JPH0670471A - Power controller - Google Patents

Power controller

Info

Publication number
JPH0670471A
JPH0670471A JP4211920A JP21192092A JPH0670471A JP H0670471 A JPH0670471 A JP H0670471A JP 4211920 A JP4211920 A JP 4211920A JP 21192092 A JP21192092 A JP 21192092A JP H0670471 A JPH0670471 A JP H0670471A
Authority
JP
Japan
Prior art keywords
power
command
reactive power
reactive
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4211920A
Other languages
Japanese (ja)
Inventor
Masaru Hirano
勝 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4211920A priority Critical patent/JPH0670471A/en
Publication of JPH0670471A publication Critical patent/JPH0670471A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To control an active power to stabilize a power system efficiently by a method wherein, when it is judged that there is a fault from a fault detection signal detected by a power control plant, an existing reactive power command is switched to a reactive power command which instructs a minimum power that the power control plant can output or a power close to it. CONSTITUTION:A PQ command generator 6 outputs an active power command P* and a first reactive power command Q1* which are required by a system. On the other hand, the Q instruction generator 71 of a power controller 7 outputs a second reactive power command Q2* which instructs a minimum power that a power control plant 2 can supply or a power close to it. When it is judged that there is no fault from a fault detection signal detected by the power control plant 2, the first reactive power command Q1* is selected and, when it is judged that there is a fault, the second reactive power command Q2* is selected by the switching operation of a switch 72 and outputted from the power controller 7 as a reactive power command Q*. With this constitution, the operational region of the active power of the plant can be maximized and the power fluctuation of the system can be suppressed efficiently.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、交流電源に有効及び無
効電力を独立に供給する電力制御プラントの電力制御装
置に係り、特に事故時有効電力指令を切換えて電力制御
プラントから供給される電力を調節する電力制御装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power control device for a power control plant that supplies active and reactive power to an AC power source independently, and more particularly to power supplied from a power control plant by switching active power commands at the time of an accident. The present invention relates to a power control device that adjusts.

【0002】[0002]

【従来の技術】有効及び無効電力を独立に供給できる電
力制御プラントの例として、超電導マグネット・エネル
ギー貯蔵システム(今後SMESと称す)と交流励磁同
期機システム(今後ACSMと称す)がある。まずこれ
らの動作原理について説明し、次に系統事故時に電力系
統を安定化する方法について考察する。ここでの事故は
電力制御プラントの事故でなく、これに接続される系統
の事故を意味する。
2. Description of the Related Art As an example of a power control plant capable of independently supplying active and reactive power, there are a superconducting magnet / energy storage system (hereinafter referred to as SMES) and an AC excitation synchronous machine system (hereinafter referred to as ACSM). First, these operating principles will be explained, and then a method for stabilizing the power system in the event of a system fault will be considered. The accident here means not a power control plant accident, but an accident in the system connected to it.

【0003】まず、SMESの動作原理について説明す
る。図5にSMESの構成図を示す。電源1は電力制御
プラントのSMES2に接続され、電源1の交流を直流
電力変換器21を介して直流に変換し、超電導マグネッ
ト22に磁気エネルギーを蓄積する。位相指令により位
相制御器3は位相信号を直流電力変換器21に出力し、
有効及び無効電力を制御する。
First, the operating principle of SMES will be described. FIG. 5 shows a configuration diagram of SMES. The power supply 1 is connected to the SMES 2 of the power control plant, converts AC of the power supply 1 into DC through the DC power converter 21, and stores magnetic energy in the superconducting magnet 22. In response to the phase command, the phase controller 3 outputs a phase signal to the DC power converter 21,
Control active and reactive power.

【0004】図6にSMESが出力できる有効及び無効
電力図を示す。超電導マグネットを流れる直流Id と電
力変換器の直流最大電圧Vdoの積で決まる最大皮相電力
max の円内の有効及び無効電力であれば、制御可能で
あり、両電力を独立に制御できる特徴を有する。
FIG. 6 shows active and reactive power diagrams which can be output by SMES. If valid and reactive power in the circle of the maximum apparent power S max determined by a product of DC maximum voltage V do DC I d and the power converter through the superconducting magnet is controllable, can be controlled both power independently It has characteristics.

