JPH0673667U - Pressure equalizer in multi-room air conditioning type heat pump system - Google Patents

Pressure equalizer in multi-room air conditioning type heat pump system

Info

Publication number
JPH0673667U
JPH0673667U JP1784193U JP1784193U JPH0673667U JP H0673667 U JPH0673667 U JP H0673667U JP 1784193 U JP1784193 U JP 1784193U JP 1784193 U JP1784193 U JP 1784193U JP H0673667 U JPH0673667 U JP H0673667U
Authority
JP
Japan
Prior art keywords
compressor
circuit
pump system
heat pump
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1784193U
Other languages
Japanese (ja)
Other versions
JP2597634Y2 (en
Inventor
武生 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP1993017841U priority Critical patent/JP2597634Y2/en
Publication of JPH0673667U publication Critical patent/JPH0673667U/en
Application granted granted Critical
Publication of JP2597634Y2 publication Critical patent/JP2597634Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】 【目的】 システムの動作や機器に悪影響を及ぼさない
で速やかに均圧動作を行う。 【構成】 コンプレッサ1の運転停止と同時に容量制御
用バイパス回路10を開いて均圧を行うようにした。 【効果】 冷媒流通音による騒音発生や液冷媒の逆流に
よる機器の破損を招くことがなく、しかも部品や機器を
追加せずに十分な速さで均圧を完了することができ、例
えばクラッチレスタイプのコンプレッサをエンジンで駆
動するようなシステムでの再起動不能の防止に大きな効
果がある。
(57) [Summary] [Purpose] Quickly perform pressure equalization without adversely affecting system operation or equipment. [Structure] At the same time as the operation of the compressor 1 is stopped, the capacity control bypass circuit 10 is opened to equalize the pressure. [Effects] The pressure equalization can be completed at a sufficient speed without generating noise due to the refrigerant flowing sound or damaging the equipment due to the backflow of the liquid refrigerant, and for example, without a clutch. It is very effective in preventing non-restart in a system where a compressor of the type is driven by the engine.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

この考案は、1台の室外機で3〜4室程度の複数の部屋の空調を行うように構 成された多室空調型ヒートポンプシステムにおいて、運転停止時にコンプレッサ 吐出側と吸入側の間の圧力差をなくすための均圧装置に関するものである。 This invention is a multi-chamber air-conditioning type heat pump system configured to air-condition a plurality of rooms such as 3 to 4 rooms with one outdoor unit, and the pressure between the discharge side and the suction side of the compressor when the operation is stopped. The present invention relates to a pressure equalizing device for eliminating the difference.

【0002】[0002]

【従来の技術】[Prior art]

コンプレッサとしてクラッチレスタイプのものが使用され、これを例えばガス エンジンで駆動するようにしたヒートポンプシステムにおいては、起動トルクを 軽減するために再起動時にはコンプレッサの吐出側と吸入側の圧力が均圧された 状態であることが望ましい。運転停止状態では、冷媒は膨張弁や四方弁、あるい はコンプレッサ等の隙間部分を通じて高圧側から低圧側に流れ込んで、ある程度 の時間が経過すると自然に均圧された状態となるが、この自然な均圧に要する時 間は比較的長い。このため、停止後、均圧が進んでいない状態で再起動が行われ た場合には、駆動用エンジンのセルモータのトルク以上の起動トルクが必要とな り、起動できなくなる可能性があった。 A clutchless type compressor is used as a compressor.For example, in a heat pump system that is driven by a gas engine, the pressures on the discharge side and suction side of the compressor are equalized at the time of restart in order to reduce the starting torque. It is desirable to be in a stable state. In the operation stopped state, the refrigerant flows from the high pressure side to the low pressure side through the gaps such as the expansion valve, the four-way valve, or the compressor, and after a certain period of time, the refrigerant is naturally equalized. The time required for uniform pressure equalization is relatively long. For this reason, if the engine is restarted after the stoppage without equalizing pressure, a starting torque that is greater than the torque of the starter motor of the drive engine is required, and there is a possibility that the engine cannot be started.

