JPH0674823A - Wave length calibration method for spectroscopic analyzer - Google Patents

Wave length calibration method for spectroscopic analyzer

Info

Publication number
JPH0674823A
JPH0674823A JP22812892A JP22812892A JPH0674823A JP H0674823 A JPH0674823 A JP H0674823A JP 22812892 A JP22812892 A JP 22812892A JP 22812892 A JP22812892 A JP 22812892A JP H0674823 A JPH0674823 A JP H0674823A
Authority
JP
Japan
Prior art keywords
calibration
light
wavelength
unit
wave length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22812892A
Other languages
Japanese (ja)
Inventor
Hitoshi Ishibashi
仁志 石橋
Masataka Shichiri
雅隆 七里
Susumu Uenaka
進 上中
Yasuo Tatsumi
保夫 辰己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP22812892A priority Critical patent/JPH0674823A/en
Publication of JPH0674823A publication Critical patent/JPH0674823A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To obtain a wave length calibration method for spectroscopic analyzer capable of working efficiently and easily in calibrating accompanied by on-site adjustment of the spectroscopic analyzer. CONSTITUTION:This wave length calibration method for a spectroscopic analyzer searches the correspondence between the element number at adjustment object unit and the wave length of received light in accordance with a standard unit with known correspondence between the element number of a plurality of elements provided to an dumb bell shape light receiving element 3 and the wave length of the received light. A filter for calibration 6 is prepared to obtain light beam for calibration having two peaks in measured wave length range by letting white light pass. The light beam for calibration is introduced in the standard unit and wave lengths at two peaks are obtained. Also, the light beam for calibration is introduced in the adjustment object unit to detect the element number for detecting the peak spectrum and obtain the correspondence between the element number in the adjustment object unit and the wave length.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、分光対象の光線束が入
射される凹面回折格子と、凹面回折格子より回折する回
折光を受光するアレイ型受光素子とを備えた分光分析計
に対して、アレイ型受光素子に備えられる複数の素子の
素子番号と受光光の波長との対応が既知である標準ユニ
ットに対応させて、調整対象のユニットに於ける素子番
号と受光光の波長との対応を求める分光分析計の波長校
正方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectroscopic analyzer provided with a concave diffraction grating on which a light beam to be dispersed is incident and an array type light receiving element for receiving diffracted light diffracted by the concave diffraction grating. , Correspondence between the element number and the wavelength of the received light in the unit to be adjusted in correspondence with the standard unit whose correspondence between the element numbers of the multiple elements provided in the array type light receiving element and the wavelength of the received light is known The present invention relates to a wavelength calibrating method for a spectrophotometer.

【0002】[0002]

