JPH0676821A - Lead-acid battery - Google Patents

Lead-acid battery

Info

Publication number
JPH0676821A
JPH0676821A JP4228150A JP22815092A JPH0676821A JP H0676821 A JPH0676821 A JP H0676821A JP 4228150 A JP4228150 A JP 4228150A JP 22815092 A JP22815092 A JP 22815092A JP H0676821 A JPH0676821 A JP H0676821A
Authority
JP
Japan
Prior art keywords
lead
active material
battery
conductive polymer
lead battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4228150A
Other languages
Japanese (ja)
Inventor
Shigeo Kondo
繁雄 近藤
Kazunori Takada
和典 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4228150A priority Critical patent/JPH0676821A/en
Publication of JPH0676821A publication Critical patent/JPH0676821A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a lead-acid battery, in which the utilization factor of the electrode active material is improved, by using the fine-grain active material as the active material of a positive electrode or a negative electrode, and using the fine-grains, of which surface is coated with the conductive polymer, for one part thereof. CONSTITUTION:The fine-grain active material is used as the active material of at least one of a positive electrode and a negative electrode, and the active material, of which surface is coated with the conductive polymer, is used for at lest one part of the active material. Generation of the transformation to the fine-grain of the electrode active material is reduced at the time of charge and discharge, and even in the case where the transformation to fine-grain is generated, since the conductive polymer exists in the surface of the active material, the loss of the electrical connection to the active material is reduced. As a result, utilization factor of the electrode active material used for a lead battery can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉛電池に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead battery.

【0002】[0002]

【従来の技術】近年、電気自動車用電源を始めとして、
コードレス機器用電源の高エネルギー密度化の研究が盛
んに進められている。その結果、リチウム二次電池やニ
ッケル水素電池等の新しい電池系が出現してきた。一
方、従来電池であるニッケルカドミウム電池や鉛電池で
は、電池容量やサイクル寿命あるいは作動温度など各種
電池性能の高性能化が進められてきた。
2. Description of the Related Art In recent years, starting with power sources for electric vehicles,
Research on increasing the energy density of power supplies for cordless devices is being actively pursued. As a result, new battery systems such as lithium secondary batteries and nickel hydrogen batteries have appeared. On the other hand, in nickel cadmium batteries and lead batteries, which are conventional batteries, various battery performances such as battery capacity, cycle life and operating temperature have been improved.

【0003】例えば、鉛電池では電極を形成しているグ
リッド材料の軽量化や、電池の自己放電を少なくするた
めの電極材料への添加材料等の研究さらには電池構成の
最適化などの検討が主体的に進められてきた。グリッド
材料の軽量化にはグリッド材料として電気電動率が鉛よ
り優れた銅を用い、その際その表面を鉛メッキして用い
る事が報告されている。又、充放電性能を向上させ電池
の充放電容量を増大させる為に、電極活物質に導電材と
してカーボンと高分子からなる結着材料を混ぜ、電極グ
リッドに塗布する方法なども報告されている。ここで使
用される結着材料としては、電子電導性を持たすために
ポリエチレン、ポリプロピレン等の高分子に導電性金属
材料を加え導電化した導電性高分子等や、さらにイオン
交換作用を有する高分子が検討されてきた。
[0003] For example, in a lead-acid battery, the weight of the grid material forming the electrodes is reduced, research is conducted on materials added to the electrode material in order to reduce self-discharge of the battery, and further optimization of the battery structure is studied. It has been promoted independently. In order to reduce the weight of the grid material, it has been reported that copper, which has an electric conductivity higher than that of lead, is used as the grid material, and the surface of the copper is plated with lead. Also, in order to improve the charge / discharge performance and increase the charge / discharge capacity of the battery, a method of mixing an electrode active material with a binder material composed of carbon and polymer as a conductive material and applying the mixture to an electrode grid has been reported. . The binding material used here is a conductive polymer obtained by adding a conductive metal material to a polymer such as polyethylene or polypropylene to have electron conductivity, or a polymer having an ion exchange action. Has been considered.

【0004】[0004]

【発明が解決しようとする課題】しかし、鉛電池は深い
充放電を行うと電極活物質の体積膨張収縮が著しく、そ
の度に電極活物質の導電性が変化するとともに、電極形
状が破壊され、電極活物質が露出する。この露出した電
極活物質の表面に存在する酸化鉛は極めて活性な状態で
あるため電解液の硫酸と反応し、硫酸鉛が生成され、い
わゆるサルフェーション現象が進行し電池内部抵抗の増
大をもたらすと共に、これら活物質は泥状化し、電池充
放電反応に関与しなくなり電池性能を低下させる。これ
らを最小限に止めるため、クラッド式電極からポケット
式電極にしたり、さらには顆粒状の活物質と導電性カー
ボンを電解液でスラリー状にしたものを鉛格子に塗布す
ると共に、充放電時の体積変化を外部から強制的に阻止
させた構造とする事で活物質間の電気的接合を出来るだ
け保つようにする試みもなされているが、あまり効果が
期待できなかった。
However, when a lead battery is deeply charged and discharged, the volume expansion and contraction of the electrode active material is remarkable, and the conductivity of the electrode active material changes each time, and the electrode shape is destroyed. The electrode active material is exposed. Since the lead oxide present on the surface of the exposed electrode active material is in an extremely active state, it reacts with sulfuric acid in the electrolytic solution to produce lead sulfate, and a so-called sulfation phenomenon progresses, which causes an increase in battery internal resistance, and These active materials become muddy and do not participate in the battery charging / discharging reaction and reduce the battery performance. In order to minimize these, the cladding type electrode is changed to a pocket type electrode, and further, a granular active material and conductive carbon made into a slurry with an electrolytic solution are applied to the lead grid, and at the same time during charging and discharging. Attempts have been made to keep the electrical connection between the active materials as much as possible by using a structure in which the volume change is forcibly prevented from the outside, but the effect could not be expected so much.

【0005】即ち、これら従来の鉛電池では、半導体で
ある酸化鉛を完全に放電し、すべてを硫酸鉛に変化させ
る事は出来ず、電極活物質の利用率は約30%程度であ
り、理論的容量の半分以下となっている。
That is, in these conventional lead batteries, it is not possible to completely discharge the lead oxide which is a semiconductor and to convert all of it into lead sulfate, and the utilization rate of the electrode active material is about 30%, which is theoretical. It is less than half of the target capacity.

【0006】そこで、本発明は、活物質の利用率を向上
させることのできる鉛電池を提供することを目的とする
ものである。
Therefore, an object of the present invention is to provide a lead battery capable of improving the utilization rate of the active material.

【0007】本発明の他の目的は、グリッド材料を電解
液中で安定でかつ軽量なものとし、全体的にも軽量化さ
れた鉛電池を提供することにある。
Another object of the present invention is to provide a lead battery which is made lightweight by making the grid material stable and light in an electrolytic solution, and also by reducing the weight as a whole.