【0003】 これを防止するためには、冷/暖切替え用の四方弁を運転停止時に切り替え、 高圧側の冷媒を低圧側に流入させて積極的に均圧することが考えられる。しかし ながら、流路の圧損が極めて小さい四方弁を切り替えると均圧動作が一瞬のうち に行われ、四方弁や配管で生ずる冷媒流通音が耳障りな騒音として周囲に放射さ れることになる。また、四方弁の切り替えによる急激な均圧動作によって、室外 熱交換器内に存在していた液冷媒が四方弁を経て逆流してアキュムレータ内に滞 留し、滞留量が多い場合にはこの液冷媒が次の起動時にコンプレッサに直接吸入 されて液圧縮状態となる。このため、一種のウォーターハンマー作用を生じてコ ンプレッサの部品の摩耗を促進し、あるいはロータ軸の折損やシリンダ割れなど を発生させる恐れがある。In order to prevent this, it can be considered that the four-way valve for switching between cold / warm is switched when the operation is stopped, and the refrigerant on the high pressure side is made to flow into the low pressure side to positively equalize the pressure. However, if a four-way valve with a very small pressure drop in the flow path is switched, pressure equalization is performed instantaneously, and the refrigerant flow noise generated by the four-way valve and piping is emitted to the surroundings as annoying noise. Also, due to the rapid pressure equalization operation due to the switching of the four-way valve, the liquid refrigerant existing in the outdoor heat exchanger flows back through the four-way valve and stays in the accumulator. At the next startup, the refrigerant is directly sucked into the compressor and enters the liquid compression state. For this reason, there is a possibility that a kind of water hammer effect is generated to accelerate wear of the compressor parts, or breakage of the rotor shaft or cylinder cracking may occur.

【0004】[0004]

【考案が解決しようとする課題】[Problems to be solved by the device]

この考案はこれらの問題点を考慮し、動作や機器に悪影響を及ぼさないで速や かに均圧動作を行うことを課題としてなされたものである。 In consideration of these problems, the present invention has been made with the object of performing a pressure equalizing operation quickly without adversely affecting the operation or equipment.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

上記の課題を達成するために、この考案では、1台の室外機に複数の室内機が 接続されているマルチヒートポンプシステムにおいて、冷媒回路のコンプレッサ 吐出側と吸入側の間に備えられている容量制御用バイパス回路に着目し、コンプ レッサの運転停止と同時に、この容量制御用バイパス回路を開いて均圧を行うよ うに構成している。 In order to achieve the above object, in the present invention, in a multi-heat pump system in which a plurality of indoor units are connected to one outdoor unit, the capacity provided between the compressor discharge side and the suction side of the refrigerant circuit. Focusing on the control bypass circuit, the capacity control bypass circuit is opened to equalize pressure when the compressor is stopped.

【0006】 また特に暖房運転時においては、上記のようにコンプレッサの運転停止と同時 に容量制御用バイパス回路を開くと共に、室外機熱交換器の霜取りを目的として 冷媒回路のコンプレッサ吐出側と室外熱交換器入口側との間に設けられているホ ットガスデフロスト回路をも開いて均圧を促進するように構成している。Further, particularly during the heating operation, the capacity control bypass circuit is opened at the same time as the operation of the compressor is stopped as described above, and the compressor discharge side of the refrigerant circuit and the outdoor heat are removed for the purpose of defrosting the outdoor unit heat exchanger. The hot gas defrost circuit provided between the inlet side of the exchanger and the exchanger side is also opened to promote pressure equalization.

【0007】[0007]

【作用】[Action]

周知のように、容量制御用バイパス回路は、多室空調型のマルチヒートポンプ システムにおいて、室内機が1台だけ使用される場合に必要以上の冷媒がその室 内機に流れないように余分な冷媒をバイパスするものであって、一般に電磁弁と キャピラリチューブの直列回路で構成されている。従って電磁弁を開いてもキャ ピラリチューブにより冷媒の流量が制限され、四方弁を切り替えた場合ほど急激 ではなく、しかも十分な速さで均圧動作が行われる。 As is well known, in a multi-room air conditioning type multi-heat pump system, a bypass circuit for capacity control is an extra refrigerant so that an excessive amount of refrigerant does not flow to the indoor unit when only one indoor unit is used. It is a bypass, and is generally composed of a series circuit of a solenoid valve and a capillary tube. Therefore, even if the solenoid valve is opened, the flow rate of the refrigerant is limited by the capillary tube, and the pressure equalization operation is performed at a sufficient speed, not as rapidly as when switching the four-way valve.