【0005】次にACSMの動作原理について説明す
る。図7にACSMの構成図を示す。電源1は電力制御
プラントのACSM20に接続される。第1の電源23
から供給される交流を交流電力変換器24を介して交流
に変換し、交流励磁同期機25の2次側より交流励磁す
る。位相制御器3で位相指令に応じた位相信号を交流電
力変換器24に出力し、ACSMから出力される有効及
び無効電力を制御する。ここで第1の電源23の代りに
電源1を交流電力変換器24の入力としても動作原理は
同様である。
Next, the operating principle of ACSM will be described. FIG. 7 shows a configuration diagram of ACSM. The power supply 1 is connected to the ACSM 20 of the power control plant. First power supply 23
The AC supplied from the AC power converter 24 is converted into AC via the AC power converter 24, and AC is excited from the secondary side of the AC excitation synchronous machine 25. The phase controller 3 outputs a phase signal corresponding to the phase command to the AC power converter 24, and controls active and reactive power output from the ACSM. Here, the operating principle is the same even when the power source 1 is used as the input of the AC power converter 24 instead of the first power source 23.

【0006】図8にACSMから出力される有効及び無
効電力図を示す。交流励磁同期機の励磁リアクタンスに
よる無効電力量Q0 を中心にした皮相電力最大値Smax
の半径をもつ円内の有効及び無効電力を独立に制御でき
る。皮相電力最大値Smax は、交流電力変換器24が出
力できる最大相電圧Ven(max) を系統インピーダンスZ
e で除算した最大相電流Ien(max) と電源電圧の積のル
ート3倍で決まる。
FIG. 8 shows active and reactive power diagrams output from the ACSM. Maximum apparent power S max centered on reactive power Q 0 due to the excitation reactance of the AC excitation synchronous machine
The active and reactive powers in a circle with radius of can be controlled independently. The apparent power maximum value S max is the maximum phase voltage V en (max) that can be output by the AC power converter 24 and the system impedance Z.
It is determined by triple the route of the product of the maximum phase current I en (max) divided by e and the power supply voltage.

【0007】これらSMESやACSMでは有効及び無
効電力を独立に制御できるが、交流電源電圧,インピー
ダンスや変換器容量で電力制御領域が節減される特徴が
ある。有効及び無効電力の応答速度は数10msec以
下と同期機の有効電力の応答速度に較べかなり速いの
で、電力系統安定化の制御が可能である。事故時の電力
系統安定化は系統事故後系統に接続された同期機の電力
動揺を有効電力の制御により抑えることが主な目的であ
る。このような目的で事故時電力制御プラントの有効電
力指令は与えられる。
Although these SMES and ACSM can independently control active and reactive power, they have a feature that the power control area is saved by the AC power supply voltage, impedance and converter capacity. Since the response speed of active and reactive power is several tens of msec or less, which is considerably higher than the response speed of active power of the synchronous machine, it is possible to control power system stabilization. The main purpose of power system stabilization at the time of an accident is to suppress the power fluctuation of the synchronous machine connected to the system after the system accident by controlling the active power. For this purpose, the active power command of the power control plant at the time of accident is given.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、電力制
御プラントの無効電力指令をどのようにするかについて
は考察されていなかった。既に述べたように電力系統安
定化では連系された同期機の電力動揺を抑制するように
有効電力を制御するが、無効電力は系統電圧の降下等の
悪影響がない範囲であればどのように制御してもよい。
一方、電力制御プラントの電力制御範囲は図6や図8の
ようにその最大皮相電力により制限される。このため無
効電力の量により有効電力の最大の運転範囲が制限され
る問題点がある。
However, no consideration has been given to what to do with the reactive power command of the power control plant. As described above, in power system stabilization, active power is controlled so as to suppress power fluctuations of interconnected synchronous machines, but what is the reactive power as long as there is no adverse effect such as system voltage drop? You may control.
On the other hand, the power control range of the power control plant is limited by the maximum apparent power as shown in FIGS. Therefore, there is a problem that the maximum operating range of active power is limited by the amount of reactive power.

