JPH0671102B2 - Electrostrictive effect element - Google Patents

Electrostrictive effect element

Info

Publication number
JPH0671102B2
JPH0671102B2 JP57079036A JP7903682A JPH0671102B2 JP H0671102 B2 JPH0671102 B2 JP H0671102B2 JP 57079036 A JP57079036 A JP 57079036A JP 7903682 A JP7903682 A JP 7903682A JP H0671102 B2 JPH0671102 B2 JP H0671102B2
Authority
JP
Japan
Prior art keywords
electrostrictive effect
effect element
electrostrictive
internal electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57079036A
Other languages
Japanese (ja)
Other versions
JPS58196076A (en
Inventor
貞行 高橋
正智 米沢
篤 越智
健 矢野
武重 浜付
泉 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP57079036A priority Critical patent/JPH0671102B2/en
Priority to EP83104556A priority patent/EP0094078B1/en
Priority to DE8383104556T priority patent/DE3378393D1/en
Priority to CA000427828A priority patent/CA1206193A/en
Priority to AU14422/83A priority patent/AU553391B2/en
Priority to KR1019830002025A priority patent/KR860000255B1/en
Priority to US06/493,583 priority patent/US4523121A/en
Priority to BR8302536A priority patent/BR8302536A/en
Publication of JPS58196076A publication Critical patent/JPS58196076A/en
Publication of JPH0671102B2 publication Critical patent/JPH0671102B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/871Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】 本発明は電歪効果素子の構造に関するものである。電歪
効果素子とは固体の電歪効果を利用して電気エネルギを
機械エネルギに変換するトランスデュサである。具体的
には電歪効果の大きな固体の対向する表面に金属膜等の
電極を形成し、電極間に電位差を与えたときに発生する
固体の歪を利用する。電界と平行方向に発生する歪(縦
効果歪)は垂直方向に生じる歪(横効果歪)より一般に
は大きいので、前者を利用する方がエネルギ変効効率は
高い。また、歪の大きさは電界強度に関係し、電界強度
が大きい程発生する歪も大きい。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of an electrostrictive effect element. The electrostrictive effect element is a transducer that converts electric energy into mechanical energy by utilizing the electrostrictive effect of a solid. Specifically, an electrode such as a metal film is formed on the opposite surfaces of a solid having a large electrostrictive effect, and the strain of the solid generated when a potential difference is applied between the electrodes is used. Since the strain (vertical effect strain) generated in the direction parallel to the electric field is generally larger than the strain (vertical effect strain) generated in the vertical direction, the energy effect efficiency is higher when the former is used. Further, the magnitude of strain is related to the electric field strength, and the larger the electric field strength, the larger the generated distortion.

横効果を利用した電歪効果素子では一定の印加電圧でも
電界と垂直方向の寸法に比例した変位量を得る事が可能
である。しかしエネルギ変換効率の高い縦効果を利用し
た電歪効果素子では外部から印加する電圧を一定にして
歪の発生する方向の寸法を増すと電界強度が低下するの
で変位量は大きくならない。従ってこの場合に大きな変
位量を得るには電界強度が低下しない様に印加電圧を大
きくすることが必要である。しかし、電圧を大きくする
ためには大型でかつ高価な電源が必要になり、取り扱い
に対する危険度も増す。またトランスデュサを駆動する
ための制御回路も使用されるICの耐圧が低いのであまり
高い電圧を使用することは出来ない。
In the electrostrictive effect element utilizing the lateral effect, it is possible to obtain a displacement amount proportional to the electric field and the dimension in the vertical direction even with a constant applied voltage. However, in the electrostrictive effect element utilizing the vertical effect with high energy conversion efficiency, when the voltage applied from the outside is made constant and the dimension in the direction in which strain is generated is increased, the electric field strength is lowered, and therefore the displacement amount is not large. Therefore, in this case, in order to obtain a large amount of displacement, it is necessary to increase the applied voltage so that the electric field strength does not decrease. However, in order to increase the voltage, a large and expensive power source is required, which increases the risk of handling. Also, because the withstand voltage of the IC used for the control circuit for driving the transducer is low, too high voltage cannot be used.