【従来の技術】一般的な分光分析計は図1に示すような
構成になっており、アレイ型受光素子に入射される光の
波長は、各光学部品の特性と、各部品間の位置関係によ
って定まる。ここで、このアレイ型受光素子は数10μ
m幅の受光素子がアレイ状に並んでいるもので、凹面の
回折格子によって分光された光が、各波長毎に一個一個
の素子に焦点を結ぶよう設計され、且つ組み立て時に、
各部品間の位置調整を必要とする。ここで、各素子にど
の波長の光が入射しているかを知るには、波長が既知で
急峻なピークを有するスペクトルの光(例えばレーザー
光)を分析計に入射させ、そのピークが現れる素子番号
を用いて、素子番号と波長を対応づけていた。一方、複
数台製作の際は、各光学部品の位置を調整して、できる
だけ同じになるように合わせているが、10μmオーダ
の調整であり、完全に一致させるのは困難である。従っ
て、複数台の分光分析計においては、個々に素子番号と
これらの素子に受光される光の波長を求めておく必要が
あるとともに、従来、この種の分光分析計のアレイ型受
光素子の素子番号と受光光の波長との対応を求める場合
には、上述のレーザー光を使用する方法を、機台個々に
おこなう必要があった。
2. Description of the Related Art A general spectroscopic analyzer has a structure as shown in FIG. 1, and the wavelength of light incident on an array type light receiving element depends on the characteristics of each optical component and the positional relationship between each component. Determined by Here, this array type light receiving element is several tens of μm.
The m-width light receiving elements are arranged in an array, and the light dispersed by the concave diffraction grating is designed to focus on each element for each wavelength, and at the time of assembly,
Position adjustment between each part is required. Here, in order to know which wavelength of light is incident on each element, light of a spectrum having a known wavelength and a steep peak (for example, laser light) is incident on the analyzer, and the element number at which the peak appears Was used to associate the element number with the wavelength. On the other hand, when manufacturing a plurality of units, the positions of the respective optical components are adjusted so that the optical components are aligned as much as possible, but the alignment is on the order of 10 μm, and it is difficult to completely match them. Therefore, in a plurality of spectroscopic analyzers, it is necessary to individually obtain the element numbers and the wavelengths of light received by these elements, and conventionally, the element of the array type light receiving element of this type of spectroscopic analyzer is required. In order to find the correspondence between the number and the wavelength of the received light, it was necessary to carry out the above-mentioned method using the laser light for each machine.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな方法を採用する場合は、レーザー光の照射装置、制
御装置を備える必要があるため、調整に手間が掛かっ
た。また、レーザー光を使用する場合は、組み付け誤差
によりデータ差が大きく、素子内でのピークの判定が難
しかった。さらに、分光分析計を使用している現場(製
造工場以外の所)での調整には、この手法を用いるに
は、レーザー光照射装置を、一々、持参する必要があ
り、非常に作業能率が悪かった。従って、本発明の目的
は、分光分析計の現場での調整に伴う校正作業にあたっ
ても、作業を能率的にかつ確実におこなうことが可能で
あるとともに、作業が容易な分光分析計の波長校正方法
を得ることである。
However, when such a method is adopted, it is necessary to provide a laser beam irradiation device and a control device, and thus adjustment is time-consuming. Further, when using a laser beam, the data difference was large due to an assembly error, and it was difficult to determine the peak in the element. In addition, in order to use this method for adjustment at the site where the spectrophotometer is used (at a place other than the manufacturing plant), it is necessary to bring laser light irradiation devices one by one, which results in extremely high work efficiency. It was bad. Therefore, an object of the present invention is to enable a wavelength calibration method of a spectroscopic analyzer which is capable of performing the work efficiently and surely even in the calibration work accompanying the adjustment on the spot of the spectroscopic analyzer. Is to get.

【0004】[0004]

【課題を解決するための手段】この目的を達成するため
の本発明による分光分析計の波長校正方法の特徴手段
は、白色光を透過させることによって測定波長範囲内に
おいて2つのピーク部を備える校正用光線束を、得られ
る校正用フィルターを用意し、校正用光線束を標準ユニ
ットに入射させて、2つのピーク部の波長を求める準備
工程と、校正用光線束を調整対象のユニットに入光さ
せ、調整対象のユニットに於けるアレイ型受光素子の素
子番号と波長との対応関係を、準備工程で得られる2つ
のピーク部の波長と2つのピーク部の波長の光を受光す
る調整対象ユニットに備えられるアレイ型受光素子の2
つの素子番号とから求める校正工程とから構成されるこ
とにあり、その作用・効果は次の通りである。
To achieve this object, the characteristic means of the wavelength calibrating method for a spectroscopic analyzer according to the present invention is a calibration having two peaks in the measurement wavelength range by transmitting white light. Prepare the obtained light beam bundle for calibration, enter the light beam bundle for calibration into the standard unit and obtain the wavelengths of the two peaks, and enter the light beam bundle for calibration into the unit to be adjusted. Then, the corresponding relationship between the element number of the array type light receiving element and the wavelength in the unit to be adjusted is the unit to be adjusted for receiving the light of the two peak wavelengths and the light of the two peak wavelengths obtained in the preparation step. Of the array type light receiving elements provided in the
It consists of a calibration process that is obtained from one element number, and the operation and effect are as follows.