【0009】本発明は上記問題点を解決するためになさ
れたものであり、有効電力の運転範囲を最大にするよう
に無効電力指令を切換え、電力系統安定化を有効に行な
える電力制御プラントの電力制御装置を提供することを
目的としている。
The present invention has been made to solve the above-mentioned problems, and is directed to a power control plant capable of effectively stabilizing a power system by switching reactive power commands so as to maximize the operating range of active power. It is intended to provide a power control device.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明では交流電源への有効及び無効電力を独立に
供給でき、かつ系統事故を検出して事故検出信号を出力
する機能を有する電力制御プラントと、前記電力制御プ
ラントから出力される有効及び無効電力を検出する電力
検出器と、交流電源の要求に応じた指令となる有効電力
指令と第1の無効電力指令を発生するPQ指令発生器
と、前記有効電力指令と無効電力指令となる無効電力指
令と前記電力検出器により検出された有効及び無効電力
信号を入力し、各々の電力指令と電力信号の偏差が零又
は一定になるように制御する位相指令を出力するPQ制
御器と、前記位相指令により前記電力制御プラントの有
効及び無効電力を制御する位相制御器を備えた電力制御
装置において、交流電源側の系統事故が発生したとき前
記電力制御プラントから出力される無効電力が最小又は
それに近い量となるような第2の無効電力指令を発生す
るQ指令発生器と、前記電力制御プラントにて系統事故
を検出したとき、PQ指令発生器の前記第1の無効電力
指令からQ指令発生器が有する第2の無効電力指令に切
換える切換器とから構成した。
In order to achieve the above object, the present invention provides a power supply capable of independently supplying active and reactive power to an AC power supply and having a function of detecting a system fault and outputting a fault detection signal. A control plant, a power detector that detects active and reactive power output from the power control plant, and an active power command that is a command according to a request of an AC power supply and a PQ command generation that generates a first reactive power command. Inputting the active power command, the reactive power command that becomes the active power command and the reactive power command, and the active and reactive power signals detected by the power detector so that the deviation between each power command and the power signal becomes zero or constant. In a power control device including a PQ controller that outputs a phase command that controls the power control and a phase controller that controls active and reactive power of the power control plant according to the phase command, System command in the power control plant, and a Q command generator that generates a second reactive power command such that the reactive power output from the power control plant becomes a minimum or an amount close to it when a system fault occurs on the power control plant. When an accident is detected, the PQ command generator is configured to switch from the first reactive power command to the second reactive power command included in the Q command generator.

【0011】[0011]

【作用】上記構成において、電力制御プラントで検出さ
れた事故検出信号により事故と判断すると無効電力指令
を切換え、電力系統安定化のための制御動作が行なわれ
る。事故検出信号により事故と判断すると、無効電力指
令を電力制御プラントが出力できる最小又はそれに近い
量の無効電力指令に切換える。これにより電力制御プラ
ントの有効電力の運転可能領域は最大又はそれに近い領
域を確保でき、有効電力の制御による電力系統安定化を
有効に行なうことができる。このようにして事故検出信
号により切換えられる無効電力指令と、これと独立な有
効電力指令と検出された有効及び無効電力信号から各々
に対応する電力の偏差が零又は一定になるような位相指
令を求める。この位相指令から電力制御プラントを作動
する位相信号を求め、このプラントから出力される有効
及び無効電力を独立に制御する。
In the above structure, when it is determined that an accident has occurred based on the accident detection signal detected by the power control plant, the reactive power command is switched and the control operation for stabilizing the power system is performed. When it is determined that an accident has occurred by the accident detection signal, the reactive power command is switched to the minimum or an amount of the reactive power command that can be output by the power control plant. As a result, the operable area of the active power of the power control plant can be ensured to be the maximum or close to the operable area, and the electric power system can be effectively stabilized by controlling the active power. In this way, the reactive power command that is switched by the accident detection signal, the active power command independent of this, and the phase command that the deviation of the power corresponding to each from the detected active and reactive power signals become zero or constant. Ask. A phase signal for operating the power control plant is obtained from this phase command, and active and reactive power output from this plant is independently controlled.