【0008】 また暖房運転時においては、冷媒回路の関係で容量制御用バイパス回路のみで は均圧に要する時間が長くなるが、ホットガスデフロスト回路も併用することに より均圧時間が短縮される。Further, during heating operation, the time required for pressure equalization becomes long only with the capacity control bypass circuit due to the refrigerant circuit, but the pressure equalization time is shortened by using the hot gas defrost circuit together. .

【0009】[0009]

【実施例】 次に、この考案の一実施例について説明する。図は基本的な冷媒回路を示した もので、図1は冷房時、図2は暖房時をそれぞれ示している。[Embodiment] Next, an embodiment of the present invention will be described. The figure shows the basic refrigerant circuit. Fig. 1 shows the cooling operation, and Fig. 2 shows the heating operation.

【0010】 図において、1はコンプレッサ、2は駆動用エンジン、3は四方弁、4は廃熱 回収器、5は室外機の熱交換器、6はレシーバ、7は冷房用膨張弁、8は室内機 の熱交換器、9はアキュムレータ、10は容量制御用バイパス回路である。この 容量制御用バイパス回路10は電磁弁10aとキャピラリチューブ10bの直列 回路で構成されている。また、11は暖房用膨張弁、12はホットガスデフロス ト回路であり、このホットガスデフロスト回路12は電磁弁12aとキャピラリ チューブ12bの直列回路で構成されている。In the figure, 1 is a compressor, 2 is a driving engine, 3 is a four-way valve, 4 is a waste heat recovery unit, 5 is a heat exchanger for an outdoor unit, 6 is a receiver, 7 is an expansion valve for cooling, and 8 is An indoor unit heat exchanger, 9 is an accumulator, and 10 is a capacity control bypass circuit. The capacity control bypass circuit 10 is composed of a series circuit of an electromagnetic valve 10a and a capillary tube 10b. Further, 11 is an expansion valve for heating, 12 is a hot gas defrost circuit, and this hot gas defrost circuit 12 is composed of a series circuit of an electromagnetic valve 12a and a capillary tube 12b.

【0011】 13は制御部であり、リモコンなどの図示しない操作部の操作に基づいて所定 の冷房動作あるいは暖房動作が行われるように冷房用膨張弁7あるいは暖房用膨 張弁11の開度を制御し、また必要に応じて容量制御のために容量制御用バイパ ス回路10を開閉し、あるいは霜取りのためにホットガスデフロスト回路12を 開閉するように構成されている。なお、図示されていないが冷媒回路の要所には 電磁弁、温度センサあるいは圧力センサ等が適宜配置されている。以上の構成と 動作は従来から周知の一般的なマルチヒートポンプシステムと同様であるのでこ れ以上の説明は省略し、以下この考案に関して詳述する。Reference numeral 13 denotes a control unit, which controls the opening degree of the cooling expansion valve 7 or the heating expansion valve 11 so that a predetermined cooling operation or heating operation is performed based on the operation of an operation unit (not shown) such as a remote controller. The bypass circuit 10 for control and, if necessary, the capacity control bypass circuit 10 is opened and closed, or the hot gas defrost circuit 12 is opened and closed for defrosting. Although not shown, a solenoid valve, a temperature sensor, a pressure sensor, or the like is appropriately arranged at a key portion of the refrigerant circuit. The above-mentioned configuration and operation are the same as those of a general multi-heat pump system which is well known in the related art, and thus the above description will be omitted and the present invention will be described in detail below.