以上の欠点を改善するために積層チップコンデンサ型の
構造が提案されている。この構造を第1図(a),
(b)に示す。第1図(a)において電歪材料1の内部
に内部電極2が一定の間隔で形成されており、一つおき
に外部電極3と接続している。内部電極の間隔は通常の
チップコンデンサの技術で数10ミクロン程度にすること
が出来る。この構造を採用すると電極距離がせまくなる
ため低電圧で駆動可能な縦効果利用の電歪効果素子が実
現出来る。
In order to improve the above drawbacks, a multilayer chip capacitor type structure has been proposed. This structure is shown in FIG.
It shows in (b). In FIG. 1 (a), internal electrodes 2 are formed inside the electrostrictive material 1 at regular intervals, and every other electrode is connected to an external electrode 3. The distance between the internal electrodes can be set to about several tens of microns by using ordinary chip capacitor technology. If this structure is adopted, the electrode distance becomes narrower, so that it is possible to realize an electrostrictive effect element utilizing the vertical effect that can be driven at a low voltage.

ところで積層方向から見た透視図である第1図(b)か
ら明らかな様に、この構造では内部電極の重なる面積
(中央の矩形部分)は素子の断面積と比較して小さい。
従って基本的には内部電極の重なった部分は電界に応じ
て変形するが、他の部分は変形せず、このため素子全体
としての変位量はその材料が持つ固有の歪量に対応せず
かなり小さくなる欠点がある。また、高い電圧を印加し
て大きな歪を発生させると変形する部分と変形しない部
分との境界に応力集中が起こり素子が機械的に破壊する
欠点がある。
By the way, as is apparent from FIG. 1 (b) which is a perspective view seen from the stacking direction, in this structure, the overlapping area of the internal electrodes (rectangular portion at the center) is smaller than the cross-sectional area of the element.
Therefore, basically, the overlapped part of the internal electrodes is deformed according to the electric field, but the other parts are not deformed. Therefore, the displacement amount of the element as a whole does not correspond to the inherent strain amount of the material and is considerably large. It has the drawback of becoming smaller. Further, when a high voltage is applied to generate a large strain, stress concentration occurs at a boundary between a deformed portion and a non-deformed portion, which causes a mechanical breakdown of the element.

本発明の目的は上記の欠点を改善した電歪効果素子を提
供することにある。本発明は電歪効果を示す材料と内部
電極とが交互に積層され一体に焼成された積層焼結体か
らなる電歪効果素子において、各内部電極には互いに独
立した微小な空白部が複数個形成され、かつ各内部電極
の外周は前記電歪効果素子の断面の外周と重なっている
構造であり、さらにこの素子の外側から各内部電極を一
層おきに電気的に接続してなることを特徴とする。本発
明の電歪効果素子は内部電極の重なる面積を大きくでき
るので従来構造の素子に比べ大きな変位量を実現でき、
同時に破壊に対する強度が増大した。これは圧電材料層
全体に均一に電界が印加され歪が一様に発生して応力集
中が起こらないことと、内部電極の空白部を通じて両側
のセラミック同士がつながり素子の機械的強度が増大し
たことによる。
An object of the present invention is to provide an electrostrictive effect element with which the above drawbacks are improved. The present invention provides an electrostrictive effect element comprising a laminated sintered body in which a material exhibiting an electrostrictive effect and an internal electrode are alternately laminated and fired integrally, and each internal electrode has a plurality of independent minute blank portions. It is formed, and the outer circumference of each internal electrode overlaps with the outer circumference of the cross section of the electrostrictive effect element, and each internal electrode is electrically connected to every other layer from the outside of the element. And Since the electrostrictive effect element of the present invention can increase the overlapping area of the internal electrodes, a large displacement amount can be realized as compared with the element having the conventional structure,
At the same time, the strength against fracture increased. This is because an electric field is uniformly applied to the entire piezoelectric material layer and strain is not evenly generated so that stress concentration does not occur, and the ceramics on both sides are connected through the blank part of the internal electrode to increase the mechanical strength of the element. by.

次に実施例に従って本発明の詳細な説明を行なう。Next, the present invention will be described in detail according to examples.

実施例1 マグネシウム・ニオブ酸鉛Pb(Mg1/3Nb2/3)O3とチタン
酸鉛PbTiO3をモル比で9対1の割合で固溶させたセラミ
ック材料を用いて本発明の電歪効果素子の効果を調べ
た。この材料は大きな電歪効果を示すことがよく知られ
ている。
Example 1 A magnesium / lead niobate Pb (Mg 1/3 Nb 2/3 ) O 3 and lead titanate PbTiO 3 solid solution was used at a molar ratio of 9: 1, and a ceramic material of the present invention was used. The effect of the strain effect element was investigated. It is well known that this material exhibits a large electrostrictive effect.