【0012】[0012]

【実施例】以下図面を参照して実施例を説明する。Embodiments will be described below with reference to the drawings.

【0013】図1は本発明による電力制御装置の一実施
例の構成図である。電源1への有効及び無効電力は両電
力を独立に出力できる電力制御プラント2から供給され
る。これら有効及び無効電力は電力検出器4で検出さ
れ、有効及び無効電力信号P,Qを出力する。一方、有
効及び無効電力指令P* ,Q* は次のような回路から出
力される。PQ指令発生器6は系統が要求する有効電力
及び第1の無効電力指令P* ,Q1 * を出力する。電力
制御装置7のQ指令発生器71は電力制御プラント2が
供給できる最小又はそれに近い量の第2の無効電力指令
2 * を出力する。第1及び第2の無効電力指令
1 * ,Q2 * は、電力制御プラントで検出された事故
検出信号により事故でない時第1の無効電力指令
1 * ,事故時第2の無効電力指令Q2 * を選ぶように
切換器72で切換え、無効電力指令Q* を出力する。P
Q指令発生器6と電力制御装置7から出力される有効及
び無効電力指令P* ,Q* と電力検出器4で検出された
有効及び無効電力信号P,QはPQ制御器5に入力さ
れ、各々の電力の偏差が零が一定になるような位相指令
α* を出力する。位相制御器3はこの位相指令により電
力制御プラントを作動する位相信号αを出力し、有効及
び無効電力を独立に制御する。
FIG. 1 is a block diagram of an embodiment of a power control device according to the present invention. Active and reactive power to the power supply 1 is supplied from a power control plant 2 that can output both powers independently. These active and reactive powers are detected by the power detector 4 and output active and reactive power signals P and Q. On the other hand, active and reactive power command P * , Q * Is output from the following circuit. The PQ command generator 6 uses the active power required by the grid and the first reactive power command P *. , Q 1 * Is output. The Q command generator 71 of the power control device 7 has a minimum reactive power command Q 2 * that can be supplied by the power control plant 2 or a second reactive power command Q 2 *. Is output. First and second reactive power command Q 1 * , Q 2 * Is the first reactive power command Q 1 * when there is no accident due to the accident detection signal detected in the power control plant . , 2nd reactive power command Q 2 * To be selected by the switch 72, and the reactive power command Q * Is output. P
The active and reactive power commands P * output from the Q command generator 6 and the power control device 7 , Q * And the active and reactive power signals P and Q detected by the power detector 4 are input to the PQ controller 5, and the phase command α * that makes the deviation of each power constant zero Is output. The phase controller 3 outputs a phase signal α for operating the power control plant according to this phase command, and controls active and reactive power independently.

【0014】図2に本発明によるSMESの電力制御装
置の一実施例を示す。電源1は電力制御プラントのSM
ES2に接続され、電源1の交流電力を直流電力変換器
21を介して直流に変換し、超電導マグネット22に磁
気エネルギーを蓄積する。SMESから電源は出力され
る有効及び無効電力を電力検出器4で検出し、各々の信
号P,QをPQ制御器5に入力する。一方、有効及び無
効電力指令P* ,Q* は次のような回路から出力され
る。PQ指令発生器6は系統が要求する有効電力及び第
1の無効電力指令P* ,Q1 * を出力する。電力制御装
置7のQ指令発生器71は零又はそれに近い量の第2の
無効電力指令Q2 * を出力する。Q2 * の量は図6の有
効無効電力図で有効電力の運転可能領域を最大又はそれ
に近くするように選ぶ。零以外にその近くの量を選ぶ理
由としては例えば電力変換器の運転では有効及び無効電
力が共に零又はその付近になる領域で変換器からの高調
波が多くなり運転特性が劣化する可能性があるため、こ
れを避けるためである。又、直流電力変換器21の交流
側に転流エネルギー処理用のコンデンサが付いている場
合には、コンデンサによる無効電力量がSMESが供給
する最小の無効電力量となり、これを第2の無効電力指
令Q2 * とする。第1及び第2の無効電力指令Q1 *
2 * は電力制御プラントで検出された事故検出信号に
より事故でない時第1の無効電力指令Q1 * ,事故時第
2の無効電力指令Q2 * を選ぶように切換器72で切換
え、無効電力指令Q* を出力する。ここで事故検出信号
はSMES2の交流電圧を電圧検出器26で検出し、そ
の検出された電圧信号が許容値を越えたことで系統事故
と判断する事故検出器27より出力される。PQ制御器
5では有効及び無効電力指令P* ,Q* と有効無効電力
信号P,Qの各々の偏差が零又は一定になるような位相
指令α* を出力する。この位相指令α* により位相制御
器3は位相信号αを直流電力変換器21に出力し、有効
及び無効電力を制御する。
FIG. 2 shows the SMES power control device according to the present invention.
An example of the apparatus will be described. Power source 1 is SM of power control plant
Connected to ES2, convert AC power from power supply 1 to DC power converter
It is converted into direct current via 21 and magnetized by superconducting magnet 22.
Stores qi energy. Power is output from SMES
The active and reactive powers are detected by the power detector 4, and the
The signals P and Q are input to the PQ controller 5. On the other hand, effective and non-effective
Effective power command P* , Q* Is output from the following circuit
It The PQ command generator 6 uses the active power required by the grid and the first
Reactive power command P of 1* , Q1 * Is output. Power control device
The Q command generator 71 of the device 7 has a second value of zero or an amount close to zero.
Reactive power command Q2 * Is output. Q2 * The amount of
The maximum or the maximum operable area of active power in the reactive power diagram
Choose to be close to. The theory of choosing a quantity near zero other than zero
The reason for this is, for example, when the power converter is operating
The harmonics from the converter in the region where the forces are both at or near zero.
This is because the number of waves may increase and the driving characteristics may deteriorate.
This is to avoid this. Also, the AC of the DC power converter 21
If the side has a condenser for processing commutation energy
In case of SMES, SMES supplies reactive power
The minimum reactive power that
Order Q2 * And First and second reactive power command Q1 *
Q2 * To the accident detection signal detected in the power control plant
First reactive power command Q when it is less accident1 * , At the time of the accident
Reactive power command Q of 22 * Select with switch 72 to select
E, reactive power command Q* Is output. Where the accident detection signal
Detects the AC voltage of SMES2 with the voltage detector 26, and
System fault when the detected voltage signal of
It is output from the accident detector 27 which determines that PQ controller
In 5, active and reactive power command P* , Q* And active reactive power
Phase such that the deviation of each of the signals P and Q becomes zero or constant
Command α* Is output. This phase command α* Phase control by
The device 3 outputs the phase signal α to the DC power converter 21 to enable
And control reactive power.

