JPH0677453B2 - Sintered nickel pole for alkaline storage battery - Google Patents

Sintered nickel pole for alkaline storage battery

Info

Publication number
JPH0677453B2
JPH0677453B2 JP61184705A JP18470586A JPH0677453B2 JP H0677453 B2 JPH0677453 B2 JP H0677453B2 JP 61184705 A JP61184705 A JP 61184705A JP 18470586 A JP18470586 A JP 18470586A JP H0677453 B2 JPH0677453 B2 JP H0677453B2
Authority
JP
Japan
Prior art keywords
nickel
cobalt
layer
active material
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61184705A
Other languages
Japanese (ja)
Other versions
JPS6340255A (en
Inventor
和宏 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61184705A priority Critical patent/JPH0677453B2/en
Publication of JPS6340255A publication Critical patent/JPS6340255A/en
Publication of JPH0677453B2 publication Critical patent/JPH0677453B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はニツケル‐カドミウム電池、ニツケル‐亜鉛電
池などの陽極として用いられるアルカリ蓄電池用焼結式
ニツケル極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a sintered nickel electrode for an alkaline storage battery used as an anode of a nickel-cadmium battery, a nickel-zinc battery or the like.

(ロ)従来の技術 従来アルカリ蓄電池に用いられるニツケル極はカーボニ
ルニツケル粉末と高分子糊料とよりなるスラリーを芯体
にコーテイングし、これを還元性雰囲気下で焼結して得
た多孔性ニツケル基板を硝酸ニツケルを主成分とした含
浸液に浸漬し、次いでアルカリ処理を行い、基板の孔中
に水酸化ニツケル活物質を充填するという一連の工程を
数回繰り返すという方法によつて製造されており、この
ニツケル極を用いたアルカリ蓄電池の電池特性を向上さ
せるために種々の研究がなされている。
(B) Conventional technology The nickel electrode used in conventional alkaline storage batteries is a porous nickel obtained by coating a core body with a slurry consisting of carbonyl nickel powder and polymer paste, and sintering this in a reducing atmosphere. It is manufactured by a method in which a substrate is immersed in an impregnating solution containing nickel nitrate as a main component, then subjected to an alkali treatment, and a series of steps of filling the holes of the substrate with a nickel hydroxide active material is repeated several times. However, various studies have been made to improve the battery characteristics of the alkaline storage battery using the nickel electrode.

この電池特性の向上、特に電池の容量アツプを行なうた
めには単位体積あたりのエネルギー密度の大きなニツケ
ル極を開発する必要があり、そのための基本的方法とし
て活物質の利用率を向上させ高いエネルギー密度を得る
ことが種々提案されており、たとえば特公昭60−12742
号公報に記載されているように硝酸塩溶液から水酸化物
としてニツケルとコバルトとを同時に析出させたものを
用いる方法や、特公昭57−5018号公報に記載されたよう
に活物質の含浸中和工程においてコバルト含有量がニツ
ケル含有量よりも多い含浸液を用いてコバルト単独層を
設ける方法が提案されている。しかしながら、上記方法
ではコバルトの添加効果がまだまだ不十分でありサイク
ル進行と共に極板強度が低下し、サイクル性能の低下を
招くという問題があつた。
In order to improve the battery characteristics, in particular to increase the capacity of the battery, it is necessary to develop a nickel electrode with a large energy density per unit volume. Has been proposed, for example, Japanese Patent Publication No. 60-12742.
As disclosed in JP-B No. 57-5018, a method using a solution in which nickel and cobalt are simultaneously precipitated as a hydroxide from a nitrate solution, and impregnation neutralization of an active material as described in JP-B-57-5018. There has been proposed a method of forming a cobalt single layer using an impregnating liquid having a cobalt content higher than the nickel content in the step. However, the above-mentioned method has a problem that the effect of adding cobalt is still insufficient and the strength of the electrode plate decreases as the cycle progresses, leading to a decrease in cycle performance.

(ハ)発明が解決しようとする問題点 本発明はニツケル極の利用率を向上させることによつて
電極容量を大きくするものであり、しかも極板強度の大
きい、サイクル特性の優れたアルカリ蓄電池用焼結式ニ
ツケル極を提供するものである。
(C) Problems to be Solved by the Invention The present invention is intended to increase the electrode capacity by improving the utilization rate of the nickel electrode, and has a large electrode plate strength and excellent cycle characteristics for an alkaline storage battery. A sintered nickel pole is provided.