【0012】 冷房モードにおいては四方弁3は図1のような切り替え状態となっている。従 って、システムの動作中はコンプレッサ1の吐出口1aから四方弁3、廃熱回収 器4、室外機熱交換器5、レシーバ6を経て冷房用膨張弁7までの冷媒回路は高 圧部となっており、また冷房用膨張弁7から室内機熱交換器8、四方弁3、アキ ュムレータ9を経てコンプレッサ1の吸入口1bまでの冷媒回路は低圧部となっ ている。そして、容量制御用バイパス回路10は吐出口1aと四方弁3の間、す なわち高圧部と、四方弁3とアキュムレータ9の間、すなわち低圧部との間をバ イパスする状態で設けられているのである。In the cooling mode, the four-way valve 3 is in a switching state as shown in FIG. Therefore, during the operation of the system, the refrigerant circuit from the discharge port 1a of the compressor 1 through the four-way valve 3, the waste heat recovery unit 4, the outdoor unit heat exchanger 5, the receiver 6 to the cooling expansion valve 7 has a high pressure part. The refrigerant circuit from the cooling expansion valve 7 to the indoor unit heat exchanger 8, the four-way valve 3 and the accumulator 9 to the suction port 1b of the compressor 1 is a low pressure part. The capacity control bypass circuit 10 is provided in a state of bypassing between the discharge port 1a and the four-way valve 3, that is, between the high-pressure part and the four-way valve 3 and the accumulator 9, that is, the low-pressure part. Is there.

【0013】 制御部13は、操作部からの停止信号を受信すると室内機のファン停止、エン ジン停止、動作中の各種電磁弁のオフ等を行い、同時に電磁弁10aをオンとし て容量制御用バイパス回路10を開く。更にエンジンが停止して例えば1分後に 室外機のファン、冷却水ポンプ及び換気ファン等を停止し、エンジン停止後例え ば2分経過すると電磁弁10aをオフとして容量制御用バイパス回路10を閉じ るように構成されている。すなわち、停止操作の2分後にシステムは完全な停止 状態となり、再起動に備えることになる。When the control unit 13 receives a stop signal from the operation unit, the control unit 13 stops the fan of the indoor unit, stops the engine, turns off various solenoid valves during operation, and simultaneously turns on the solenoid valve 10a to control the capacity. The bypass circuit 10 is opened. Further, for example, one minute after the engine is stopped, the fan of the outdoor unit, the cooling water pump, the ventilation fan, etc. are stopped, and, for example, 2 minutes after the engine is stopped, the solenoid valve 10a is turned off and the capacity control bypass circuit 10 is closed. Is configured. That is, two minutes after the stop operation, the system will be completely stopped and will be ready for restart.

【0014】 ここで、上述のようにエンジン停止と同時に電磁弁10aがオンされて容量制 御用バイパス回路10が開かれると、冷媒はこの回路を通って高圧部から低圧部 に流れて均圧が行われるが、このバイパス回路10にはキャピラリチューブ10 bが設けられているので流量が絞られる。このため、均圧の動作は緩やかなもの となって冷媒音や液冷媒の逆流は発生せず、しかも停止に要する所定時間、例え ば2分の間には均圧を確実に完了して再起動に備えることができるのである。Here, when the solenoid valve 10a is turned on and the capacity control bypass circuit 10 is opened at the same time as the engine is stopped as described above, the refrigerant flows from the high pressure portion to the low pressure portion through this circuit to equalize the pressure. However, since the bypass tube 10 is provided with the capillary tube 10b, the flow rate is reduced. For this reason, the pressure equalization operation becomes gradual, no refrigerant noise or backflow of the liquid refrigerant occurs, and moreover, the pressure equalization is surely completed and restarted within a predetermined time required for stoppage, for example, 2 minutes. It is possible to prepare for startup.

【0015】 また、暖房モードにおいては四方弁3は図2のような切り替え状態となってお り、システムの動作中はコンプレッサ1の吐出口1aから四方弁3、室内機熱交 換器8、レシーバ6を経て暖房用膨張弁11までの冷媒回路は高圧部、残りの部 分が低圧部となる。そしてホットガスデフロスト回路12は吐出口1aと四方弁 3の間の高圧部と、暖房用膨張弁11と室外機熱交換器5の入口側5aとの間の 低圧部、との間に設けられている。Further, in the heating mode, the four-way valve 3 is in a switching state as shown in FIG. 2, and during operation of the system, the four-way valve 3, the indoor unit heat exchanger 8, from the discharge port 1a of the compressor 1 The refrigerant circuit from the receiver 6 to the heating expansion valve 11 is a high pressure part, and the remaining part is a low pressure part. The hot gas defrost circuit 12 is provided between the high pressure portion between the discharge port 1a and the four-way valve 3 and the low pressure portion between the heating expansion valve 11 and the inlet side 5a of the outdoor unit heat exchanger 5. ing.