【0005】[0005]

【作用】つまり、準備工程においては、予め素子番号と
波長との対応が取れている標準ユニットに、校正用フィ
ルターを透過した白色光を入射させて、透過光に存する
2つのピークの波長が特定される。そして、分光分析計
の製造現場あるいは調整作業(各機器間の位置、姿勢調
整等)をおこなう現場においては、調整対象の分光分析
計に対して、光源として白色光源を使用し、前記の校正
用フィルターにこの白色光線を透過させて、透過光を分
光分析計に入光させて分光分析計における素子番号と受
光する光の波長との対応をとる。ここで、入射する光の
波長とこれらの波長を受ける素子番号が既知となるた
め、調整対象のユニットにおける素子番号と波長の対応
が容易にとれる。この作業をおこなう場合は、2つの波
長を個別にあるいは同時に発信するレーザー光源等を用
意する必要はなく、標準ユニットと調整対象のユニット
とにおいては、共に同一型式の機器(凹面回折格子、ア
レイ型受光素子等)が装備されるため、このピークの検
出状況(各素子に渡るピークの出現状況)は、調整対象
の分光分析計においても、よく標準ユニットの状態を代
表して再現される。従って、判別が容易となる。
That is, in the preparation process, the white light transmitted through the calibration filter is made incident on the standard unit in which the element number and the wavelength are associated beforehand, and the wavelengths of the two peaks in the transmitted light are specified. To be done. At the manufacturing site of the spectroscopic analyzer or the site where adjustment work (position, posture adjustment between each device, etc.) is performed, a white light source is used as the light source for the spectroscopic analyzer to be adjusted, and This white light is transmitted through the filter, the transmitted light is made incident on the spectroscopic analyzer, and the element number in the spectroscopic analyzer is made to correspond to the wavelength of the received light. Here, since the wavelengths of the incident light and the element numbers that receive these wavelengths are known, the correspondence between the element numbers and the wavelengths in the unit to be adjusted can be easily obtained. When performing this work, it is not necessary to prepare a laser light source or the like that emits two wavelengths individually or simultaneously, and both the standard unit and the unit to be adjusted have the same type of equipment (concave diffraction grating, array type). Since a light receiving element or the like is provided, this peak detection state (the appearance state of the peak across each element) is often reproduced on behalf of the state of the standard unit even in the spectroscopic analyzer to be adjusted. Therefore, the discrimination becomes easy.

【0006】[0006]

【発明の効果】結果、同一仕様の分光分析計(ポリクロ
メータ)を複数台製作する際、或いは、調整後のユニッ
トと標準ユニットとの対応をとる場合に、素子番号と波
長の対応づけを簡便、且つ簡単に行える。この方法で
は、基準となる1台(標準ユニット)だけレーザ等を使
って素子番号と波長の関係を求めて、波長校正用フィル
ターのスペクトルのみ保存しておけば、2台目(調整対
象のユニット)以降はレーザーによる波長校正が不用と
なり、例えば客先での修理校正等が簡単に行える。従っ
て、ユニットのコピーが造り易い。
As a result, when a plurality of spectroscopic analyzers (polychromators) having the same specifications are manufactured, or when the adjusted unit and the standard unit are made to correspond to each other, it is easy to associate the element number with the wavelength. And easy to do. In this method, the relationship between the element number and wavelength is obtained using only a laser (standard unit), which is the reference, and only the spectrum of the wavelength calibration filter is saved. After that, laser wavelength calibration is not necessary, and for example, repair calibration at the customer can be easily performed. Therefore, it is easy to make a copy of the unit.

【0007】[0007]

【実施例】以下本願の実施例を図面に基づいて説明す
る。図1には、分光分析計1の構成が示されている。分
光分析計1は、凹面回析格子2とアレイ型受光素子3と
平面鏡4とを備えて構成されており、スリット5より入
射される分光対象の光線束が、平面鏡4により反射され
て、凹面回析格子2に導かれ、この格子2により回折す
る回折光が前述のアレイ型受光素子3に受光される。こ
のアレイ型受光素子2上においては、光線は分光され
る。
Embodiments of the present application will be described below with reference to the drawings. FIG. 1 shows the configuration of the spectroscopic analyzer 1. The spectroscopic analyzer 1 includes a concave diffraction grating 2, an array type light receiving element 3 and a plane mirror 4, and a bundle of rays to be spectrally incident which is incident from a slit 5 is reflected by the plane mirror 4 to form a concave surface. The diffracted light guided to the diffraction grating 2 and diffracted by the grating 2 is received by the array type light receiving element 3 described above. On the array type light receiving element 2, light rays are dispersed.