本材料の予焼粉末と有機バインダー、有機溶媒とを混合
し、泥漿を作製した。この泥漿をドクターブレード法で
フィルム上に数100ミクロンの厚さにキャスティング
し、グリーンシートを作製した。該シートを乾燥し、マ
イラーフィルムから剥離し、所定の形状に切断した後、
白金ペーストを片面に印刷し、さらにこれらのシートを
数10枚積層、圧着し、所定の寸法に切断した後約1200℃
の温度で焼成した。
A pre-baked powder of this material was mixed with an organic binder and an organic solvent to prepare a slurry. This slurry was cast on a film with a thickness of several hundreds of microns by a doctor blade method to prepare a green sheet. After drying the sheet, peeled from the mylar film, cut into a predetermined shape,
Platinum paste is printed on one side, several tens of these sheets are laminated, pressure-bonded, cut to the specified size, then about 1200 ° C
It was fired at the temperature of.

第2図(a),(b)は本発明の構造を有する電歪効果
素子の外観及び内部電極形状を示すもので、縦、横の寸
法が各々a=3mm、長さがl=10mmの直方体で電歪材料2
1と白金内部電極22が交互に積層された構造になってい
る。この内部電極の間隔は250ミクロンである。
FIGS. 2 (a) and 2 (b) show the appearance and internal electrode shape of the electrostrictive effect element having the structure of the present invention. The vertical and horizontal dimensions are a = 3 mm, and the length is l = 10 mm. Rectangular parallelepiped electrostrictive material 2
It has a structure in which 1 and platinum internal electrodes 22 are alternately laminated. The internal electrode spacing is 250 microns.

各内部電極はその外周の内側に該電極の形成されていな
い部分を1個所以上有している。この実施例では各内部
電極中の該部分が16個所ある構造とした。この空白部の
数、形状、位置は適時変更することが可能である。また
実施例においては電歪効果素子の断面の面積に対し、各
内部電極の面積が95%、85%、70%の3種類の内部電極
を有する電歪効果素子を作製した。次に素子側面に露出
している各内部電極を一層おきに外部からリード線23を
ハンダ付けすることにより電気的に接続し、2つの電極
端子A,Bをとり出した。比較のため外形寸法が同じで、
電極構造の異なる第1図に示した従来の積層チップコン
デンサ型の電歪効果素子を同時に試作した。電極の重な
り面積は素子断面積の84%である。
Each internal electrode has one or more portions where the electrode is not formed inside the outer periphery thereof. In this embodiment, each internal electrode has 16 such portions. The number, shape, and position of this blank portion can be changed at any time. Further, in the example, an electrostrictive effect element having three types of internal electrodes in which the area of each internal electrode was 95%, 85%, and 70% of the area of the cross section of the electrostrictive effect element was produced. Next, every other internal electrode exposed on the side surface of the device was electrically connected by soldering a lead wire 23 from every other layer, and two electrode terminals A and B were taken out. For comparison, the external dimensions are the same,
A conventional multilayer chip capacitor type electrostrictive effect element shown in FIG. 1 having a different electrode structure was simultaneously prototyped. The overlapping area of the electrodes is 84% of the element cross-sectional area.

素子の電極素子A,B間に直流電圧を印加して素子の長さ
l方向の変位量の測定を本発明素子と従来素子に関して
行なった。結果を第3図に示す。図中、、は本発
明素子に関するもので、は電極面積が素子断面積の95
%、は85%そしては70%の場合である。図から明ら
かな様に本発明の電歪効果素子は従来素子と比較して同
一印加電圧に対する変位量が大きい。
A DC voltage was applied between the electrode elements A and B of the element, and the displacement amount in the length 1 direction of the element was measured for the element of the present invention and the conventional element. Results are shown in FIG. In the figure, is related to the element of the present invention.
%, Is 85% and is 70%. As is apparent from the figure, the electrostrictive effect element of the present invention has a larger displacement amount with respect to the same applied voltage than the conventional element.

実施例2 実施例1に用いた試料に関して最高電圧250V、パルス巾
1msの正弦波パルス電圧を繰り返し連続的に印加して、
最大変位量と寿命の測定を行なった。結果を第4図に示
す。図中の番号は実施例1の試料番号に対応している。
図から明らかな様に従来素子では最大変位が1.3ミクロ
ンで約25,000回の繰り返しパルス印加で機械的に破壊し
た。一方本発明素子はすべて最大変位が1.3ミクロン以
上で、かつ1億回の繰り返し電圧パルス印加に対しても
破壊しなかった。
Example 2 The sample used in Example 1 has a maximum voltage of 250 V and a pulse width.
Repeatedly and continuously applying a 1 ms sinusoidal pulse voltage,
The maximum displacement and life were measured. Results are shown in FIG. The numbers in the figure correspond to the sample numbers in Example 1.
As is clear from the figure, the conventional element had a maximum displacement of 1.3 microns and was mechanically destroyed by applying repeated pulses about 25,000 times. On the other hand, all the devices of the present invention had a maximum displacement of 1.3 μm or more, and did not break even after 100 million repeated voltage pulse applications.

以上の実施例から明らかな様に本発明の電歪効果素子は
従来の積層チップコンデンサ型の素子と比較して変位
量、寿命共に優れていることが明らかである。
As is clear from the above examples, it is clear that the electrostrictive effect element of the present invention is superior in displacement amount and life as compared with the conventional multilayer chip capacitor type element.

【図面の簡単な説明】[Brief description of drawings]

第1図は積層チップコンデンサ型の従来の電歪効果素子
の構造図。 第1図(a)は断面図。第1図(b)は積層方向からの
透視図。 第2図は本発明の電歪効果素子の構造図。 第2図(a)は側面図。第2図(b)は内部電極の形状
を示す図。 第3図は本発明素子と従来素子に関する変位量と印加電
圧の関係を示す図。 第4図は本発明素子と従来素子にパルス電圧を繰り返し
印加した場合の最大変位量と寿命の関係を示す図。 なお、各図において、1,21は電歪材料、2,22は内部電
極、3は外部電極、23はリード線である。
FIG. 1 is a structural diagram of a conventional multilayer chip capacitor type electrostrictive effect element. FIG. 1 (a) is a sectional view. FIG. 1B is a perspective view from the stacking direction. FIG. 2 is a structural diagram of the electrostrictive effect element of the present invention. FIG. 2 (a) is a side view. FIG. 2B is a diagram showing the shape of the internal electrodes. FIG. 3 is a diagram showing the relationship between the displacement amount and the applied voltage for the device of the present invention and the conventional device. FIG. 4 is a diagram showing the relationship between the maximum displacement and the life when the pulse voltage is repeatedly applied to the device of the present invention and the conventional device. In each figure, 1 and 21 are electrostrictive materials, 2 and 22 are internal electrodes, 3 is an external electrode, and 23 is a lead wire.

フロントページの続き (72)発明者 越智 篤 東京都港区芝五丁目33番1号 日本電気株 式会社内 (72)発明者 矢野 健 東京都港区芝五丁目33番1号 日本電気株 式会社内 (72)発明者 浜付 武重 東京都港区芝五丁目33番1号 日本電気株 式会社内 (72)発明者 福井 泉 東京都港区芝五丁目33番1号 日本電気株 式会社内 (56)参考文献 特開 昭53−79488(JP,A) 特開 昭52−40091(JP,A) 実公 昭54−30953(JP,Y2)Front Page Continuation (72) Inventor Atsushi Ochi 5-33-1 Shiba, Minato-ku, Tokyo NEC Corporation Stock company (72) Inventor Ken Yano 5-33-1, Shiba, Minato-ku, Tokyo NEC Corporation In-company (72) Inventor Takeshige Hamashige 5-33-1 Shiba, Minato-ku, Tokyo NEC Corporation Stock company (72) Inventor Izumi Fukui 5-33-1-3 Shiba, Minato-ku, Tokyo NEC Corporation (56) References JP-A-53-79488 (JP, A) JP-A-52-40091 (JP, A) Jitsuko 54-30953 (JP, Y2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電歪効果を示す材料と内部電極とが交互に
積層され一体に焼成された積層焼結体からなる電歪効果
素子において、各内部電極には互いに独立した微小な空
白部が複数個形成され、かつ各内部電極の外周は前記電
歪効果素子の断面の外周と重なっており、さらに素子の
外周から各内部電極を一層おきに接続してなることを特
徴とする電歪効果素子。
1. An electrostrictive effect element composed of a laminated sintered body in which a material exhibiting an electrostrictive effect and internal electrodes are alternately laminated and integrally fired, and each internal electrode is provided with minute voids independent of each other. The electrostrictive effect is characterized in that a plurality of internal electrodes are formed and the outer circumference of each internal electrode overlaps the outer circumference of the cross section of the electrostrictive effect element, and that each internal electrode is connected from the outer circumference of the element to every other layer. element.
JP57079036A 1982-05-11 1982-05-11 Electrostrictive effect element Expired - Lifetime JPH0671102B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP57079036A JPH0671102B2 (en) 1982-05-11 1982-05-11 Electrostrictive effect element
EP83104556A EP0094078B1 (en) 1982-05-11 1983-05-09 Multilayer electrostrictive element which withstands repeated application of pulses
DE8383104556T DE3378393D1 (en) 1982-05-11 1983-05-09 Multilayer electrostrictive element which withstands repeated application of pulses
CA000427828A CA1206193A (en) 1982-05-11 1983-05-10 Multilayer electrostrictive element which withstands repeated application of pulses
AU14422/83A AU553391B2 (en) 1982-05-11 1983-05-10 Multilayer electrostrictive element
KR1019830002025A KR860000255B1 (en) 1982-05-11 1983-05-11 Multilayer electrostrictive element
US06/493,583 US4523121A (en) 1982-05-11 1983-05-11 Multilayer electrostrictive element which withstands repeated application of pulses
BR8302536A BR8302536A (en) 1982-05-11 1983-05-11 ELECTROSTRITIVE ELEMENT OF HIGH-RESISTANCE MULTIPLE LAYERS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57079036A JPH0671102B2 (en) 1982-05-11 1982-05-11 Electrostrictive effect element

Publications (2)

Publication Number Publication Date
JPS58196076A JPS58196076A (en) 1983-11-15
JPH0671102B2 true JPH0671102B2 (en) 1994-09-07

Family

ID=13678687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57079036A Expired - Lifetime JPH0671102B2 (en) 1982-05-11 1982-05-11 Electrostrictive effect element

Country Status (1)

Country Link
JP (1) JPH0671102B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142875A (en) * 1986-12-05 1988-06-15 Sumitomo Special Metals Co Ltd Piezoelectric laminated actuator
US7591542B2 (en) 2004-06-03 2009-09-22 Brother Kogyo Kabushiki Kaisha Piezoelectric actuator, method for producing the same and ink-jet head
WO2009096381A1 (en) * 2008-01-29 2009-08-06 Kyocera Corporation Laminated piezoelectric element, and injector equipped with laminated piezoelectric element and fuel injection system
JP5133399B2 (en) * 2008-02-26 2013-01-30 京セラ株式会社 Multilayer piezoelectric element, injection device including the same, and fuel injection system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379488A (en) * 1976-12-24 1978-07-13 Ngk Spark Plug Co Piezooelectric element
JPS5430953U (en) * 1977-08-04 1979-02-28

Also Published As

Publication number Publication date
JPS58196076A (en) 1983-11-15

Similar Documents

Publication Publication Date Title
US4523121A (en) Multilayer electrostrictive element which withstands repeated application of pulses
EP0479328B1 (en) Piezoelectric actuator
GB2242312A (en) Laminated displacement device
JPS6317354B2 (en)
JPH0256830B2 (en)
KR100232435B1 (en) Piezoelectric transformer
JPS6334636B2 (en)
JPH11112046A (en) Piezoelectric actuator and its manufacture
JP2951129B2 (en) Multilayer piezoelectric actuator and method of manufacturing the same
JPH0671102B2 (en) Electrostrictive effect element
JPH065794B2 (en) Electrostrictive effect element
JPH0451992B2 (en)
JPH03138987A (en) Electrostrictive effect element
JP2779182B2 (en) Laminated piezoelectric electrostrictive element
JPS6132835B2 (en)
JPH05243635A (en) Manufacture of electrostrictive effect device
JPH04337682A (en) Piezoelectric effect element and electrostrictive effect element
JP2705333B2 (en) Piezoelectric effect element, electrostrictive effect element and method of manufacturing the same
JPH0519995B2 (en)
JPH0353572A (en) Electrostrictive effect element
JPH04352481A (en) Manufacture of electrostrictive effect element
JPH04264784A (en) Electrostrictive effect element and manufacture thereof
JPH04343281A (en) Electrostrictive effect element and manufacture thereof
JPH0279482A (en) Electrostriction effect element and manufacture thereof
JPH01184968A (en) Manufacture of laminar piezoelectric element