【0016】 制御部13は操作部からの停止信号を受信すると室内機のファン停止、エンジ ン停止、動作中の各種電磁弁のオフ等を行うと同時に電磁弁10aをオンとし、 更にエンジンが停止して例えば1分後に室外機のファン、冷却水ポンプ及び換気 ファン等を停止し、エンジン停止後例えば2分経過すると電磁弁10aをオフと するが、この実施例では電磁弁10aの開閉と同時に電磁弁12aも開閉される ように構成されている。すなわちシステム停止時には、容量制御用バイパス回路 10だけでなくホットガスデフロスト回路12も同時に開かれるのである。When the control unit 13 receives a stop signal from the operation unit, the control unit 13 stops the fan of the indoor unit, stops the engine, turns off various solenoid valves during operation, etc., and simultaneously turns on the solenoid valve 10a to further stop the engine. Then, for example, the fan of the outdoor unit, the cooling water pump, the ventilation fan, etc. are stopped after 1 minute, and the solenoid valve 10a is turned off, for example, 2 minutes after the engine is stopped. In this embodiment, at the same time when the solenoid valve 10a is opened and closed. The solenoid valve 12a is also configured to be opened and closed. That is, when the system is stopped, not only the capacity control bypass circuit 10 but also the hot gas defrost circuit 12 is opened at the same time.

【0017】 均圧動作は容量制御用バイパス回路10だけでも行われるが、一般に暖房時の 冷媒回路は冷房時と比べて均圧完了までの所要時間が長くなるような機器の配置 となっている。しかし、この実施例ではホットガスデフロスト回路12も開かれ るので、冷媒はこの回路のキャピラリチューブ12bで流量を絞られながら低圧 部に流入し、容量制御用バイパス回路10だけの場合よりも早く、再起動までの 時間として設定された所定時間内に均圧を完了することができるのである。Although the pressure equalizing operation is performed only by the capacity control bypass circuit 10, in general, the refrigerant circuit during heating is arranged such that the time required to complete pressure equalization is longer than that during cooling. . However, since the hot gas defrost circuit 12 is also opened in this embodiment, the refrigerant flows into the low pressure portion while the flow rate is throttled by the capillary tube 12b of this circuit, and is faster than in the case of the capacity control bypass circuit 10 alone. The pressure equalization can be completed within the predetermined time set as the time until the restart.

【0018】 上述のようにこの実施例は、一般のマルチヒートポンプシステムにおいて複数 の室内機の内1台だけが使用される場合の容量制御を目的として設けられている 容量制御用バイパス回路10と、暖房モードの運転中に室外機熱交換器5に霜が 付着した場合の霜取りを目的として設けられているホットガスデフロスト回路1 2を均圧にも利用するようにしたものであり、部品や機器を追加することなく、 制御部13の動作プログラムを若干変更するのみで均圧に要する時間を短縮する ことができるのである。As described above, this embodiment has a capacity control bypass circuit 10 provided for the purpose of capacity control when only one of a plurality of indoor units is used in a general multi-heat pump system, The hot gas defrost circuit 12, which is provided for the purpose of defrosting when frost adheres to the outdoor unit heat exchanger 5 during the operation in the heating mode, is also used for pressure equalization. Therefore, the time required for pressure equalization can be shortened by only slightly changing the operation program of the control unit 13 without adding.

【0019】[0019]

【考案の効果】[Effect of device]

以上の説明から明らかなように、この考案は多室空調型のマルチヒートポンプ システムに備えられている容量制御用バイパス回路を利用し、コンプレッサの運 転停止と同時にこの回路を開いて均圧を行うようにしたものである。従って、四 方弁を切り替えて均圧を行う場合のように冷媒流通音による騒音を生じたり、液 冷媒の逆流で機器を破損させたりすることがなく、しかも部品や機器の追加によ るコストアップを招くこともなく十分な速さで均圧動作を行うことが可能となる のであり、例えばクラッチレスタイプのコンプレッサをエンジンで駆動するよう なシステムでの再起動不能の防止に大きな効果がある。 As is apparent from the above description, the present invention utilizes the capacity control bypass circuit provided in the multi-room air-conditioning type multi-heat pump system, and simultaneously opens the circuit to equalize pressure when the compressor operation is stopped. It was done like this. Therefore, no noise is generated by the refrigerant flow noise and the equipment is not damaged by the backflow of the liquid refrigerant as in the case where the four-way valve is switched to equalize the pressure, and the cost of adding parts and equipment is reduced. It is possible to perform pressure equalizing operation at a sufficient speed without incurring an increase, and it is very effective in preventing restart inability in a system where a clutchless type compressor is driven by the engine, for example. .