【0008】さて、以下に本願の分光分析計1の波長校
正方法について説明する。ここで、波長校正とは、予め
素子番号と各素子に受光される光の波長の関係が判明し
ている標準ユニットに合わせて、調整対象ユニットにお
ける素子番号と波長との対応を取るものである。以下、
手順を箇条書きする。 1)標準ユニットに関しては、従来通りレーザー光によ
って波長と素子番号の関係を求めておく(この工程は従
来からおこなわれているものと同一である)。素子番号
iとこれらの素子に受光される光の波長は、以下のよう
になる。
Now, a wavelength calibration method of the spectroscopic analyzer 1 of the present application will be described below. Here, the wavelength calibration is to match the element number and the wavelength in the adjustment target unit in accordance with the standard unit in which the relationship between the element number and the wavelength of the light received by each element is known in advance. . Less than,
Itemize the procedure. 1) Regarding the standard unit, the relationship between the wavelength and the element number is obtained by laser light as usual (this step is the same as that conventionally performed). The element numbers i and the wavelengths of light received by these elements are as follows.

【0009】[0009]

【数1】 [Equation 1]

【0010】2)白色光透過により、測定波長範囲内
で、急峻なピークを2つ以上有する校正用フィルター6
を用いて標準ユニットでスペクトルを測定する。このよ
うな校正用フィルター透過光のピーク波長の確認工程
を、準備工程と呼ぶ。ピークの表れる素子番号をa1
2とする。 3)数1より、校正用フィルターの透過光においてピー
クとなる波長は、標準ユニットの素子番号a1で置き換
えられ:λ11=λA(a1)、素子番号a2の波長λ 22
λA(a2)とあらわされる。ここで、標準ユニットに対
する処理は、校正用フィルターの透過光のピーク波長の
確認にあるため、一度やっておけばよい。 4)前述の校正用フィルターを透過した光(校正用光線
束と呼ぶ)を用いて調整対象のユニットでスペクトルを
測定する。そのピークの表れる素子番号をb1,b2と表
す。 5)標準ユニットと調整対象のユニットで得られるスペ
クトルの、2つのピークの波長は同一であるので、調整
対象のユニットでは素子番号b1のときλ11、素子番号
2のときλ22である。よって、調整対象のユニットで
の素子番号と波長の関係は数2で表される。
2) Within the measurement wavelength range due to transmission of white light
And a calibration filter 6 having two or more steep peaks
To measure the spectrum in a standard unit. This
Confirmation process of the peak wavelength of the transmitted light through the calibration filter
Is called a preparation step. The element number where the peak appears is a1
a2And 3) From Equation 1, the peak in the transmitted light of the calibration filter is
The standard wavelength is the element number a of the standard unit.1Replaced by
Get: λ11= ΛA(A1), Element number a2Wavelength λ twenty two=
λA(A2). Here, the standard unit
The process to perform is the peak wavelength of the transmitted light of the calibration filter.
There is a confirmation, so you only have to do it once. 4) Light transmitted through the above-mentioned calibration filter (calibration light beam)
(Called a bundle)
taking measurement. The element number where the peak appears is b1, B2And table
You 5) Spares obtained from the standard unit and the unit to be adjusted.
Adjust the wavelengths of the two peaks of Khutor are the same.
Element number b in the target unit1Then λ11, Element number
b2Then λtwenty twoIs. Therefore, in the unit to be adjusted
The relationship between the element number and the wavelength is expressed by Equation 2.

【0011】[0011]

【数2】 [Equation 2]

【0012】ここで、4)、5)に示す工程を校正工程
と呼ぶ。また、調整対象のユニットに対する処置は、調
整毎におこなう必要がある。
Here, the steps 4) and 5) are called a calibration step. Further, the treatment for the unit to be adjusted needs to be performed for each adjustment.

【0013】さて、分光分析計の製造現場あるいは調整
作業(各機器間の位置、姿勢調整等)をおこなう現場に
おいては、上述の第4、第5工程のみを、対象の分光分
析計に対して、光源としての白色光源と校正用フィルタ
ーとを使用しておこなえば、この分光分析計における素
子番号を受光する光の波長との対応が取れる。従って、
この作業をおこなうのに、2つの波長を個別にあるいは
同時に発信するレーザー光源等を用意する必要はない。
At the manufacturing site of the spectroscopic analyzer or the site where adjustment work (positional adjustment of each device, attitude adjustment, etc.) is performed, only the above-mentioned fourth and fifth steps are performed on the spectroscopic analyzer of interest. If a white light source as a light source and a calibration filter are used, the element number in this spectroscopic analyzer can be associated with the wavelength of the received light. Therefore,
To perform this work, it is not necessary to prepare a laser light source or the like that emits two wavelengths individually or simultaneously.