【0008】[0008]

【課題を解決するための手段】鉛電池の陽極あるいは陰
極に用いられる電極活物質として、微細活物質を用い、
該電極活物質の表面をポリピロール、、ポリアニリン等
の導電性高分子で被覆したものを用いて陽極あるいは陰
極を構成し鉛電池を構成する。また電池のグリッドに関
しては鉛表面を導電性高分子で被覆し用いることで長寿
命化を計り、軽量化にはグリッドの芯材料として弁作用
金属を用い、その表面を鉛金属で被覆し、更に導電性高
分子で被覆したグリッドを用い鉛電池を構成する。
[MEANS FOR SOLVING THE PROBLEMS] A fine active material is used as an electrode active material used for an anode or a cathode of a lead battery,
A lead battery is formed by using an electrode active material whose surface is coated with a conductive polymer such as polypyrrole or polyaniline to form an anode or a cathode. In addition, for the battery grid, the lead surface is coated with a conductive polymer for long life, and for weight reduction, a valve metal is used as the core material of the grid, and its surface is coated with lead metal. A lead battery is constructed using a grid coated with a conductive polymer.

【0009】[0009]

【作用】鉛電池は深い充放電を行うと電極活物質の体積
膨張収縮が著しく、その度に電極活物質の導電性が変化
するとともに、電極形状が破壊され、破壊されて露出し
た面に存在する酸化鉛は極めて活性な状態であるため電
解液の硫酸と反応し、硫酸鉛が生成し、いわゆるサルフ
ェーション現象が進行し電池内部抵抗の増大をもたら
す。これに対し、本発明の電池では微細活物質を用い、
さらに該電極活物質が導電性高分子で被覆されている結
果、充放電時に於ける電極活物質の微細化が、あまり起
こらず、たとえ微細化が起こったとしても、その活物質
の表面には導電性高分子が存在しているため活物質への
電気的接合が失われることが少なくなる。即ち、導電性
高分子には鉛電池の電極活物質として作用する電解液中
のSO 4 2-が鉛電池の充放電に伴って出入りする。SO
4 2-が挿入された高分子は電子電導性となる性質があ
り、導電性高分子はイオン電導性と電子電導性を具備す
る混合導電体である事から鉛電池の電極活物質表面に存
在する高分子は電解質として、あるいは導電材料として
作用する。この結果、例えば微細化して活性となった電
極活物質は電気的中性を保つために、その表面に接触し
ている導電性高分子から電子を受け取る。電子を活物質
に与えた導電性高分子は該高分子内に電解液中の硫酸イ
オンを挿入する。硫酸イオンを挿入した導電性高分子の
電子電導性は向上するため、従来のような硫酸鉛の形成
による内部抵抗の増大をもたらさないようになる。その
結果、用いる電極の活物質の利用効率を向上させ、充放
電サイクル寿命の向上が期待されるようになる。
[Function] When a lead battery is deeply charged and discharged, the volume of the electrode active material increases.
Expansion and contraction are significant, and the conductivity of the electrode active material changes each time
And the electrode shape is destroyed and it is destroyed and exposed.
Since the lead oxide existing on the surface is extremely active,
It reacts with the sulfuric acid in the lysate to form lead sulfate,
Cation phenomenon progresses, resulting in an increase in internal resistance of the battery.
You On the other hand, in the battery of the present invention, a fine active material is used,
Furthermore, the electrode active material is coated with a conductive polymer.
As a result, miniaturization of the electrode active material during charging / discharging does not occur much.
Even if miniaturization occurs, the active material
Since the conductive polymer is present on the surface of the
Loss of electrical contact is reduced. That is, conductive
In the electrolyte that acts as an electrode active material for lead batteries in polymers
SO Four 2-Goes in and out as the lead battery is charged and discharged. SO
Four 2-The polymer in which is inserted has the property of becoming electronically conductive.
The conductive polymer has ionic and electronic conductivity.
Since it is a mixed conductor, it exists on the surface of the electrode active material of lead batteries.
Existing polymer is used as electrolyte or conductive material
To work. As a result of this, for example
The polar active material contacts its surface to keep it electrically neutral.
Receiving electrons from the conducting polymer being stored. Electron active material
The conductive polymer given to the
Insert on. Of conductive polymer with sulfate ion
Since the electron conductivity is improved, the conventional lead sulfate formation
Will not cause an increase in internal resistance. That
As a result, the utilization efficiency of the active material of the electrode used is improved and the
It is expected that the electric cycle life will be improved.

【0010】以下本発明について実施例を用い詳細に説
明する。
The present invention will be described in detail below with reference to examples.

【0011】[0011]

【実施例】図1は本発明の電池を構成するために必要な
電極活物質を作成するために用いた装置の概略構成図で
ある。図中1は電極活物質と導電性高分子を共析出させ
るための電解槽、2は電極活物質を分散させた電解重合
溶液である。電解重合溶液としては、ポリピロール、ポ
リアニリン、ポリチェニレン等のモノマーあるいはこれ
らの低重合溶液と、さらに鉛電池の電極活物質例えば酸
化鉛、鉛、硫酸鉛等の微粒子を硫酸や硫酸ナトリウムあ
るいはパラトルエンスルホン酸ナトリウムを支持電解質
とした水溶液系電解質あるいはジメチルホルムアミド、
アセトニトリル、プロピレンカーボネート等の有機溶媒
にパラトルエンスルホン酸ナトリウム等の支持電解質を
溶解させた有機系電解質に分散させてなるものを用いる
事ができる。3は多孔性カーボンよりなる陰極で、ステ
ンレススチール製ローラ陽極の4に対し、電流の流れが
均一となるよう曲面を有した構造としている、5は陰極
の通電端子、6はローラ陽極4への導通接点、7は陽極
端子、8は電極活物質と導電性高分子が共析出している
電解重合物質を電極から剥離させるためのステンレスス
チール製の剥離ブレード、9は電解液を攪拌するための
攪拌子でプラスチック製のプーリー10、11、12、
13にV型ベルト14、15にてモーター16の回転を
伝達させて用いた。
EXAMPLE FIG. 1 is a schematic configuration diagram of an apparatus used for producing an electrode active material necessary for constructing a battery of the present invention. In the figure, 1 is an electrolytic cell for coprecipitating an electrode active material and a conductive polymer, and 2 is an electrolytic polymerization solution in which an electrode active material is dispersed. Examples of the electrolytic polymerization solution include monomers such as polypyrrole, polyaniline, and polychenylene, or low polymerization solutions thereof, and fine particles of an electrode active material of a lead battery such as lead oxide, lead, and lead sulfate in sulfuric acid, sodium sulfate, or paratoluenesulfonic acid. An aqueous electrolyte or dimethylformamide, which uses sodium as a supporting electrolyte,
It is possible to use an organic solvent obtained by dispersing a supporting electrolyte such as sodium paratoluenesulfonate in an organic solvent such as acetonitrile or propylene carbonate and dispersing it in an organic electrolyte. Reference numeral 3 denotes a cathode made of porous carbon, which has a structure having a curved surface so as to make the current flow uniform with respect to 4 of the stainless steel roller anode, 5 is a cathode current-carrying terminal, and 6 is a roller anode 4 Conductive contact, 7 is an anode terminal, 8 is a stainless steel peeling blade for peeling the electrolytically polymerized substance in which the electrode active material and the conductive polymer are co-deposited from the electrode, and 9 is for stirring the electrolytic solution. Stirrers made of plastic pulleys 10, 11, 12,
The V-shaped belts 14 and 15 were used to transmit the rotation of the motor 16 to the motor 13.