【0015】図3に本発明によるACSMの電力制御装
置の一実施例を示す。電源1は電力制御プラントのAC
SM20に接続される。第1の電源23から供給される
交流電力を交流電力変換器24を介して交流に変換し、
交流励磁同期機25の2次側より交流励磁する。電力検
出器4で有効及び無効電力信号P,Qを検出し、PQ制
御器5に入力する。一方、有効及び無効電力指令P*
* は次のような回路から出力される。PQ指令発生器
6は系統が要求する有効電力及び第1の無効電力指令P
* ,Q1 * を出力する。電力制御装置7のQ指令発生器
71は交流励磁同期機の励磁リアクタンスによる無効電
力又はそれに近い量の第2の無効電力指令Q2 * を出力
する。このように選ぶと図8の有効無効電力図で有効電
力の運転可能領域は最大又はそれに近くなる。第2の無
効電力指令Q2 * を励磁リアクタンスによる無効電力量
の他にその近くにするのはSMESの場合同様主に電力
変換器の特性による。
FIG. 3 shows an embodiment of an ACSM power control apparatus according to the present invention. Power source 1 is AC of power control plant
Connected to SM20. The AC power supplied from the first power supply 23 is converted into AC through the AC power converter 24,
AC excitation is performed from the secondary side of the AC excitation synchronous machine 25. The power detector 4 detects active and reactive power signals P and Q and inputs them to the PQ controller 5. On the other hand, active and reactive power command P *
Q * Is output from the following circuit. The PQ command generator 6 uses the active power and the first reactive power command P required by the grid.
* , Q 1 * Is output. The Q command generator 71 of the power control device 7 controls the reactive power due to the excitation reactance of the AC excitation synchronous machine or the second reactive power command Q 2 * having an amount close to the reactive power . Is output. When selected in this way, the operable area of active power becomes maximum or close to it in the active / reactive power diagram of FIG. Second reactive power command Q 2 * It is mainly due to the characteristics of the power converter that SMES is made close to the reactive power due to the excitation reactance, as in the case of SMES.

【0016】第1及び第2の無効電力指令Q1 * ,Q2
* は電力制御プラントで検出された事故検出信号により
事故でない時第1の無効電力指令Q1 * ,事故時第2の
無効電力指令Q2 * を選ぶように切換器72で切換え、
無効電力指令Q* を出力する。ここで事故検出信号はA
CSM2の交流電圧を電圧検出器26で検出し、その検
出された電圧信号が許容値を越えたことで系統事故と判
断する事故検出器27より出力される。PQ制御器5で
は有効及び無効電力指令P* ,Q* と有効無効電力信号
P,Qの各々の偏差が零又は一定になるような位相指令
α* を出力する。この位相指令α* により位相制御器3
は位相信号αを直流電力変換器21に出力し、有効及び
無効電力を制御する。
First and second reactive power commands Q 1 * , Q 2
* Is the first reactive power command Q 1 * when there is no accident due to the accident detection signal detected in the power control plant , 2nd reactive power command Q 2 * Select the switch 72 to select
Reactive power command Q * Is output. Here, the accident detection signal is A
The AC voltage of the CSM2 is detected by the voltage detector 26, and the detected voltage signal is output from the accident detector 27 which judges that the system accident occurs when the detected voltage signal exceeds the allowable value. In the PQ controller 5, active / reactive power command P * , Q * And the phase command α * such that the deviation between the active and reactive power signals P and Q becomes zero or constant . Is output. This phase command α * Phase controller 3
Outputs the phase signal α to the DC power converter 21 to control active and reactive power.

