JPH0669607A - Measuring device for thickness of thin film and formation of reflecting mirror of semiconductor laser by use of the device - Google Patents

Measuring device for thickness of thin film and formation of reflecting mirror of semiconductor laser by use of the device

Info

Publication number
JPH0669607A
JPH0669607A JP24275092A JP24275092A JPH0669607A JP H0669607 A JPH0669607 A JP H0669607A JP 24275092 A JP24275092 A JP 24275092A JP 24275092 A JP24275092 A JP 24275092A JP H0669607 A JPH0669607 A JP H0669607A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor laser
wavelength
reflecting mirror
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24275092A
Other languages
Japanese (ja)
Inventor
Yuji Hiratani
雄二 平谷
Seiji Uchiyama
誠治 内山
Toshio Kikuta
俊夫 菊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP24275092A priority Critical patent/JPH0669607A/en
Publication of JPH0669607A publication Critical patent/JPH0669607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To acquire a film thickness measuring device of a simple structure and high precision and a reflecting mirror of high reflectivity wherein it is used by measuring a thickness of a thin film which is deposited and formed on an optical fiber end surface for each specific wavelength of a semiconductor laser. CONSTITUTION:An SiO2 thin film is formed on a substrate 5 as a low refractive index dielectric. When the film is formed to become the same as one-fourth of an oscillation wavelength of a semiconductor laser 1, output of a photodiode 11 shows an extreme value. Formation of the SiO2 thin film is discontinued when the extreme value is shown, and then deposit of amorphous Si is started as a high refractive index dielectric to form a thin film thereof. Also in the process, when a formed film thickness is one-fourth of the wavelength, that is, when output of the photodiode 11 shows an extreme value, a deposit source of a thin film formation material is switched. A multilayer film 6 which is formed by laminating a low refraction factor dielectric and a high refractive index dielectric alternately is formed on a substrate 5 in this way. A reflecting mirror having high reflectivity can be thereby formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体レーザを用いて成
長する薄膜の膜厚を測定する装置とその装置を利用して
半導体レーザの反射鏡を形成する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the thickness of a thin film grown by using a semiconductor laser and a method for forming a reflecting mirror of the semiconductor laser using the apparatus.

【0002】[0002]

【従来の技術】面発光レーザ、あるいは短キャビティレ
ーザ等の半導体レーザはシングルモード発振、集積性に
優れる等の利点を持つ。半面、レーザ領域がすくないた
め、レーザ発振を実現するには99%以上の高い反射率を
持った共振器が必要とされる。
2. Description of the Related Art A semiconductor laser such as a surface emitting laser or a short cavity laser has advantages such as single mode oscillation and excellent integration. On the other hand, since the laser region is small, a resonator with a high reflectance of 99% or more is required to realize laser oscillation.

【0003】このような高い反射率の反射鏡を作製する
には、半導体レーザの反射鏡形成面にアモルファスSi
やTiO2 のような高屈折率の誘電体とSiO2 のよう
な低屈折率の誘電体の薄膜を交互に積層して多層膜と
し、同時に各膜の厚さを該半導体レーザの発振波長の 1
/4波長とすることによって光の吸収が少なく且つ高反射
率が達成される。
In order to manufacture such a high-reflectance reflecting mirror, amorphous Si is formed on the reflecting mirror forming surface of a semiconductor laser.
And a thin film of a high-refractive-index dielectric material such as TiO 2 and a low-refractive-index dielectric material such as SiO 2 are alternately laminated to form a multi-layered film, and the thickness of each film is adjusted to the oscillation wavelength of the semiconductor laser. 1
With a wavelength of / 4, light absorption is low and high reflectance is achieved.

【0004】ところがこのような反射鏡は高反射率が達
成できる半面、波長範囲が極端に狭くなってしまう。従
って、反射鏡の反射率が最高となる波長をそのレーザの
発振波長に合わせるためには、薄膜を正確に発振波長の
1/4波長に制御することが必要とされる。
However, while such a reflecting mirror can achieve a high reflectance, the wavelength range becomes extremely narrow. Therefore, in order to match the wavelength at which the reflectance of the reflecting mirror is maximum with the oscillation wavelength of the laser, the thin film must be
It is necessary to control to 1/4 wavelength.