【0012】上記装置にて、数mA/cm2 の電流密度
で直流電解を行うと、陽極のステンレスローラー面に電
極活物質が導電性高分子と共に共析出する。電極活物質
と共析出した導電性高分子はステンレススチール製ブレ
ード8にてローラーから除去し、鉛電池用電極活物質と
した。得られた電極活物質を洗浄乾燥後、さらに活物質
間同士の導電性を向上させるために、フッ素樹脂からな
るバインダーを加えスラリー状とした後、鉛格子にこれ
らスラリーを充填し電極を作成した。作成した電極(厚
さ1mm、サイズ30mm×50mm)2枚を用い、そ
の間に厚さ150μmのガラス繊維を介在させ、硫酸電
解液を注入し、鉛電池を作成した。本発明の詳細を更に
実施例で説明する。 (実施例1)本発明の活物質として、硫酸鉛を用い、該
活物質を0.05M−パラトルエンスルホン酸ナトリウ
ムを支持電解質とした酸性水溶液に分散させ、さらに導
電性高分子形成のためのモノマーとして0.5M−ピロ
ールを加えた電解液を作成し、該電解液を図1に示した
電解槽に充填し、電解液を十分に攪拌しつつ、3.5V
の直流定電圧を印加し、陽極ローラーに硫酸鉛、酸化鉛
をポリピロールと共に共析出させた。この際、酸化鉛は
導電性ポリマーが電解酸化により形成させるため、共析
の際、硫酸鉛の一部が電解酸化され酸化鉛に変化するた
め、導電性高分子の中に混在するようになる。こうして
作成した硫酸鉛酸化鉛の表面がポリピロールと接触した
ものを純水で洗浄後、乾燥させ、該物質にフッ素樹脂バ
インダーを5重量%と硫酸を適量加え、スラリー状にし
た。
When direct current electrolysis is performed in the above apparatus at a current density of several mA / cm 2 , the electrode active material is co-precipitated with the conductive polymer on the stainless steel roller surface of the anode. The conductive polymer co-precipitated with the electrode active material was removed from the roller with a stainless steel blade 8 to obtain a lead battery electrode active material. After washing and drying the obtained electrode active material, in order to further improve the conductivity between the active materials, a binder made of a fluororesin was added to form a slurry, and the lead grid was filled with these slurries to form an electrode. . Two electrodes (thickness 1 mm, size 30 mm × 50 mm) prepared were used, glass fiber having a thickness of 150 μm was interposed therebetween, and a sulfuric acid electrolytic solution was injected to prepare a lead battery. The details of the present invention are further described in the examples. (Example 1) Lead sulfate was used as the active material of the present invention, and the active material was dispersed in an acidic aqueous solution using 0.05 M sodium p-toluenesulfonate as a supporting electrolyte to further form a conductive polymer. An electrolytic solution was prepared by adding 0.5 M-pyrrole as a monomer, the electrolytic solution was filled in the electrolytic cell shown in FIG. 1, and the electrolytic solution was stirred at 3.5 V.
DC constant voltage was applied, and lead sulfate and lead oxide were co-precipitated with polypyrrole on the anode roller. At this time, since lead oxide is formed by electrolytic oxidation of the conductive polymer, a part of lead sulfate is electrolytically oxidized and converted to lead oxide during co-deposition, so that it is mixed in the conductive polymer. . The thus prepared lead sulfate lead oxide having its surface in contact with polypyrrole was washed with pure water and dried, and 5 wt% of a fluororesin binder and an appropriate amount of sulfuric acid were added to the substance to form a slurry.

【0013】作成したスラリーをエクスパンド鉛網に塗
布し、厚さ1mm、30mm×50mmの電極を作成し
た。ここで用いたエクスパンド鉛網の表面には予めポリ
ピロールを硫酸酸性電解重合溶液より電解析出させたも
のを用いた。
The prepared slurry was applied to an expanded lead net to prepare an electrode having a thickness of 1 mm and a size of 30 mm × 50 mm. The surface of the expanded lead net used here was prepared by electrolytically depositing polypyrrole from a sulfuric acid-acidic electrolytic polymerization solution.

【0014】以上作成した電極2枚の間に厚さ150μ
mのガラス繊維をセパレータとして介在させ、これらを
プラスチック電槽に挿入し、硫酸電解液を充填し、鉛電
池を作成した。得られた鉛電池の充放電性能を図2aに
示した。鉛電池の充放電試験は、室温のもと放電電流と
して0.5A/cm2 で1.70Vまで放電を行い、充
電電圧として2.45Vで4時間の定電圧充電の繰り返
しを行った。図中縦軸は充填活物質の利用効率を示した
もので、横軸は充放電サイクル寿命を示したものであ
る。図から明白なように本発明の鉛電池の活物質利用効
率が83%という高い値を示し、また充放電サイクル寿
命として1000サイクルを経過しても殆ど変化が無い
ことが判明した。
A thickness of 150 μ is provided between the two electrodes prepared above.
A glass fiber of m was interposed as a separator, these were inserted into a plastic battery case, and a sulfuric acid electrolytic solution was filled therein to prepare a lead battery. The charge / discharge performance of the obtained lead battery is shown in FIG. 2a. In the charge / discharge test of the lead battery, the discharge current was 0.5 A / cm 2 at room temperature to 1.70 V, and the constant voltage charge was 2.45 V for 4 hours. In the figure, the vertical axis represents the utilization efficiency of the filling active material, and the horizontal axis represents the charge / discharge cycle life. As is clear from the figure, the utilization efficiency of the active material of the lead battery of the present invention was as high as 83%, and it was found that there was almost no change even after 1000 cycles of charge / discharge cycle life.

【0015】図2中には、本発明の電池についての性能
を従来の鉛電池と対比させるため、従来構成の鉛電池の
充放電性能を○印にて併記した。明らかに、本発明の鉛
電池が著しく性能向上していることが明白となってい
る。 (実施例2)本実施例では、支持電解質として実施例1
で使用した0.05M−パラトルエンスルホン酸ナトリ
ウムに代えて3M−硫酸を使用した以外は実施例1と全
く同様にして鉛電池を作成した。
In FIG. 2, in order to compare the performance of the battery of the present invention with that of the conventional lead battery, the charging / discharging performance of the lead battery having the conventional structure is also indicated by a circle. Clearly, it is clear that the lead-acid battery of the present invention has significantly improved performance. (Example 2) In this example, Example 1 was used as a supporting electrolyte.
A lead battery was prepared in exactly the same manner as in Example 1 except that 3M-sulfuric acid was used instead of the 0.05M-paratoluenesulfonate sodium used in.

【0016】作成した電池の性能を実施例1と同様の方
法で評価した結果を図2bに示した。実施例1の鉛電池
に比べ、充放電性能がはるかに向上し、1500サイク
ルを経過しても殆ど劣化が見られなかった。 (実施例3)本実施例では、支持電解質として0.3M
−トリフロロパラトルエンスルホン酸ナトリウムを使用
した以外は実施例1と全く同様にして鉛電池を作成し
た。
The results of evaluating the performance of the prepared battery in the same manner as in Example 1 are shown in FIG. 2b. Compared to the lead battery of Example 1, the charging / discharging performance was much improved and almost no deterioration was observed even after 1500 cycles. (Example 3) In this example, 0.3 M was used as a supporting electrolyte.
-A lead battery was prepared in exactly the same manner as in Example 1 except that sodium trifluoroparatoluenesulfonate was used.