(ニ)問題点を解決するための手段 本発明は、多孔性ニツケル基板とニツケル活物質層との
間にコバルト化合物あるいは金属コバルトが単独で存在
する層を設けると共に、前記ニツケル活物質層と電解液
層との間にコバルト化合物あるいは金属コバルトが単独
で存在する層を設けることにより前記ニツケル活物質層
をコバルト化合物あるいは金属コバルトで被覆したこと
を特徴とするアルカリ蓄電池用焼結式ニツケル極にあ
る。尚、コバルト化合物もしくは金属コバルトが単独で
存在する層を形成する方法として、化学含浸法によるも
の、熱分解法によるもの、電着によるものなどいずれの
方法であつても良い。またコバルト化合物は水酸化物も
しくは酸化物が好ましい。
(D) Means for Solving the Problems In the present invention, a layer containing a cobalt compound or metallic cobalt alone is provided between the porous nickel substrate and the nickel active material layer, and the nickel active material layer and the electrolytic layer are electrolyzed. A sintered nickel electrode for an alkaline storage battery, characterized in that the nickel active material layer is coated with a cobalt compound or metallic cobalt by providing a layer in which a cobalt compound or metallic cobalt is present alone with the liquid layer. . Any method such as a chemical impregnation method, a thermal decomposition method, or an electrodeposition method may be used as a method for forming the layer in which the cobalt compound or metallic cobalt is solely present. The cobalt compound is preferably hydroxide or oxide.

(ホ)作用 焼結式多孔性ニツケル基板と水酸化ニツケルを主成分と
する陽極活物質層との間にコバルト化合物あるいは金属
コバルトが単独で存在する層を設けることで、充電時に
おける酸素過電圧が下がり充電反応が進行しやすくな
る。更に前記コバルト層と、陽極活物質層と電解液層と
の間にコバルト化合物あるいは金属コバルトが単独で存
在する層を設けニツケル活物質層を被覆することによつ
てこれら2ケ所のコバルト層の相乗効果に基きγ−Nioo
Hの抑制効果がより一層向上し、γ−NiooHの生成がほと
んどなくなり、β−NiooHだけが生成するものであり、
又、2ケ所のコバルト層の存在により充放電反応が一層
進行しやすくなり、サイクル特性の優れたニツケル極が
得られる。
(E) Action By providing a layer containing a cobalt compound or metallic cobalt alone between the sintered porous nickel substrate and the anode active material layer containing nickel hydroxide as a main component, the oxygen overvoltage during charging is increased. It becomes easy to go down and charge reaction. Furthermore, by providing a layer containing a cobalt compound or metallic cobalt alone between the above-mentioned cobalt layer and the anode active material layer and the electrolytic solution layer, the nickel active material layer is covered to synergize these two cobalt layers. Γ-Nioo based on effect
The suppression effect of H is further improved, the production of γ-NiooH is almost eliminated, and only β-NiooH is produced.
Further, the existence of the two cobalt layers facilitates the charge-discharge reaction, and a nickel electrode having excellent cycle characteristics can be obtained.

また本発明の多孔性ニツケル基板の表面がコバルト化合
物あるいは金属コバルトが単独で存在する層で覆われて
いるので、ニツケル活物質含浸時のニツケルアタツクに
よる腐食が防止でき基板強度が向上する。
Further, since the surface of the porous nickel substrate of the present invention is covered with a layer containing a cobalt compound or metallic cobalt alone, it is possible to prevent corrosion due to the nickel attack when impregnating the nickel active material and improve the substrate strength.

(ヘ)実施例 本発明の実施例を第1図を用い以下に詳述する。(F) Embodiment An embodiment of the present invention will be described in detail below with reference to FIG.

多孔度80%の焼結式多孔性ニツケル基板3を比重L38の
硝酸コバルト水溶液に浸漬後、空気中80℃で乾燥後、空
気中210℃で熱処理することによつて基板の表面及び孔
内表面に第1のコバルト酸化物層1を形成させる。つい
でこの基板に硝酸ニツケル水溶液を含浸させアルカリ処
理してニツケル活物質を充填するという工程を6回繰り
返して所定量の活物質層2を形成した後、比重1.38の硝
酸コバルト水溶液に再浸漬し、空気中80℃で乾燥後80℃
の水酸化ナトリウム水溶液でアルカリ処理し、ニツケル
活物質を覆う第2の水酸化コバルト層5を形成させたも
のを、公知のカドミウム極と組み合わせて公称容量1.2A
Hのニツケル−カドミウム電池を得、本発明電池Aとし
た。
The sintered porous nickel substrate 3 having a porosity of 80% is immersed in an aqueous cobalt nitrate solution having a specific gravity of L38, dried in air at 80 ° C., and then heat-treated in air at 210 ° C. To form a first cobalt oxide layer 1. Then, the process of impregnating this substrate with an aqueous solution of nickel nitrate and subjecting it to alkali treatment to fill the nickel active material six times is repeated to form a predetermined amount of active material layer 2, and then re-immersed in an aqueous solution of cobalt nitrate having a specific gravity of 1.38. 80 ℃ after drying at 80 ℃ in air
Alkali treatment with the above sodium hydroxide aqueous solution to form the second cobalt hydroxide layer 5 covering the nickel active material was combined with a known cadmium electrode to give a nominal capacity of 1.2A.
A nickel-cadmium battery of H was obtained and designated as a battery A of the present invention.

比較例1 実施例1で用いたのと同じ基板を比重1.38の硝酸コバル
ト水溶液に浸漬後、空気中80℃で乾燥後、空気中210℃
で熱処理することによつてコバルト酸化物層を形成させ
たものに実施例1と同様にニツケル活物質を充填したの
みのニツケル極を用い、実施例1と同様にして組み立て
比較電池Bを得た。
Comparative Example 1 The same substrate as used in Example 1 was immersed in an aqueous solution of cobalt nitrate having a specific gravity of 1.38, dried in air at 80 ° C., and then in air at 210 ° C.
An assembled comparative battery B was obtained in the same manner as in Example 1 by using a nickel electrode in which a cobalt oxide layer was formed by heat treatment in Example 1. .

比較例2 実施例1で用いた同じ基板に直接、実施例1と同様にニ
ツケル活物質を充填し、ついで比重1.38の硝酸コバルト
水溶液に浸漬し、空気中80℃で乾燥後、80℃の水酸化ナ
トリウム水溶液でアルカリ処理し、水酸化コバルト層を
形成させたものをニツケル極とし実施例1と同様にして
組み立て比較電池Cを得た。
Comparative Example 2 The same substrate used in Example 1 was directly filled with the nickel active material in the same manner as in Example 1, then immersed in a cobalt nitrate aqueous solution having a specific gravity of 1.38, dried in air at 80 ° C., and then dried at 80 ° C. in water. An assembly-comparative battery C was obtained in the same manner as in Example 1 except that the nickel hydroxide electrode was treated with an alkaline solution of sodium oxide to form a cobalt hydroxide layer.

比較例3 実施例1で用いた同じ基板に直接実施例1と同様にニツ
ケル活物質を充填し、コバルト層を一切形成しないニツ
ケル極を用い、実施例1と同様にして組み立て比較電池
Dを得た。
Comparative Example 3 An assembled comparative battery D was obtained in the same manner as in Example 1 except that the same substrate used in Example 1 was directly filled with the nickel active material as in Example 1 and a nickel electrode without any cobalt layer was used. It was

第2図はX線回折の分析結果であつて、明白なるように
本発明によるニツケル極Aは放電され難い充電生成物γ
−NiooHの生成がほとんど無いものであり、放電されや
すいβ−NiooHのみが生成し、利用率の向上が計れるこ
とがわかる。
FIG. 2 shows the results of X-ray diffraction analysis. As is clear, the nickel electrode A according to the present invention is a charge product γ which is difficult to be discharged.
It can be seen that there is almost no generation of −NiooH, only β-NiooH, which is easily discharged, is generated, and the utilization rate can be improved.

更に、第1表に本発明電池A、比較電池B、C、Dの充
放電前後のニツケル価数と価数変化ならびにX線回折の
γ−NiooHとβ−NiooHとのピーク高さ比を生成比と考
え、γ−NiooH/β−NiooHとして表わしてある。
Further, Table 1 shows the nickel valences and valence changes before and after charge / discharge of the present invention battery A and comparative batteries B, C, D, and the peak height ratio of γ-NiooH and β-NiooH in X-ray diffraction. It is considered as a ratio and is expressed as γ-NiooH / β-NiooH.

この結果より本発明電池Aのニツケル価数変化が1.2と
最も大きく、充放電反応がより一層進行しているもので
あることがわかる。更に、γ−NiooHとβ−NiooHの生成
比γ−NiooH/β−NiooHをみると本発明電池Aのニツケ
ル極においてはβ型のみ生成している。
From this result, it can be seen that the change in the nickel valence of the battery A of the present invention is the largest at 1.2, and the charge / discharge reaction is further advanced. Further, looking at the production ratio γ-NiooH / β-NiooH of γ-NiooH and β-NiooH, only the β-type is produced in the nickel pole of the battery A of the present invention.