【0005】ところで現在上記の誘電体の薄膜を形成す
る方法としては、蒸着、スパッタ、CVD(化学的気相
成長法)等の種々の方法がある。そしてその際薄膜の厚
さ制御の方法としては従来から以下のものがあった。
At present, various methods such as vapor deposition, sputtering, and CVD (Chemical Vapor Deposition) are available as methods for forming the above-mentioned dielectric thin film. At that time, the following methods have been conventionally used to control the thickness of the thin film.

【0006】 あらかじめ薄膜の成長速度を求めてお
いて、実際の薄膜形成では、成長時間で制御を行う方
法。
A method in which the growth rate of the thin film is obtained in advance and the growth time is controlled in the actual thin film formation.

【0007】 誘電体薄膜を形成する基板の近傍に水
晶振動子を設置し、振動子の振動周波数が振動子上に堆
積した膜の厚さに比例することを利用した方法。
A method using a crystal oscillator installed near a substrate on which a dielectric thin film is formed, and utilizing the fact that the oscillation frequency of the oscillator is proportional to the thickness of the film deposited on the oscillator.

【0008】 誘電体薄膜を形成する基板の近傍にダ
ミーの基板を設置し、そのダミー基板に光を当てたと
き、反射する光の強度がダミー基板に堆積した膜の厚さ
の関数であることを利用した方法。
When a dummy substrate is placed near the substrate on which the dielectric thin film is formed and the dummy substrate is irradiated with light, the intensity of the reflected light is a function of the thickness of the film deposited on the dummy substrate. The method of using.

【0009】[0009]

【発明が解決しようとする課題】上記との膜厚制御
方法は、時間−膜厚、及び周波数−膜厚の関係から間接
的に膜厚を制御している。このため、薄膜の成長速度は
装置の状態に左右されてしまい、また膜の組成がずれた
場合、膜厚、周波数の比例関係がずれてしまう。そのた
め、99%以上の高反射率を再現性よく作製することは困
難であった。
In the above film thickness control method, the film thickness is indirectly controlled from the relationship of time-film thickness and frequency-film thickness. Therefore, the growth rate of the thin film depends on the state of the apparatus, and when the composition of the film is changed, the proportional relationship between the film thickness and the frequency is changed. Therefore, it was difficult to produce a high reflectance of 99% or more with good reproducibility.

【0010】またの方法では薄膜成長室に光を導入
し、或いはダミーの基板から反射してくる光を検知する
のに複雑な装置構成を必要とした。
The other method requires a complicated device structure for introducing light into the thin film growth chamber or detecting light reflected from the dummy substrate.

【0011】[0011]

【課題を解決するための手段】本発明はこれに鑑み種々
検討の結果、簡単な構成で且つ精度の良好な膜厚測定装
置とこれを用いることにより高い反射率の反射鏡を得る
方法を開発したものである。
As a result of various studies in view of this, the present invention has developed a film thickness measuring device having a simple structure and good accuracy, and a method for obtaining a reflecting mirror having a high reflectance by using the film thickness measuring device. It was done.

【0012】即ち本発明の薄膜膜厚測定装置は、半導体
レーザの共振器を該レーザの一端面と、他の端面に無反
射の境界面を介して連結した光ファイバーの先端面とで
形成し、上記一端面を光出力面としてその出力面側に光
の出力強度をモニターする測定器を設置してなり、上記
光ファイバー先端面に堆積して成長する薄膜の膜厚を上
記半導体レーザの発振波長の 1/4波長毎に測定すること
を特徴とするものである。
That is, in the thin film thickness measuring apparatus of the present invention, a resonator of a semiconductor laser is formed by one end face of the laser and the end face of an optical fiber which is connected to the other end face through a non-reflecting interface. The one end face is used as a light output face and a measuring device for monitoring the light output intensity is installed on the output face side, and the film thickness of the thin film deposited and grown on the tip end face of the optical fiber is set to the oscillation wavelength of the semiconductor laser. It is characterized by measuring every 1/4 wavelength.

【0013】また本発明の反射鏡形成方法は、半導体レ
ーザの共振器である反射鏡を高屈折率誘電体薄膜と低屈
折率誘電体薄膜とを交互に積層して作製するに当たり、
該半導体レーザの発振する光の波長と同じ波長の光を発
振する他の半導体レーザを備えた請求項1記載の膜厚測
定装置を用い、その光ファイバー先端面を上記反射鏡形
成面の近傍に設置して該反射鏡形成面と光ファイバー先
端面とに同時に薄膜を成長させることにより、積層する
各膜厚をそれぞれ上記他の半導体レーザの発振波長の 1
/4波長とすることを特徴とするものである。
In addition, the method of forming a reflecting mirror of the present invention comprises manufacturing a reflecting mirror, which is a resonator of a semiconductor laser, by alternately laminating a high refractive index dielectric thin film and a low refractive index dielectric thin film.
2. The film thickness measuring device according to claim 1, further comprising another semiconductor laser that oscillates light having the same wavelength as the wavelength of light emitted by the semiconductor laser, and the optical fiber tip end surface is installed near the reflecting mirror formation surface. Then, by simultaneously growing a thin film on the reflecting mirror forming surface and the optical fiber tip surface, the respective film thicknesses to be laminated are adjusted to one of the oscillation wavelengths of other semiconductor lasers.
It is characterized in that it has a wavelength of / 4.

【0014】[0014]

【作用】このような膜厚測定装置において、光ファイバ
ーと連結していない半導体レーザの端面からの光出力は
共振器面となる光ファイバーの先端面が形成する反射鏡
(即ち屈折率が異なる物質が接している界面)の反射率
によって変化する。一方、一般に反射鏡の反射率は該反
射鏡面に積層した屈折率の異なる薄膜のそれぞれの膜厚
によって変化し、その膜厚が当該半導体レーザの発振波
長の 1/4波長毎に極大値と極小値を示す。
In such a film thickness measuring device, the light output from the end face of the semiconductor laser not connected to the optical fiber is reflected by the reflecting mirror (that is, a substance having a different refractive index is in contact with the end face of the optical fiber serving as the resonator face. Interface). On the other hand, in general, the reflectivity of a reflecting mirror changes depending on the film thickness of each thin film with different refractive index laminated on the reflecting mirror surface, and the film thickness has a maximum value and a minimum value for each 1/4 wavelength of the oscillation wavelength of the semiconductor laser. Indicates a value.

【0015】従って上記膜厚測定装置において反射鏡と
なるのは光ファイバー先端面であるから、この場合光出
力は、光ファイバー先端面に形成する膜厚が該レーザの
発振波長の 1/4波長毎に極大値と極小値を交互に示すこ
とになる。即ち本発明装置では光出力をモニターしてお
くことにより、該出力の極大点と極小点において、光フ
ァイバー先端面に成長した薄膜の膜厚をそのレーザの発
振波長の 1/4波長毎に測定できるものである。
Therefore, in the above-mentioned film thickness measuring apparatus, the reflecting mirror is the optical fiber front end surface. In this case, the optical output is such that the film thickness formed on the optical fiber front end surface is every 1/4 wavelength of the oscillation wavelength of the laser. The maximum value and the minimum value are alternately shown. That is, in the device of the present invention, by monitoring the optical output, the film thickness of the thin film grown on the tip surface of the optical fiber can be measured for each 1/4 wavelength of the oscillation wavelength of the laser at the maximum and minimum points of the output. It is a thing.