【0017】作成した電池の性能を実施例1と同様の方
法で評価した結果、実施例1の鉛電池と殆ど同様の結果
を示した。 (実施例4)実施例1では、0.05M−パラトルエン
スルホン酸ナトリウムを支持電解質とし、これに硫酸
鉛、ピロールを加えた水系電解液を使用したが、本実施
例では0.7M−ホウフッ化リチウムをジメチルホルム
アミド(以下DMFと略記する)に溶解させた溶液に
0.2M−ピロールを加え、更にこれに硫酸鉛を分散さ
せたものを用い、電極活物質を電解酸化析出させた。析
出させた電極活物質を用い、実施例1と同様に鉛電池を
作成した。
The performance of the prepared battery was evaluated by the same method as in Example 1, and as a result, the result was almost the same as that of the lead battery in Example 1. (Example 4) In Example 1, 0.05 M-sodium paratoluenesulfonate was used as a supporting electrolyte, and an aqueous electrolytic solution prepared by adding lead sulfate and pyrrole to this was used, but in this Example, 0.7 M-borofluoride was used. 0.2M-pyrrole was added to a solution prepared by dissolving lithium iodide in dimethylformamide (hereinafter abbreviated as DMF), and lead sulfate was dispersed in the solution to electrolytically deposit an electrode active material by electrolytic oxidation. Using the deposited electrode active material, a lead battery was prepared in the same manner as in Example 1.

【0018】作成した電池の性能を実施例1と同様の方
法で評価した結果を図2cに示した。
The performance of the prepared battery was evaluated in the same manner as in Example 1 and the results are shown in FIG. 2c.

【0019】実施例1の鉛電池に比べ充放電性能が劣る
ことが判明した。これは導電性高分子に挿入されている
陰イオンとしてBF4 が存在するため、鉛電池の硫酸電
解液中で鉛が該イオンによって錯体を形成しやすく、そ
のため鉛が電解液中へ溶出するためと思われる。 (実施例5)本実施例では、支持電解質として実施例4
で使用した0.7M−ホウフッ化リチウムの代わりに過
塩素酸リチウムをDMFに溶解させた以外は実施例4と
同様に鉛電池を作成した。
It was found that the charge and discharge performance was inferior to that of the lead battery of Example 1. This is because BF 4 exists as an anion inserted in the conductive polymer, so that lead easily forms a complex by the ion in the sulfuric acid electrolyte of the lead battery, and thus lead is eluted into the electrolyte. I think that the. (Example 5) In this example, Example 4 was used as a supporting electrolyte.
A lead battery was prepared in the same manner as in Example 4 except that lithium perchlorate was dissolved in DMF instead of the 0.7 M-lithium borofluoride used in.

【0020】作成した電池の性能を実施例1と同様の方
法で評価した結果を図2dに示した。
The performance of the prepared battery was evaluated in the same manner as in Example 1 and the results are shown in FIG. 2d.

【0021】実施例1の鉛電池に比べ、充放電性能がは
るかに劣るが従来電池より優れた性能を示すことが判明
した。これは導電性高分子に挿入されている陰イオンと
してClO4 が存在するため、鉛電池の硫酸電解液中で
鉛が該イオンによってBF4~より更に錯体を形成しやす
く、そのため鉛が電解液中へ溶出するためと思われる。 (実施例6)本実施例では、導電性高分子として実施例
1で使用したピロールに代えてアニリンを使用した以外
は実施例1と同様に鉛電池を作成した。
It was found that the charge / discharge performance was far inferior to that of the lead battery of Example 1, but the performance was superior to the conventional battery. This is because ClO 4 is present as an anion inserted in the conductive polymer, so that lead is more likely to form a complex than BF 4 ~ in the sulfuric acid electrolytic solution of a lead battery due to the ion, and therefore lead is dissolved in the electrolytic solution. It seems that it is eluted into the inside. (Example 6) In this example, a lead battery was prepared in the same manner as in Example 1 except that aniline was used as the conductive polymer instead of the pyrrole used in Example 1.

【0022】作成した電池の性能を実施例1と同様の方
法で評価した結果、殆ど実施例1と同様の結果を得た。 (実施例7)本実施例では、導電性高分子として実施例
1で使用したピロールに代えてチオフェンを使用した以
外は実施例1と同様に鉛電池を作成した。
The performance of the prepared battery was evaluated in the same manner as in Example 1, and almost the same results as in Example 1 were obtained. (Example 7) In this example, a lead battery was produced in the same manner as in Example 1 except that thiophene was used as the conductive polymer instead of the pyrrole used in Example 1.

【0023】作成した電池の性能を実施例1と同様の方
法で評価した結果、殆ど実施例1と同様の結果を得た。 (実施例8)本実施例では、導電性高分子として実施例
1で使用したピロールに代えて3−メチルチオフェンを
使用した以外は実施例1と同様に鉛電池を作成した。
The performance of the prepared battery was evaluated in the same manner as in Example 1, and almost the same results as in Example 1 were obtained. (Example 8) In this example, a lead battery was produced in the same manner as in Example 1 except that 3-methylthiophene was used as the conductive polymer in place of the pyrrole used in Example 1.

【0024】作成した電池の性能を実施例1と同様の方
法で評価した結果、殆ど実施例1と同様の結果を得た。 (実施例9)本実施例では、導電性高分子として実施例
1で使用したピロールに代えて2、2’チオフェンを使
用した以外は実施例1と同様に鉛電池を作成した。
The performance of the prepared battery was evaluated in the same manner as in Example 1, and almost the same results as in Example 1 were obtained. (Example 9) In this example, a lead battery was produced in the same manner as in Example 1 except that 2,2'thiophene was used as the conductive polymer instead of the pyrrole used in Example 1.

【0025】作成した電池の性能を実施例1と同様の方
法で評価した結果、殆ど実施例1と同様の結果を得た。 (実施例10)本実施例では、導電性高分子として実施
例1で使用したピロールに代えてα・ターチェニルを使
用した以外は実施例1と同様に鉛電池を作成した。
As a result of evaluating the performance of the prepared battery in the same manner as in Example 1, almost the same results as in Example 1 were obtained. (Example 10) In this example, a lead battery was produced in the same manner as in Example 1 except that α-tercenyl was used as the conductive polymer in place of the pyrrole used in Example 1.

【0026】作成した電池の性能を実施例1と同様の方
法で評価した結果、殆ど実施例1と同様の結果を得た。 (実施例11)本実施例では電解重合溶液として0.5
M−アニリンと1.5M−硫酸を使用し、該溶液に酸化
鉛を分散させ電解酸化することにより、アニリンと酸化
鉛からなる電極活物質を析出させた。これを使用して実
施例1と同様に鉛電池を作成した。
As a result of evaluating the performance of the prepared battery in the same manner as in Example 1, almost the same results as in Example 1 were obtained. (Example 11) In this example, the electrolytic polymerization solution was 0.5
Using M-aniline and 1.5 M-sulfuric acid, lead oxide was dispersed in the solution and electrolytically oxidized to deposit an electrode active material composed of aniline and lead oxide. Using this, a lead battery was prepared in the same manner as in Example 1.

【0027】作成した電池の性能を実施例1と同様の方
法で評価した結果、殆ど実施例2と同様の結果を得た。 (実施例12)本実施例では、実施例1で導電性高分子
として使用したピロールに代わりジフェニルベンチジン
を使用し、ベンチジンポリマーと硫酸鉛、酸化鉛からな
る電極活物質を析出させた。これを使用して実施例1と
同様に鉛電池を作成した。
The performance of the prepared battery was evaluated in the same manner as in Example 1, and almost the same results as in Example 2 were obtained. Example 12 In this example, diphenylbenzidine was used in place of the pyrrole used as the conductive polymer in Example 1, and an electrode active material composed of benzidine polymer, lead sulfate and lead oxide was deposited. Using this, a lead battery was prepared in the same manner as in Example 1.

【0028】作成した電池の性能を実施例1と同様の方
法で評価した結果、電極インピーダンスが実施例1の鉛
電池に比べ約1桁大きく、急速充放電性能が劣ることが
判明した。しかし、充放電電流値を一桁下げて評価する
と殆ど実施例1と同様の結果を得た。 (実施例13)本実施例では、実施例4で導電性高分子
として使用したピロールに代わりアズレンを使用し、D
MFにホウフッ化リチウムを溶解させた溶液にアズレン
と硫酸鉛を加えて実施例4と同様に電極活物質を析出さ
せた。これを使用して実施例1と同様に鉛電池を作成し
た。
As a result of evaluating the performance of the prepared battery in the same manner as in Example 1, it was found that the electrode impedance was about one digit higher than that of the lead battery of Example 1, and the rapid charge / discharge performance was inferior. However, when the charge / discharge current value was lowered by one digit and evaluated, almost the same results as in Example 1 were obtained. (Example 13) In this example, azulene was used in place of the pyrrole used as the conductive polymer in Example 4, and D
Azulene and lead sulfate were added to a solution of lithium borofluoride dissolved in MF to deposit an electrode active material in the same manner as in Example 4. Using this, a lead battery was prepared in the same manner as in Example 1.

【0029】作成した電池の性能を実施例1と同様の方
法で評価した結果、殆ど実施例1と同様の結果を得た。 (実施例14)本実施例では、支持電解質として実施例
1で使用した0.05M−パラトルエンスルホン酸ナト
リウムに代えて繊維状カーボンを使用した以外は実施例
1と全く同様に鉛電池を作成した。
The performance of the prepared battery was evaluated in the same manner as in Example 1, and almost the same results as in Example 1 were obtained. (Example 14) In this example, a lead battery was prepared in exactly the same manner as in Example 1 except that fibrous carbon was used as the supporting electrolyte in place of the 0.05 M sodium p-toluenesulfonate used in Example 1. did.

【0030】作成した電池の性能を実施例1と同様の方
法で評価した結果、作成した電池の内部インピーダンス
が実施例1の鉛電池と比較して約1桁低くなり、充放電
電流密度を改善させうる電池となっていた。なお、充放
電サイクル寿命は殆ど実施例1と同様の結果を得た。 (実施例15)実施例1では硫酸鉛、酸化鉛、ポリピロ
ールを主体とする活物質を用いてスラリーを作成し、該
スラリーをエクスパンド鉛網からなるグリッドに塗布し
電極とし鉛電池を作成したが、本実施例ではグリッド芯
材料としてエクスパンドチタン網に鉛メッキした後、更
に該エクスパンド網の表面をポリピロールで被覆したも
のを用いた以外は、実施例1と同様に鉛電池を作成し
た。
The performance of the prepared battery was evaluated in the same manner as in Example 1. As a result, the internal impedance of the prepared battery was about one digit lower than that of the lead battery of Example 1, and the charge / discharge current density was improved. It was a rechargeable battery. The charge / discharge cycle life was almost the same as in Example 1. (Example 15) In Example 1, a slurry was prepared using an active material mainly containing lead sulfate, lead oxide and polypyrrole, and the slurry was applied to a grid composed of expanded lead nets to prepare a lead battery as an electrode. In this example, a lead battery was prepared in the same manner as in Example 1 except that an expanded titanium mesh was lead-plated as a grid core material and then the surface of the expanded mesh was coated with polypyrrole.

【0031】作成した電池の性能を実施例1と同様の方
法で評価した結果、殆ど実施例1と同様の結果を得た。
The performance of the prepared battery was evaluated in the same manner as in Example 1, and almost the same results as in Example 1 were obtained.

【0032】本発明の効果を調べるために、鉛メッキし
たエクスパンドチタン網をポリピロールで被覆しないグ
リッドを用いた鉛電池と、エクスパンドチタン網をその
ままグリッドとした鉛電池を作成し、実施例1と同様の
方法で充放電試験を行った。
In order to investigate the effect of the present invention, a lead battery using a grid in which a lead-plated expanded titanium mesh is not covered with polypyrrole and a lead battery using the expanded titanium mesh as a grid were prepared, and the same as in Example 1. The charging / discharging test was performed by the method.

【0033】結果は、ポリピロールで被覆しない鉛エク
スパンドチタン網で構成した鉛電池では65サイクル辺
りで放電容量および活物質利用効率が急激に低下した。
一方、エクスパンドチタン網をそのまま用いた鉛電池で
は、電池を充電した際、陽極側のチタン表面に酸化物が
形成され、その結果、電池インピーダンスが増大し充放
電を行うことが困難となることが判明した。
As a result, in the lead battery composed of the lead expanded titanium mesh not covered with polypyrrole, the discharge capacity and the active material utilization efficiency drastically decreased around 65 cycles.
On the other hand, in a lead battery using the expanded titanium mesh as it is, when the battery is charged, an oxide is formed on the titanium surface on the anode side, and as a result, the battery impedance increases and it becomes difficult to charge and discharge. found.

【0034】以上の結果、本発明の電池ではチタンをグ
リッドの芯材として使用可能となるため、従来の電池に
比較して重量が約30%軽減される。 (実施例16)本実施例ではグリッド芯材料としてエク
スパンドタンタル網を使用し、該エクスパンド網に鉛メ
ッキした後、更にその表面をポリピロールで被覆したも
のを用いた以外は、実施例15と同様に鉛電池を作成し
た。
As a result, in the battery of the present invention, titanium can be used as the core material of the grid, so that the weight is reduced by about 30% as compared with the conventional battery. (Example 16) This example is the same as Example 15 except that an expanded tantalum net was used as the grid core material, the expanded net was lead-plated, and then the surface thereof was coated with polypyrrole. Created a lead battery.

【0035】作成した電池の性能を実施例15と同様の
方法で評価した結果、殆ど実施例15と同様の結果を得
た。
As a result of evaluating the performance of the prepared battery by the same method as in Example 15, almost the same results as in Example 15 were obtained.

【0036】本発明の効果を調べるために、ポリピロー
ルで被覆しないグリッドを用いた鉛電池と、エクスパン
ドタンタル網をそのままグリッドとした鉛電池を作成
し、実施例15と同様の方法で充放電試験を行った。
In order to investigate the effect of the present invention, a lead battery using a grid not covered with polypyrrole and a lead battery using the expanded tantalum net as a grid were prepared and subjected to a charge / discharge test in the same manner as in Example 15. went.

【0037】結果は、ポリピロールで被覆しない鉛エク
スパンドタンタル網で構成した鉛電池では60サイクル
辺りで放電容量および活物質利用効率が急激に低下し
た。一方、エクスパンドタンタル網をそのまま用いた鉛
電池では、電池を充電した際、陽極側のタンタル表面に
酸化物が形成され、その結果、電池インピーダンスが増
大し充放電を行うことが困難となることが判明した。
As a result, the discharge capacity and active material utilization efficiency of the lead battery composed of the lead expanded tantalum net not covered with polypyrrole decreased sharply after about 60 cycles. On the other hand, in a lead battery using the expanded tantalum net as it is, when the battery is charged, an oxide is formed on the tantalum surface on the anode side, and as a result, the battery impedance increases and it becomes difficult to perform charging and discharging. found.

【0038】以上の結果、本発明の電池ではタンタルを
グリッドの芯材として使用可能となるため、従来の電池
に比較して重量が約23%軽減される。 (実施例17)本実施例ではグリッド芯材料としてエク
スパンドモリブデン網を使用し、該エクスパンド網に鉛
メッキした後、更にその表面をポリピロールで被覆した
ものを用いた以外は、実施例15と同様に鉛電池を作成
した。
As a result, tantalum can be used as the core material of the grid in the battery of the present invention, so that the weight is reduced by about 23% as compared with the conventional battery. (Example 17) Similar to Example 15, except that an expanded molybdenum net was used as the grid core material, the expanded net was plated with lead, and the surface thereof was further coated with polypyrrole. Created a lead battery.

【0039】作成した電池の性能を実施例15と同様の
方法で評価した結果、殆ど実施例15と同様の結果を得
た。
The performance of the prepared battery was evaluated in the same manner as in Example 15. As a result, almost the same results as in Example 15 were obtained.

【0040】本発明の効果を調べるために、ポリピロー
ルで被覆しないグリッドを用いた鉛電池と、エクスパン
ドモリブデン網をそのままグリッドとした鉛電池を作成
し、実施例15と同様の方法で充放電試験を行った。
In order to investigate the effect of the present invention, a lead battery using a grid not covered with polypyrrole and a lead battery using the expanded molybdenum net as the grid were prepared, and a charge / discharge test was conducted in the same manner as in Example 15. went.

【0041】結果は、ポリピロールで被覆しない鉛エク
スパンドモリブデン網で構成した鉛電池では60サイク
ル辺りで放電容量および活物質利用効率が急激に低下し
た。一方、エクスパンドモリブデン網をそのまま用いた
鉛電池では、電池を充電した際、陽極側のモリブデン表
面に酸化物が形成され、その結果、電池インピーダンス
が増大し充放電を行うことが困難となることが判明し
た。
As a result, in the lead battery constituted by the lead expanded molybdenum net not covered with polypyrrole, the discharge capacity and the active material utilization efficiency drastically decreased after about 60 cycles. On the other hand, in a lead battery using the expanded molybdenum net as it is, when the battery is charged, an oxide is formed on the surface of molybdenum on the anode side, and as a result, the battery impedance increases and it becomes difficult to perform charging and discharging. found.

【0042】以上の結果、本発明の電池ではモリブデン
薄板をグリッドの芯材として使用可能となるため、従来
の電池に比較して重量が約23%軽減される。 (実施例18)本実施例ではグリッド芯材料としてエク
スパンドタングステン網を使用し、該エクスパンド網に
鉛メッキした後、更にその表面をポリピロールで被覆し
たものを用いた以外は、実施例15と同様に鉛電池を作
成した。
As a result, in the battery of the present invention, the molybdenum thin plate can be used as the core material of the grid, so that the weight is reduced by about 23% as compared with the conventional battery. (Example 18) This example was the same as Example 15 except that an expanded tungsten mesh was used as the grid core material, the expanded mesh was lead-plated, and then the surface thereof was coated with polypyrrole. Created a lead battery.

【0043】作成した電池の性能を実施例15と同様の
方法で評価した結果、殆ど実施例15と同様の結果を得
た。
The performance of the prepared battery was evaluated in the same manner as in Example 15. As a result, almost the same result as in Example 15 was obtained.

【0044】本発明の効果を調べるために、ポリピロー
ルで被覆しないグリッドを用いた鉛電池と、エクスパン
ドタングステン網をそのままグリッドとした鉛電池を作
成し、実施例15と同様の方法で充放電試験を行った。
In order to investigate the effect of the present invention, a lead battery using a grid not covered with polypyrrole and a lead battery using the expanded tungsten net as the grid were prepared, and a charge / discharge test was conducted in the same manner as in Example 15. went.

【0045】結果は、ポリピロールで被覆しない鉛エク
スパンドタングステン網で構成した鉛電池では60サイ
クル辺りで放電容量および活物質利用効率が急激に低下
した。一方、エクスパンドタングステン網をそのまま用
いた鉛電池では、電池を充電した際、陽極側のタングス
テン表面に酸化物が形成され、その結果、電池インピー
ダンスが増大し充放電を行うことが困難となることが判
明した。
As a result, in the lead battery composed of the lead expanded tungsten mesh not covered with polypyrrole, the discharge capacity and the active material utilization efficiency drastically decreased around 60 cycles. On the other hand, in a lead battery using the expanded tungsten mesh as it is, when the battery is charged, an oxide is formed on the tungsten surface on the anode side, and as a result, the battery impedance increases and it becomes difficult to charge and discharge. found.

【0046】以上の結果、本発明の電池ではタングステ
ン薄板をグリッドの芯材として使用可能となるため、従
来の電池に比較して重量が約25%軽減される。 (実施例19)本実施例ではグリッド芯材料としてエク
スパンドアルミ網を使用し、該エクスパンド網に鉛メッ
キした後、更にその表面をポリピロールで被覆したもの
を用いた以外は、実施例15と同様に鉛電池を作成し
た。
As a result, in the battery of the present invention, since the tungsten thin plate can be used as the core material of the grid, the weight is reduced by about 25% as compared with the conventional battery. (Example 19) This example was the same as Example 15 except that an expanded aluminum net was used as the grid core material, the expanded net was lead-plated, and the surface thereof was further coated with polypyrrole. Created a lead battery.

【0047】作成した電池の性能を実施例15と同様の
方法で評価した結果、充放電サイクル試験では、約46
サイクル程度の寿命は得られたが、電池の保存時に芯材
のアルミが部分的に腐蝕し、実用的でないことが判明し
た。
The performance of the battery thus prepared was evaluated in the same manner as in Example 15. As a result, in the charge / discharge cycle test, about 46
Although a cycle life was obtained, it was found that the aluminum of the core material was partially corroded during storage of the battery, which was not practical.