【0020】 また、暖房時における運転停止の際にヒートポンプシステムに備えられている ホットガスデフロスト回路も併用して均圧を行うようにしたものでは、部品や機 器を追加することなく暖房時における均圧時間を短縮することができる。Further, when the operation is stopped during heating, the hot gas defrost circuit provided in the heat pump system is also used to perform the pressure equalization, so that it is possible to add the pressure during heating without adding parts or devices. The pressure equalization time can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】この考案の一実施例における冷房時の基本的な
冷媒回路を示す図である。
FIG. 1 is a diagram showing a basic refrigerant circuit during cooling according to an embodiment of the present invention.

【図2】同実施例における暖房時の基本的な冷媒回路を
示す図である。
FIG. 2 is a diagram showing a basic refrigerant circuit during heating in the embodiment.

【符号の説明】[Explanation of symbols]

1 コンプレッサ 2 駆動用エンジン 3 四方弁 5 室外機熱交換器 8 室内機熱交換器 10 容量制御用バイパス回路 10a 電磁弁 12 ホットガスデフロスト回路 12a 電磁弁 13 制御部 DESCRIPTION OF SYMBOLS 1 compressor 2 drive engine 3 four-way valve 5 outdoor unit heat exchanger 8 indoor unit heat exchanger 10 capacity control bypass circuit 10a solenoid valve 12 hot gas defrost circuit 12a solenoid valve 13 control unit

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 1台の室外機に複数の室内機が接続され
ているヒートポンプシステムであって、冷媒回路のコン
プレッサ吐出側と吸入側の間に容量制御用バイパス回路
を備えたものにおいて、コンプレッサの運転停止と同時
に、上記容量制御用バイパス回路を開いて均圧を行うよ
うに構成したことを特徴とする多室空調型ヒートポンプ
システムにおける均圧装置。
1. A heat pump system in which a plurality of indoor units are connected to one outdoor unit, the compressor including a capacity control bypass circuit between a compressor discharge side and a suction side of a refrigerant circuit. A pressure equalizing device in a multi-room air conditioning heat pump system, characterized in that the capacity control bypass circuit is opened at the same time when the operation is stopped to perform pressure equalization.
【請求項2】 暖房運転時において、コンプレッサの運
転停止と同時に、冷媒回路のコンプレッサ吐出側と室外
熱交換器入口側との間に設けられているホットガスデフ
ロスト回路をも開いて均圧を促進するように構成した請
求項1記載の多室空調型ヒートポンプシステムにおける
均圧装置。
2. During the heating operation, at the same time as stopping the operation of the compressor, a hot gas defrost circuit provided between the compressor discharge side of the refrigerant circuit and the outdoor heat exchanger inlet side is also opened to promote equalization. The pressure equalizing device in the multi-room air conditioning type heat pump system according to claim 1, which is configured to:
JP1993017841U 1993-03-17 1993-03-17 Pressure equalizer in multi-room air-conditioning heat pump system Expired - Fee Related JP2597634Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1993017841U JP2597634Y2 (en) 1993-03-17 1993-03-17 Pressure equalizer in multi-room air-conditioning heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1993017841U JP2597634Y2 (en) 1993-03-17 1993-03-17 Pressure equalizer in multi-room air-conditioning heat pump system

Publications (2)

Publication Number Publication Date
JPH0673667U true JPH0673667U (en) 1994-10-18
JP2597634Y2 JP2597634Y2 (en) 1999-07-12

Family

ID=11954903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1993017841U Expired - Fee Related JP2597634Y2 (en) 1993-03-17 1993-03-17 Pressure equalizer in multi-room air-conditioning heat pump system

Country Status (1)