【0017】図4はACSMの電力制御の他の実施例を
示す。電力検出器4は交流励磁同期機25と交流電力変
換器24間の有効及び無効電力を検出する。ここで電力
制御装置と電力制御をするPQ制御器と事故検出を行な
う電圧検出器,事故検出器の構成及び作用は図3と同様
であるため省略する。電力制御の演算の結果の位相指令
α* により位相制御器3は所望の有効及び無効電力を出
力できるような位相信号αを交流電力変換器24に出力
する。図3で交流電力変換器の有効及び無効電力と交流
励磁同期機の励磁リアクタンスによる無効電力の和を制
御しているのに対して、図4では交流電力変換器の有効
及び無効電力を制御しているという違いがある。さて、
有効及び無効電力は電圧と電流の積で表わされるが、電
圧は交流電源で確立される。このため電力検出器を交流
電圧と同相と90°位相のずれた相の電流を検出する電
流検出器に置換し、有効及び無効電力指令を電圧で除算
した有効及び無効電流指令で電流制御を行なう電流制御
系に置換できる。この時電力制御装置の有効及び無効電
力指令を出力するPQ指令発生器やQ指令発生器は各々
電流指令を出力する発生器に置換される。
FIG. 4 shows another embodiment of the power control of ACSM. The power detector 4 detects active and reactive power between the AC excitation synchronous machine 25 and the AC power converter 24. The configurations and functions of the power control device, the PQ controller for power control, the voltage detector for fault detection, and the fault detector are the same as those in FIG. Phase command α * resulting from the power control calculation Thus, the phase controller 3 outputs the phase signal α to the AC power converter 24 so that desired active and reactive powers can be output. 3 controls the sum of the active and reactive power of the AC power converter and the reactive power due to the excitation reactance of the AC excitation synchronous machine, while FIG. 4 controls the active and reactive power of the AC power converter. There is a difference. Now,
Active and reactive powers are represented by the product of voltage and current, which is established with an AC power source. Therefore, the power detector is replaced with a current detector that detects a current in a phase that is 90 degrees out of phase with the AC voltage, and current control is performed with active and reactive current commands obtained by dividing the active and reactive power commands by the voltage. It can be replaced with a current control system. At this time, the PQ command generator and the Q command generator that output active and reactive power commands of the power control device are replaced with generators that respectively output current commands.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば電
力系統事故時電力制御プラントの無効電力の出力を最小
にして、プラントの有効電力の運転領域を最大にし、系
統の電力動揺を有効に抑制できるという効果がある。
As described above, according to the present invention, the output of the reactive power of the power control plant at the time of a power system fault is minimized, the operating range of the active power of the plant is maximized, and the power fluctuation of the system is effective. There is an effect that can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】本発明をSMESに用いた実施例の構成図。FIG. 2 is a configuration diagram of an embodiment in which the present invention is used in SMES.

【図3】本発明をACSMに用いた一実施例の構成図。FIG. 3 is a configuration diagram of an embodiment in which the present invention is used in ACSM.

【図4】本発明をACSMに用いた他の実施例の構成
図。
FIG. 4 is a configuration diagram of another embodiment in which the present invention is used in ACSM.

【図5】SMESの構成図。FIG. 5 is a block diagram of SMES.

【図6】SMESの運転範囲を示すPQ図。FIG. 6 is a PQ diagram showing the operating range of SMES.

【図7】ACSMの構成図。FIG. 7 is a block diagram of ACSM.

【図8】ACSMの運転範囲を示すPQ図。FIG. 8 is a PQ diagram showing an operating range of ACSM.

【符号の説明】[Explanation of symbols]

1 交流電源 2,20 電力制御プラント 21 直流電力変換器 22 超電導マグネット 23 第1の交流電源 24 交流電力変換器 25 交流励磁同期機 26 電圧検出器 27 事故検出器 3 位相制御器 4 電力検出器 5 PQ制御器 6 PQ指令発生器 7 電力制御装置 71 Q指令発生器 72 切換器 1 AC power supply 2, 20 Power control plant 21 DC power converter 22 Superconducting magnet 23 First AC power supply 24 AC power converter 25 AC excitation synchronous machine 26 Voltage detector 27 Accident detector 3 Phase controller 4 Power detector 5 PQ controller 6 PQ command generator 7 Power control device 71 Q command generator 72 Switcher

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H02J 3/38 G 7373−5G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H02J 3/38 G 7373-5G