【0048】[0048]

【発明の効果】本発明は、従来使用される鉛電池の正負
極活物質表面を種々のイオンを可逆的に高分子内にとり
こむ導電性高分子で被覆したものを電極活物質としてい
るため、該活物質を用い電池を構成すると、電池充放電
効率やサイクル寿命に優れた鉛電池を構成することが可
能となる。これは従来、鉛電池の電極活物質の放電に於
いて、正極では酸化鉛が硫酸鉛に、また負極では鉛が硫
酸鉛に変化し、その際生成する硫酸鉛が絶縁物であるこ
とから、電池を完全放電させると活物質間の電子電導性
が阻害され充電がうまく進まなくなる。この事が実際の
鉛電池において活物質間の電子導電性を保持させる必要
から、活物質利用率が約30%と低い値となっていた。
According to the present invention, since the surface of the positive and negative electrode active material of the conventional lead battery used is coated with a conductive polymer that reversibly incorporates various ions into the polymer, the electrode active material is When a battery is constructed by using the active material, it becomes possible to construct a lead battery excellent in battery charging / discharging efficiency and cycle life. This is because conventionally, in the discharge of the electrode active material of a lead battery, lead oxide is changed to lead sulfate in the positive electrode and lead is changed to lead sulfate in the negative electrode, and the lead sulfate generated at that time is an insulator, When the battery is completely discharged, the electron conductivity between the active materials is obstructed and charging does not proceed properly. This is because it is necessary to maintain electronic conductivity between active materials in an actual lead battery, and thus the active material utilization rate is as low as about 30%.

【0049】本発明の鉛電池では酸化鉛や鉛の表面がS
4 2- を可逆的に出し入れする導電性高分子で覆われて
いるため、電池の放電に際しては正極活物質の還元と同
時に、表面意存在する導電性高分子が電子を受け取り、
高分子内に補足されたSO4が還元を受け、SO4 2-
生成し、できたSO4 2- と鉛が反応し硫酸鉛となる。一
方陰極では鉛が酸化を受け硫酸鉛に変化する。その硫酸
イオンは活物質表面に存在する導電性高分子から受け取
り、高分子は硫酸イオンを電解液から補足する。この電
池の充電時にはこの反応とは逆の反応が起こると考えら
れる。このように、導電性高分子は電解質の役割をもっ
ているため、電池の充放電時における活物質の体積変化
が極めて少ないものとなり、充放電サイクル寿命を向上
させるものとなる。
In the lead battery of the present invention, the surface of lead oxide or lead is S
Since O 4 2− is covered with a conductive polymer that reversibly takes in and out, at the time of discharging the battery, the conductive polymer existing on the surface receives electrons at the same time as the reduction of the positive electrode active material.
Receiving the SO 4 supplemented in the polymer is reduced, SO 4 2-generates, SO 4 2-and lead that could be reacted with lead sulfate. On the other hand, at the cathode, lead is oxidized to lead sulfate. The sulfate ion is received from the conductive polymer existing on the surface of the active material, and the polymer captures the sulfate ion from the electrolytic solution. It is considered that the opposite reaction occurs when the battery is charged. As described above, since the conductive polymer has a role of an electrolyte, the volume change of the active material during charge / discharge of the battery is extremely small, and the charge / discharge cycle life is improved.

【0050】また、陰イオンを補足した高分子は電子電
導性が向上する性質があり、この現象により、本発明の
電池では酸化鉛、鉛などの粒子間の電導性が向上し、そ
の結果、活物質利用効率の向上が計れ、多くの実施例で
は、80%以上という高い利用効率が得られる。更に微
細な活物質までが直接反応に関与し、真の電極表面積が
増大することになるため、充放電時における充放電電流
密度が下がり、充放電サイクル寿命も改良されるという
効果が現れる。
Further, the polymer supplemented with anions has a property of improving electron conductivity, and this phenomenon improves the conductivity between particles of lead oxide, lead, etc. in the battery of the present invention. The utilization efficiency of the active material can be improved, and in many examples, the utilization efficiency as high as 80% or more can be obtained. Further, even the finer active material is directly involved in the reaction and the true electrode surface area is increased, so that the charge / discharge current density during charge / discharge is reduced and the charge / discharge cycle life is improved.

【0051】また、鉛からなる電極グリッドの表面も導
電性高分子で覆うことにより、その表面が放電により絶
縁性の硫酸鉛で覆われる事がなく、その表面の電子導電
性が保持され、活物質の電気化学反応が円滑に進むよう
になる。さらにこのグリッド材料を鉛からチタン、タン
タル、タングステン、モリブデン等の弁作用金属を用
い、これらの金属表面を鉛コートし、更にその表面を導
電性高分子で覆う事により、集電体のグリッドの軽量化
が可能となる。一般に弁作用金属は酸化により、その表
面には不導体化被膜が形成され、電流が流れなくなる。
この不導体化を防ぐためにその表面を鉛で覆っておく
と、鉛の酸化反応のみが進行し、弁作用金属は単に電子
電動体としてのみの作用を示す。中心のグリッド材が軽
量で強度が強ければ、使用する量も極端に少なくて良い
ことになる。しかし、表面の鉛は、そのままでは電気化
学反応に関与し、充放電の繰り返しにより表面が微細化
し硫酸鉛となるが、その表面が導電性高分子で覆われて
いる結果、この微細化の進行が著しく阻止され、実用に
供しても支障がなくなるものとなる。
Also, by covering the surface of the electrode grid made of lead with the conductive polymer, the surface is not covered with the insulating lead sulfate due to discharge, and the electronic conductivity of the surface is maintained and active. The electrochemical reaction of the substance will proceed smoothly. Furthermore, by using a valve action metal such as lead, titanium, tantalum, tungsten, molybdenum, etc. for this grid material, and coating the surface of these metals with lead, and further covering the surface with a conductive polymer, the grid of the current collector is Weight reduction is possible. In general, a valve metal is oxidized to form a non-conducting film on the surface thereof, so that no current flows.
If the surface is covered with lead in order to prevent this non-conductivity, only the oxidation reaction of lead proceeds, and the valve metal acts only as an electronic motor. If the central grid material is lightweight and strong, the amount used will be extremely small. However, the lead on the surface is involved in the electrochemical reaction as it is, and the surface becomes finer and becomes lead sulfate by repeated charging and discharging, but as a result of the surface being covered with the conductive polymer, the progress of this fineness is advanced. Will be significantly prevented, and the problem will be eliminated even if it is put to practical use.

【0052】以上の効果は、特に電解重合により作成し
た導電性高分子にのみ特有なものではなく、化学的に重
合せしめて作成した導電性高分子を用いても同様な効果
が期待されることは当然のことであり、本発明の範疇に
属することは当然である。
The above effects are not particularly peculiar only to the conductive polymer prepared by electrolytic polymerization, and similar effects are expected even if a conductive polymer prepared by chemical polymerization is used. Is a matter of course, and of course belongs to the scope of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の活物質を作成するための電解合成用装
置概略図面
FIG. 1 is a schematic drawing of an apparatus for electrolytic synthesis for producing an active material of the present invention.