【0014】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that although reference numerals are given in the claims for convenience of comparison with the drawings, the present invention is not limited to the structures of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】分光分析計の構成を示す図FIG. 1 is a diagram showing a configuration of a spectroscopic analyzer.

【図2】標準ユニットと調整対象のユニットにおける素
子番号とスペクトルとの関係を示す図
FIG. 2 is a diagram showing a relationship between element numbers and spectra in a standard unit and a unit to be adjusted.

【符号の説明】[Explanation of symbols]

1 分光分析計 2 凹面回折格子 3 アレイ型受光素子 6 校正用フィルター 1 spectroscopic analyzer 2 concave diffraction grating 3 array type light receiving element 6 calibration filter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辰己 保夫 兵庫県尼崎市浜1丁目1番1号 株式会社 クボタ技術開発研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuo Tatsumi 1-1-1, Hama, Amagasaki City, Hyogo Prefecture Kubota Technology Development Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 分光対象の光線束が入射される凹面回折
格子(2)と、前記凹面回折格子(2)より回折する回
折光を受光するアレイ型受光素子(3)とを備えた分光
分析計(1)に対し、前記アレイ型受光素子(3)に備
えられる複数の素子の素子番号と受光光の波長との対応
が既知である標準ユニットに対応させて、調整対象のユ
ニットに於ける素子番号と受光光の波長との対応を求め
る分光分析計の波長校正方法であって、 白色光を透過させることによって測定波長範囲内におい
て2つのピーク部を備える校正用光線束を、得られる校
正用フィルター(6)を用意し、前記校正用光線束を前
記標準ユニットに入射させて、前記2つのピーク部の波
長を求める準備工程と、 前記校正用光線束を前記調整対象のユニットに入光さ
せ、 前記調整対象のユニットに於ける前記アレイ型受光素子
の素子番号と波長との対応関係を、前記準備工程で得ら
れる2つのピーク部の波長と前記2つのピーク部の波長
の光を受光する前記調整対象ユニットに備えられるアレ
イ型受光素子の2つの素子番号とから求める校正工程と
から構成される分光分析計の波長校正方法。
1. A spectroscopic analysis comprising a concave diffraction grating (2) on which a light beam to be spectrally incident is incident, and an array type light receiving element (3) which receives diffracted light diffracted by the concave diffraction grating (2). In the unit to be adjusted, the unit (1) is made to correspond to the standard unit in which the correspondence between the element numbers of the plurality of elements provided in the array type light receiving element (3) and the wavelength of the received light is known. A wavelength calibration method for a spectrophotometer that finds the correspondence between an element number and the wavelength of received light, by which white light is transmitted to obtain a calibration light flux having two peaks in the measurement wavelength range. Preparing a filter (6) for making the calibration light beam incident on the standard unit to obtain the wavelengths of the two peaks; and entering the calibration light beam into the unit to be adjusted. Let said The correspondence between the element number and the wavelength of the array type light receiving element in the unit to be adjusted is adjusted so as to receive the two peak wavelengths and the two peak wavelengths obtained in the preparation step. A wavelength calibrating method for a spectroscopic analyzer, comprising: a calibration step obtained from two element numbers of an array type light receiving element provided in a target unit.
JP22812892A 1992-08-27 1992-08-27 Wave length calibration method for spectroscopic analyzer Pending JPH0674823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22812892A JPH0674823A (en) 1992-08-27 1992-08-27 Wave length calibration method for spectroscopic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22812892A JPH0674823A (en) 1992-08-27 1992-08-27 Wave length calibration method for spectroscopic analyzer

Publications (1)

Publication Number Publication Date
JPH0674823A true JPH0674823A (en) 1994-03-18

Family

ID=16871658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22812892A Pending JPH0674823A (en) 1992-08-27 1992-08-27 Wave length calibration method for spectroscopic analyzer

Country Status (1)