また第3図は前記電池A,B,C,Dのニツケル極を用い、対
極をニツケル板として電解液比重1.23のKOH溶液を用
い、充電電流120mAで16時間充電した後、放電電流1200m
Aで終止電圧を−1Vとするサイクル試験の結果を表した
ものである。これより本発明の電極は二ケ所のコバルト
層の相乗効果で優れたサイクル特性を有するものである
ことがわかる。
Further, FIG. 3 shows that the nickel electrodes of the batteries A, B, C and D are used, the counter electrode is a nickel plate, and a KOH solution having an electrolytic solution specific gravity of 1.23 is used. After charging for 16 hours at a charging current of 120 mA, a discharging current of 1200 m
A represents the result of a cycle test in which the final voltage is -1V. From this, it is understood that the electrode of the present invention has excellent cycle characteristics due to the synergistic effect of the two cobalt layers.

また一方、第4図は前記電池A,B,C,Dを25℃において0.1
c(120mA)で16時間充電した後、25℃において1c(1200
mA)で放電した時の放電特性を示すグラフであり、本発
明電池Aは放電時間が長く、ニツケル活物質の利用率が
高いので、高容量化が計られている。
On the other hand, FIG. 4 shows that the batteries A, B, C and D were 0.1
After charging with c (120mA) for 16 hours, at 25 ° C, 1c (1200mA
FIG. 3 is a graph showing discharge characteristics when discharged with a current (mA), and the battery A of the present invention has a long discharge time and a high utilization rate of the nickel active material, and thus has a high capacity.

更に、第5図は前記電池A,B,C,Dを用い25℃において0.1
cで16時間充電した後、1Cで放電し放電終止電圧を0.8V
とした時のサイクル特性を比較したものであり、本発明
によるニツケル極は電池として組み立てても優れたサイ
クル特性を発揮しうるものである。
Further, FIG. 5 shows that the batteries A, B, C and D were used at 0.1 at 25 ° C.
After charging with c for 16 hours, discharge at 1C and discharge end voltage is 0.8V
It is a comparison of the cycle characteristics of the above, and the nickel electrode according to the present invention can exhibit excellent cycle characteristics even when assembled as a battery.

尚、実施例において基板表面に形成するコバルト層を酸
化物の形態として構成しているが、水酸化コバルト層で
も本発明の要旨とする効果において劣るものではない。
ただし、活物質含浸時のニツケルアタツクを防止する効
果におていは酸化物層の方が水酸化物層よりも強力であ
つて、優れるものである。
Although the cobalt layer formed on the surface of the substrate is formed in the form of an oxide in the examples, a cobalt hydroxide layer is not inferior to the effect of the gist of the present invention.
However, in terms of the effect of preventing nickel attack during impregnation of the active material, the oxide layer is stronger and more excellent than the hydroxide layer.

(ト)発明の効果 本発明によればγ−NiooHの生成をきわめて効果的に抑
制できるので、サイクル特性に優れ、且高容量のアルカ
リ蓄電池用焼結式ニツケル極が提供でき、工業的価値は
きわめて大きい。
(G) Effect of the Invention According to the present invention, since the production of γ-NiooH can be suppressed very effectively, it is possible to provide a high-capacity sintered nickel-nickel electrode for alkaline storage batteries, which has an industrial value. Extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明ニツケル極の要部拡大断面図、第2図は
X線回折図、第3図はニツケル極のサイクル特性比較
図、第4図は放電特性比較図、第5図は電池のサイクル
特性比較図を示す。 A……本発明電池、B,C,D……比較電池、1,5……コバル
ト層、2……ニツケル活物質層、3……焼結式多孔性ニ
ツケル基板、4……電解液層。
FIG. 1 is an enlarged cross-sectional view of an essential part of a nickel pole of the present invention, FIG. 2 is an X-ray diffraction diagram, FIG. 3 is a cycle characteristic comparison diagram of the nickel pole, FIG. 4 is a discharge characteristic comparison diagram, and FIG. 5 is a battery. The cycle characteristic comparison figure of is shown. A ... Inventive battery, B, C, D ... Comparative battery, 1,5 ... Cobalt layer, 2 ... Nickel active material layer, 3 ... Sintered porous nickel substrate, 4 ... Electrolyte layer .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】多孔性ニツケル基板とニツケル活物質層と
の間にコバルト化合物あるいは金属コバルトが単独で存
在する層を設けると共に、前記ニツケル活物質層と電解
液層との間にコバルト化合物あるいは金属コバルトが単
独で存在する層を設けることにより前記ニツケル活物質
層をコバルト化合物あるいは金属コバルトで被覆したこ
とを特徴とするアルカリ蓄電池用焼結式ニツケル極。
1. A layer containing a cobalt compound or metallic cobalt alone is provided between a porous nickel substrate and a nickel active material layer, and a cobalt compound or metal is provided between the nickel active material layer and an electrolyte solution layer. A sintered nickel electrode for an alkaline storage battery, characterized in that the nickel active material layer is coated with a cobalt compound or metallic cobalt by providing a layer containing cobalt alone.
JP61184705A 1986-08-06 1986-08-06 Sintered nickel pole for alkaline storage battery Expired - Lifetime JPH0677453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61184705A JPH0677453B2 (en) 1986-08-06 1986-08-06 Sintered nickel pole for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61184705A JPH0677453B2 (en) 1986-08-06 1986-08-06 Sintered nickel pole for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS6340255A JPS6340255A (en) 1988-02-20
JPH0677453B2 true JPH0677453B2 (en) 1994-09-28