【0016】上記膜厚測定装置を半導体レーザの多層膜
反射鏡の膜厚制御に用いる際には、その光ファイバー先
端面を上記多層膜反射鏡形成面の近傍に設置してこれら
の面に同時に低屈折率誘電体と高屈折率誘電体を交互に
成長させてこれらの多層薄膜を形成する。そしてこのと
き上記膜厚測定装置に設置されている半導体レーザの発
振波長を、反射鏡を形成しようとしている半導体レーザ
の発振波長と同一のものとしておき、該測定装置でモニ
ターしている光出力が極値を示す毎に成長させる誘電体
材料を切り替える。こうすることにより成長させた多層
薄膜の厚さはそれぞれが半導体レーザの発振波長の 1/4
波長となるので、作製した半導体レーザの反射鏡はその
発振波長に対して99%以上の高反射率を示すものが得ら
れる。
When the film thickness measuring device is used for controlling the film thickness of the multilayer film reflecting mirror of a semiconductor laser, the tip end surface of the optical fiber is installed in the vicinity of the surface where the multilayer film reflecting mirror is formed, and the film is simultaneously lowered on these surfaces. The multi-layered thin film is formed by alternately growing a high-refractive index dielectric and a high-refractive index dielectric. At this time, the oscillation wavelength of the semiconductor laser installed in the film thickness measuring apparatus is set to be the same as the oscillation wavelength of the semiconductor laser which is going to form the reflecting mirror, and the optical output monitored by the measuring apparatus is The dielectric material to be grown is switched each time the extreme value is displayed. The thickness of the multi-layered thin film grown in this way is 1/4 of the oscillation wavelength of the semiconductor laser.
Since the wavelength is the wavelength, the reflecting mirror of the produced semiconductor laser has a high reflectance of 99% or more with respect to the oscillation wavelength.

【0017】[0017]

【実施例】次に本発明の実施例として電子ビーム蒸着装
置により半導体レーザに高反射率の反射鏡を形成する場
合を説明する。図1に示すように、薄膜成長室(8)内
に低屈折率誘電体の蒸着源(9)としてSiO2 を、ま
た高屈折率誘電体蒸着源(10)としてアモルファスSi
を設置し、これらを交互に蒸発させて積層し、基板
(5)である半導体レーザの反射鏡形成面に多層膜
(6)を形成させる際に次のような膜厚測定装置を用い
て膜厚を制御した。
Next, as an embodiment of the present invention, a case where a reflecting mirror having a high reflectance is formed on a semiconductor laser by an electron beam vapor deposition apparatus will be described. As shown in FIG. 1, in the thin film growth chamber (8), SiO 2 is used as a vapor deposition source (9) of a low refractive index dielectric and amorphous Si is used as a vapor deposition source (10) of a high refractive index dielectric.
Is installed, and these are alternately evaporated and laminated, and when the multilayer film (6) is formed on the reflecting mirror formation surface of the semiconductor laser which is the substrate (5), a film thickness measuring device as described below is used. Controlled thickness.

【0018】即ち該基板半導体レーザ(5)と同じ発振
波長を有する半導体レーザ(1)をモジュール筐体(1
2)内に設置し、該レーザの一方の端面は無反射コーテ
ィング(2)を施し、他方の端面(13)は光出力面とし
て該出力面から出射した光はフォトダイオード(11)に
入射させる。このフォトダイオード(11)は出力光の強
度を常に測定してこれをモニターしておくものである。
また上記無反射コーティング(2)面は、やはり一端面
を無反射コーティング(3)された光ファイバー(4)
の該一端面と光学的に連結させ、さらにその光ファイバ
ー(4)の他端部は薄膜成長室(8)内に導入してその
他端面を基板(5)の反射鏡形成面の近傍に並べて設置
した。なお図中(14)は半導体レーザ(1)を駆動する
定電流源である。
That is, the semiconductor laser (1) having the same oscillation wavelength as that of the substrate semiconductor laser (5) is installed in the module casing (1
2), the one end face of the laser is provided with an antireflection coating (2), and the other end face (13) is used as a light output face so that the light emitted from the output face is incident on the photodiode (11). . The photodiode (11) constantly measures the intensity of output light and monitors it.
Further, the antireflection coating (2) surface is also an optical fiber (4) having one end surface antireflection coating (3).
Of the optical fiber (4), and the other end of the optical fiber (4) is introduced into the thin film growth chamber (8) and the other end of the optical fiber (4) is placed side by side near the reflecting mirror forming surface of the substrate (5). did. In the figure, (14) is a constant current source for driving the semiconductor laser (1).