【図2】電池充放電特性図[Figure 2] Battery charge / discharge characteristic diagram

【符号の説明】[Explanation of symbols]

1 電解槽 2 電解重合溶液 3 陰極 4 陽極 1 Electrolyzer 2 Electrolytic Polymerization Solution 3 Cathode 4 Anode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】酸化鉛を主体とする活物質からなる陽極と
鉛を主体とする活物質からなる陰極とを、硫酸よりなる
電解液に接してなる鉛電池において、前記2つの電極の
うち少なくとも一方の活物質を微粒子状活物質で構成す
るとともに、この構成活物質の少なくとも一部の微粒子
が導電性高分子で被覆されていることを特徴とする鉛電
池。
1. A lead battery in which an anode made of an active material mainly composed of lead oxide and a cathode made of an active material mainly composed of lead are in contact with an electrolytic solution composed of sulfuric acid, and at least one of the two electrodes is provided. A lead battery, wherein one active material is composed of a particulate active material, and at least a part of the particles of the constituent active material are coated with a conductive polymer.
【請求項2】前記導電性高分子が、電解重合法により形
成されたものである請求項1の鉛電池。
2. The lead battery according to claim 1, wherein the conductive polymer is formed by an electrolytic polymerization method.
【請求項3】前記導電性高分子が、硫酸および硫酸塩を
電解質とする電解重合溶液から析出させたものである請
求項2の鉛電池。
3. The lead battery according to claim 2, wherein the conductive polymer is deposited from an electrolytic polymerization solution using sulfuric acid and a sulfate as an electrolyte.
【請求項4】前記2つの電極の活物質の電気的接続と保
持を行うグリッドを有し、これらのグリッドのうち、少
なくとも一方が、金属で被覆された弁作用金属を芯材と
し、かつその表面が導電性高分子で被覆されている請求
項1ないし3のいずれかの鉛電池。
4. A grid for electrically connecting and holding active materials of the two electrodes, at least one of these grids having a valve-acting metal coated with a metal as a core material, and The lead battery according to claim 1, wherein the surface is coated with a conductive polymer.
【請求項5】前記グリッドが、チタン、タンタル、モリ
ブデン、タングステンの群からなる弁作用金属の少なく
とも1種から構成されている請求項4の鉛電池。
5. The lead battery according to claim 4, wherein the grid is made of at least one valve metal selected from the group consisting of titanium, tantalum, molybdenum and tungsten.
JP4228150A 1992-08-27 1992-08-27 Lead-acid battery Pending JPH0676821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4228150A JPH0676821A (en) 1992-08-27 1992-08-27 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4228150A JPH0676821A (en) 1992-08-27 1992-08-27 Lead-acid battery

Publications (1)

Publication Number Publication Date
JPH0676821A true JPH0676821A (en) 1994-03-18

Family

ID=16872013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4228150A Pending JPH0676821A (en) 1992-08-27 1992-08-27 Lead-acid battery

Country Status (1)

Country Link
JP (1) JPH0676821A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1261049A1 (en) * 2001-05-24 2002-11-27 Delphi Technologies, Inc. Electrode grid for lead acid batteries coated with a conductive polymeric matrix and method of manufacture
JP2008527624A (en) * 2004-12-31 2008-07-24 カウンシル オブ サイエンティフィック アンド インダストリアル リサーチ Grids for lead acid batteries coated with conducting polymers.
JP2009037829A (en) * 2007-08-01 2009-02-19 Akita Univ Positive electrode for lead-acid storage battery, lead-acid storage battery, and method of manufacturing positive electrode for lead-acid storage battery
WO2015194497A1 (en) * 2014-06-20 2015-12-23 住友金属鉱山株式会社 Covered lithium-nickel composite oxide particles, and method for manufacturing covered lithium-nickel composite oxide particles
JP2016009524A (en) * 2014-06-20 2016-01-18 住友金属鉱山株式会社 Coated lithium-nickel complex oxide particle and method for manufacturing coated lithium-nickel complex oxide particles
JP2016009523A (en) * 2014-06-20 2016-01-18 住友金属鉱山株式会社 Coated lithium-nickel complex oxide particle and method for manufacturing coated lithium-nickel complex oxide particles

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1261049A1 (en) * 2001-05-24 2002-11-27 Delphi Technologies, Inc. Electrode grid for lead acid batteries coated with a conductive polymeric matrix and method of manufacture
US6617071B2 (en) * 2001-05-24 2003-09-09 Delphi Technologies, Inc. Active material for high power and high energy lead acid batteries and method of manufacture
JP2008527624A (en) * 2004-12-31 2008-07-24 カウンシル オブ サイエンティフィック アンド インダストリアル リサーチ Grids for lead acid batteries coated with conducting polymers.
KR101272879B1 (en) * 2004-12-31 2013-06-11 카운슬 오브 사이언티픽 앤드 인더스트리얼 리서치 Grid for lead-acid battery with electroconductive polymer coating
JP2009037829A (en) * 2007-08-01 2009-02-19 Akita Univ Positive electrode for lead-acid storage battery, lead-acid storage battery, and method of manufacturing positive electrode for lead-acid storage battery
WO2015194497A1 (en) * 2014-06-20 2015-12-23 住友金属鉱山株式会社 Covered lithium-nickel composite oxide particles, and method for manufacturing covered lithium-nickel composite oxide particles
JP2016009524A (en) * 2014-06-20 2016-01-18 住友金属鉱山株式会社 Coated lithium-nickel complex oxide particle and method for manufacturing coated lithium-nickel complex oxide particles
JP2016009523A (en) * 2014-06-20 2016-01-18 住友金属鉱山株式会社 Coated lithium-nickel complex oxide particle and method for manufacturing coated lithium-nickel complex oxide particles
US10553860B2 (en) 2014-06-20 2020-02-04 Sumitomo Metal Mining Co., Ltd. Covered lithium-nickel composite oxide particles, and method for manufacturing covered lithium-nickel composite oxide particles

Similar Documents

Publication Publication Date Title
CN110649267B (en) Composite metal lithium cathode, preparation method and metal lithium battery
KR101758967B1 (en) Battery
CN110176591B (en) Aqueous zinc ion secondary battery and preparation method of anode based on organic electrode material
CN107735889B (en) Doped conductive oxides and improved electrochemical energy storage device plates based thereon
US5151162A (en) Rechargeable storage battery with electroactive organic polymer electrodes in polar solvent electrolyte
CN101764253A (en) Secondary aluminum battery and preparation method thereof
CN104766994A (en) Battery
CN108448115A (en) A kind of asymmetric skeleton structure of lithium metal battery cathode
CN106450423B (en) A kind of high specific energy integrated flexible electrode and preparation method thereof
Cheng et al. Ag coated 3D-Cu foam as a lithiophilic current collector for enabling Li 2 S-based anode-free batteries
CN106328950A (en) Positive electrode material and battery
JPH09265976A (en) Non-aqueous electrolytic secondary battery and its manufacture
CN113066990B (en) Preparation method and application of zinc negative electrode modified three-dimensional current collector
JPH0676821A (en) Lead-acid battery
CN105449294A (en) Battery
WO2016202276A1 (en) Anode material and battery
CN107910504B (en) Method for modifying positive plate of lead storage battery by polyaniline and rare earth together
CN107845778B (en) Method for modifying lead storage battery positive plate by polyaniline
CN213150817U (en) Copper current collector
JPH07105935A (en) Non-aqueous electrolyte secondary battery
CN103247776B (en) The preparation method of electrode composite material
JP2000173598A (en) Manufacture of electrode and battery
CN107403932B (en) Positive electrode for battery, method for preparing same, and battery having same
WO2020061677A1 (en) Aqueous zinc lithium-ion battery and method for making same
CN109301198A (en) A kind of array-supported zinc oxide combination electrode of nickel nano film and preparation method