Family

ID=16157929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61184705A Expired - Lifetime JPH0677453B2 (en) 1986-08-06 1986-08-06 Sintered nickel pole for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0677453B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6120937A (en) * 1997-05-15 2000-09-19 Matsushita Electric Industrial Co., Ltd. Electrode for alkaline storage battery and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU699588A2 (en) * 1978-06-02 1979-11-25 Ленинградский Ордена Трудового Красного Знамени Технологический Институт Им. Ленсовета Method of manufacturing positive electrode of alkaline storage battery
JPS575018A (en) * 1980-06-13 1982-01-11 Olympus Optical Co Ltd Focus controller
JPS59163753A (en) * 1983-03-08 1984-09-14 Sanyo Electric Co Ltd Manufacture of anode plate for alkali storage battery
JPS62103972A (en) * 1985-10-30 1987-05-14 Shin Kobe Electric Mach Co Ltd Manufacture of cathode plate for alkaline storage battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU699588A2 (en) * 1978-06-02 1979-11-25 Ленинградский Ордена Трудового Красного Знамени Технологический Институт Им. Ленсовета Method of manufacturing positive electrode of alkaline storage battery
JPS575018A (en) * 1980-06-13 1982-01-11 Olympus Optical Co Ltd Focus controller
JPS59163753A (en) * 1983-03-08 1984-09-14 Sanyo Electric Co Ltd Manufacture of anode plate for alkali storage battery
JPS62103972A (en) * 1985-10-30 1987-05-14 Shin Kobe Electric Mach Co Ltd Manufacture of cathode plate for alkaline storage battery

Also Published As

Publication number Publication date
JPS6340255A (en) 1988-02-20

Similar Documents

Publication Publication Date Title
DE19622035A1 (en) Positive nickel electrode and negative electrode for an alkaline storage battery and its manufacturing process
JPH0677453B2 (en) Sintered nickel pole for alkaline storage battery
JPH0221098B2 (en)
EP0448854B1 (en) Improved method of making a nickel hydroxide-containing cathode for alkaline batteries
CN1185666A (en) Positive pole-plate for lithium cell and lithium cell thereof
JPH0410181B2 (en)
JP3188000B2 (en) Non-sintered nickel positive electrode
JPS5983347A (en) Sealed nickel-cadmium storage battery
JPS6161227B2 (en)
JP2000173606A (en) Sintered-type nickel hydroxide positive electrode, alkaline storage battery using the positive electrode, and manufacture of sintered type nickel hydroxide positive electrode
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JP3619703B2 (en) Method for producing nickel electrode for alkaline storage battery
JP2898421B2 (en) Method for producing sintered nickel electrode for alkaline secondary battery
JP2639915B2 (en) Method for producing nickel positive electrode for alkaline storage battery
JP2001236959A (en) Non-sintered alkali cell positive electrode
JP4356119B2 (en) Sintered nickel electrode for alkaline storage battery
US20030104278A1 (en) Nickel electrode for alkaline storage battery, process for the production thereof, alkaline storage battery comprising same and process for the production thereof
JP3702107B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JP2558759B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP3540557B2 (en) Nickel electrode for alkaline storage battery and method for producing the same
JPH04342957A (en) Manufacture of sintered ni electrode for alkaline secondary battery
JP2002164047A (en) Method of manufacturing nickel electrode for alkali storage battery
JPH05225971A (en) Manufacture of nickel electrode
JPH0241865B2 (en)
JPS63158750A (en) Zink electrode for alkaline storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term