Country Link
JP (1) JP2597634Y2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095868A1 (en) * 2004-03-31 2005-10-13 Daikin Industries, Ltd. Moisture conditioning device
JP2009139041A (en) * 2007-12-07 2009-06-25 Samsung Electronics Co Ltd Air conditioner
JP2010281544A (en) * 2009-06-08 2010-12-16 Hitachi Appliances Inc Air conditioner
JP2013170718A (en) * 2012-02-20 2013-09-02 Fujitsu General Ltd Air conditioner
CN105588385A (en) * 2014-12-16 2016-05-18 青岛海信日立空调***有限公司 Outdoor unit, air conditioning system and control method
WO2018163422A1 (en) * 2017-03-10 2018-09-13 三菱電機株式会社 Refrigeration cycle device
JP2021012015A (en) * 2020-10-14 2021-02-04 三菱電機株式会社 Refrigeration cycle device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152352A (en) * 1979-05-17 1980-11-27 Matsushita Electric Ind Co Ltd Multiichamber type air conditioner
JPS6057168A (en) * 1984-07-13 1985-04-02 株式会社日立製作所 Air cooling and heating concurrent functioning type air conditioner
JPS6189445A (en) * 1984-10-05 1986-05-07 三洋電機株式会社 Refrigerator
JPH04129074U (en) * 1991-05-09 1992-11-25 ダイキン工業株式会社 air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152352A (en) * 1979-05-17 1980-11-27 Matsushita Electric Ind Co Ltd Multiichamber type air conditioner
JPS6057168A (en) * 1984-07-13 1985-04-02 株式会社日立製作所 Air cooling and heating concurrent functioning type air conditioner
JPS6189445A (en) * 1984-10-05 1986-05-07 三洋電機株式会社 Refrigerator
JPH04129074U (en) * 1991-05-09 1992-11-25 ダイキン工業株式会社 air conditioner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095868A1 (en) * 2004-03-31 2005-10-13 Daikin Industries, Ltd. Moisture conditioning device
JP2009139041A (en) * 2007-12-07 2009-06-25 Samsung Electronics Co Ltd Air conditioner
JP2010281544A (en) * 2009-06-08 2010-12-16 Hitachi Appliances Inc Air conditioner
JP2013170718A (en) * 2012-02-20 2013-09-02 Fujitsu General Ltd Air conditioner
CN105588385A (en) * 2014-12-16 2016-05-18 青岛海信日立空调***有限公司 Outdoor unit, air conditioning system and control method
WO2018163422A1 (en) * 2017-03-10 2018-09-13 三菱電機株式会社 Refrigeration cycle device
JPWO2018163422A1 (en) * 2017-03-10 2019-11-07 三菱電機株式会社 Refrigeration cycle equipment
JP2021012015A (en) * 2020-10-14 2021-02-04 三菱電機株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JP2597634Y2 (en) 1999-07-12

Similar Documents

Publication Publication Date Title
US8117859B2 (en) Methods and systems for controlling air conditioning systems having a cooling mode and a free-cooling mode
US7958737B2 (en) Method and control for preventing flooded starts in a heat pump
US7540163B2 (en) Prevention of flooded starts in heat pumps
JP2003240391A (en) Air conditioner
KR101203995B1 (en) Air conditioner and Defrosting Driving Method thereof
JPH0673667U (en) Pressure equalizer in multi-room air conditioning type heat pump system
JP4802602B2 (en) Air conditioner
JP4830399B2 (en) Air conditioner
JP2012107790A (en) Air conditioning device
CN107990583B (en) Four-way valve, refrigerating system and control method of refrigerating system
JPH0452469A (en) Air conditioner
JP3099574B2 (en) Air conditioner pressure equalizer
JP2007051840A (en) Air conditioner
KR100713817B1 (en) Heat pump system having plural compress
JP3675977B2 (en) Air conditioner
JP3467294B2 (en) Engine driven heat pump device
JP3337264B2 (en) Air conditioner defroster
JPS59183255A (en) Air conditioner
JP2811892B2 (en) Engine driven air conditioner
JPS6017639Y2 (en) Heat pump air conditioner
KR100310362B1 (en) Air-conditioning equipment and its equalization method
JPH05106947A (en) Engine-driven heat pump device
JP3731308B2 (en) Air conditioner
JPH04350480A (en) Defrost controller
JPS59185956A (en) Multi-chamber air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees