CN87102490A (en) Elastic electro-contact alloy of palladium, silver, copper and gallium with high strength
JPH048495B2 (en)
JP2009030146A (en) High performance elastic metal alloy member, and method for producing the same
GB1582582A (en) Jewellery alloys
JPS63165097A (en) Hard alloy brazing filler metal
JPS62235445A (en) Sulfurization resistant silver alloy
JPH08157983A (en) Ornamental member made of hard gold alloy having high purity of gold
JPS60177154A (en) Golden copper alloy for ornamentation