Country Link
JP (1) JPH0674823A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003511687A (en) * 1999-10-14 2003-03-25 シーエムイー テレメトリクス インコーポレーテッド How to optimize wavelength calibration
US7151600B2 (en) 2003-07-25 2006-12-19 Konica Minolta Sensing, Inc. Calibration system for a spectral luminometer and a method for calibrating a spectral luminometer
US7339665B2 (en) 2004-12-22 2008-03-04 Konica Minolta Sensing, Inc. Calibration source for calibrating spectroradiometer, calibration method using the same, and calibration system
WO2008084600A1 (en) 2007-01-12 2008-07-17 Olympus Corporation Method for identifying wavelength and analytical apparatus
JP2013253820A (en) * 2012-06-06 2013-12-19 Shimadzu Corp Calibration device and calibration method of spectroscope

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134173A (en) * 1975-05-16 1976-11-20 Hitachi Ltd Spectrophotometer
JPS6310106A (en) * 1986-07-01 1988-01-16 Chino Corp Multi-layered interference film filter
JPH04106430A (en) * 1990-08-28 1992-04-08 Matsushita Electric Ind Co Ltd Spectrophotometric apparatus with wavelength calibrating function

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134173A (en) * 1975-05-16 1976-11-20 Hitachi Ltd Spectrophotometer
JPS6310106A (en) * 1986-07-01 1988-01-16 Chino Corp Multi-layered interference film filter
JPH04106430A (en) * 1990-08-28 1992-04-08 Matsushita Electric Ind Co Ltd Spectrophotometric apparatus with wavelength calibrating function

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003511687A (en) * 1999-10-14 2003-03-25 シーエムイー テレメトリクス インコーポレーテッド How to optimize wavelength calibration
US7151600B2 (en) 2003-07-25 2006-12-19 Konica Minolta Sensing, Inc. Calibration system for a spectral luminometer and a method for calibrating a spectral luminometer
US7339665B2 (en) 2004-12-22 2008-03-04 Konica Minolta Sensing, Inc. Calibration source for calibrating spectroradiometer, calibration method using the same, and calibration system
WO2008084600A1 (en) 2007-01-12 2008-07-17 Olympus Corporation Method for identifying wavelength and analytical apparatus
US7961324B2 (en) 2007-01-12 2011-06-14 Beckman Coulter, Inc. Wavelength identification method and analyzer
JP2013253820A (en) * 2012-06-06 2013-12-19 Shimadzu Corp Calibration device and calibration method of spectroscope

Similar Documents

Publication Publication Date Title
CA2087360C (en) Standardizing and calibrating a spectrometric instrument
US7379192B2 (en) Optical metrology of single features
EP1784624B1 (en) Calibration for spectroscopic analysis
US20080068722A1 (en) Film mapping system
JP2000283847A (en) Double pulse etalon spectrometer
DE3880748T2 (en) METHOD AND DEVICE FOR MEASURING OR DETERMINING ONE OR MORE PROPERTIES OR THE IDENTITY OF A SAMPLE.
US5321970A (en) Method and apparatus for calibrating a spectrometer
JPH0674823A (en) Wave length calibration method for spectroscopic analyzer
JP2004502160A (en) Apparatus and method for measuring emissions substantially simultaneously
WO2021130757A1 (en) Combined ocd and photoreflectance method and system
EP0320477B1 (en) Method for reducing the susceptibility of a measuring instrument to interferences
JPH11142240A (en) Spectroscope
EP1106979B1 (en) Device for the simultaneous analysis of multiple optical channels
Booksh et al. Mathematical alignment of wavelength-shifted optical spectra for qualitative and quantitative analysis
KR20110101726A (en) Automatic calibrating spectrometer and calibrating method therof
CA2455136C (en) Standardizing and calibrating a spectrometric instrument
EP1403634A1 (en) Arrangement for the determination of the spectral reflectivity of an object
EP3819612B1 (en) Optical system for spectrometers
KR100273009B1 (en) Etalon structure
JP2003121361A (en) Method and apparatus for measuring micro constituent using laser beam
US7330259B2 (en) Optical measurements of patterned articles
KR101587241B1 (en) The Method And Device For Real-Time Optical Spectrum Analysis
JPH0261511A (en) Apparatus for measuring cyclic surface structure
JPH0674825A (en) Positioning method for dumbbell type light receiving element and spectrum analyzer
SCHOEFFEL Measuring Diffraction Grating Efficiency