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 交流電源への有効及び無効電力を独立に
供給でき、かつ系統事故を検出して事故検出信号を出力
する機能を有する電力制御プラントと、前記電力制御プ
ラントから出力される有効及び無効電力を検出する電力
検出器と、交流電源の要求に応じた指令となる有効電力
指令と第1の無効電力指令を発生するPQ指令発生器
と、前記有効電力指令と無効電力指令となる無効電力指
令と前記電力検出器により検出された有効及び無効電力
信号を入力し、各々の電力指令と電力信号の偏差が零又
は一定になるように制御する位相指令を出力するPQ制
御器と、前記位相指令により前記電力制御プラントの有
効及び無効電力を制御する位相制御器を備えた電力制御
装置において、交流電源側の系統事故が発生したとき前
記電力制御プラントから出力される無効電力が最小又は
それに近い量となるような第2の無効電力指令を発生す
るQ指令発生器と、前記電力制御プラントにて系統事故
を検出したとき、PQ指令発生器の前記第1の無効電力
指令からQ指令発生器が有する第2の無効電力指令に切
換える切換器を備えることを特徴とする電力制御装置。
1. A power control plant capable of independently supplying active and reactive power to an AC power supply and having a function of detecting a system fault and outputting a fault detection signal, and active and reactive power output from the power control plant. A power detector that detects reactive power, a PQ command generator that generates an active power command and a first reactive power command that are commands according to a request of an AC power source, and a reactive power command and a reactive power command that are reactive power commands. A PQ controller that inputs a power command and active and reactive power signals detected by the power detector, and outputs a phase command that controls the deviation between each power command and the power signal to be zero or constant, In a power control device equipped with a phase controller that controls active and reactive power of the power control plant according to a phase command, when the system fault on the AC power supply side occurs, the power control plant And a Q command generator that generates a second reactive power command such that the reactive power output from the power control plant becomes a minimum or an amount close to it, and when a system fault is detected in the power control plant, A power control device comprising a switcher for switching from a first reactive power command to a second reactive power command included in a Q command generator.
JP4211920A 1992-08-10 1992-08-10 Power controller Pending JPH0670471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4211920A JPH0670471A (en) 1992-08-10 1992-08-10 Power controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4211920A JPH0670471A (en) 1992-08-10 1992-08-10 Power controller

Publications (1)

Publication Number Publication Date
JPH0670471A true JPH0670471A (en) 1994-03-11

Family

ID=16613860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4211920A Pending JPH0670471A (en) 1992-08-10 1992-08-10 Power controller

Country Status (1)

Country Link
JP (1) JPH0670471A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4884938A (en) * 1986-12-01 1989-12-05 Kawasaki Jukogyo Kabushiki Kaisha Apparatus for handling large-sized articles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4884938A (en) * 1986-12-01 1989-12-05 Kawasaki Jukogyo Kabushiki Kaisha Apparatus for handling large-sized articles

Similar Documents

Publication Publication Date Title
US5798633A (en) Battery energy storage power conditioning system
JP3133386B2 (en) Control device for current source converter for supplying to AC bus
US6313600B1 (en) Control method and apparatus for insufficient input voltage in an AC drive
JP3541982B2 (en) System overvoltage protection method and device for photovoltaic power converter
JP2004532595A (en) How to operate a wind turbine
JP6752401B1 (en) Power converter
CA1236524A (en) Uninterruptible power supply and line conditioner
JP6771707B1 (en) Power converter
JP4588178B2 (en) Power converter control device for power storage device
Elserougi et al. Investigation of inter-line dynamic voltage restorer with virtual impedance injection
JPH0670471A (en) Power controller
JP3682544B2 (en) Plant power rate control system using inverter drive device
JP3187257B2 (en) Operation control device for AC excitation synchronous machine
JP2006060961A (en) Power conversion device
JP2891030B2 (en) Secondary excitation device for AC excitation synchronous machine
JPH06261414A (en) Generator and generating method for solar car drive system
JP2000308349A (en) Frequency converter
JP3388672B2 (en) Pumped storage power generation system
JP3154336B2 (en) Inverter control circuit for photovoltaic power generation
JPH01263806A (en) Inverter device
JP3700018B2 (en) Control device and method for DC power transmission equipment
JPH03127212A (en) System power factor controller
JPH04117135A (en) Uninteruptible power supply
JPH08265975A (en) Static reactive power compensator
Alghobari et al. Secondary Frequency Control of Decoupled Trigonometric Saturated Droop Controller for Islanded Low-Voltage Mesh Microgrid with Linear Load