【0019】以上のような構成で基板(5)上に高反射
率の反射膜を成長させる手順を説明する。先ず基板
(5)上に低屈折率誘電体としてSiO2 の蒸着を開始
してSiO2 の薄膜の形成を行う。時間の経過に従い、
該基板(5)上及び光ファイバー(5)の先端面にSi
2 の薄膜が成長してゆく。そしてその膜厚が半導体レ
ーザ(1)の発振波長の 1/4波長と等しくなった時にフ
ォトダイオード(11)の出力は極値を示す。この極値を
示した時点でSiO2 薄膜の形成を中断して次に高屈折
率誘電体としてアモルファスSiの蒸着を開始してその
薄膜形成を行う。この場合も上記と同様に成長膜厚が 1
/4波長となったとき、即ちフォトダイオード(11)の出
力が極値を示したときに薄膜成長材料の蒸着源の切替え
を行う。
A procedure for growing a reflective film having a high reflectance on the substrate (5) with the above structure will be described. First, vapor deposition of SiO 2 as a low refractive index dielectric is started on the substrate (5) to form a thin film of SiO 2 . Over time,
Si on the substrate (5) and on the tip surface of the optical fiber (5)
A thin film of O 2 grows. When the film thickness becomes equal to 1/4 wavelength of the oscillation wavelength of the semiconductor laser (1), the output of the photodiode (11) shows an extreme value. When this extreme value is exhibited, the formation of the SiO 2 thin film is interrupted, and then vapor deposition of amorphous Si as a high refractive index dielectric is started to form the thin film. In this case as well, the grown film thickness is 1
When the wavelength becomes / 4 wavelength, that is, when the output of the photodiode (11) exhibits an extreme value, the vapor deposition source of the thin film growth material is switched.

【0020】このようにして基板(5)に低屈折率誘電
体と高屈折率誘電体を交互に積層した多層膜(6)を形
成し、発振波長 1.3μmの光に対して99%以上の高反射
率を有する反射鏡を形成できた。さらに本発明の方法に
より、波長が 1.3μm以外の光に対しても良好な反射率
を有する反射鏡が得られた。
In this way, the multilayer film (6) in which the low-refractive-index dielectric and the high-refractive-index dielectric are alternately laminated is formed on the substrate (5), and 99% or more of light having an oscillation wavelength of 1.3 μm is formed. A reflecting mirror having a high reflectance could be formed. Further, according to the method of the present invention, a reflecting mirror having a good reflectance for light having a wavelength other than 1.3 μm was obtained.

【0021】この実施例では反射鏡の形成装置として電
子ビーム蒸着装置を例にとって説明したが、他に抵抗加
熱の蒸着装置等も利用できる。
In this embodiment, the electron beam vapor deposition apparatus has been described as an example of the reflecting mirror forming apparatus, but a resistance heating vapor deposition apparatus or the like can also be used.

【0022】[0022]

【発明の効果】このように本発明装置によれば、目的と
する薄膜を光ファイバー先端面にも同時に形成し、これ
を半導体レーザの共振器面とすることにより、該半導体
レーザの発振波長の 1/4波長毎に薄膜の正確な膜厚を測
定できる。そしてこの装置を用いることにより、半導体
レーザとして誘電体多層膜からなる高反射率の反射鏡が
得られる。さらに本発明装置によれば半導体レーザの出
力が最小となるようにして半導体レーザの反射鏡の薄膜
を形成したところ、低反射率の反射鏡の形成も精度良く
行うことができた。また本発明装置は極めて簡単な構成
であるため構成部品である半導体レーザ、フォトダイオ
ード等を一つのモジュールにすることがてきるものであ
る。
As described above, according to the device of the present invention, the desired thin film is simultaneously formed on the front end face of the optical fiber, and the thin film is used as the cavity facet of the semiconductor laser. Accurate film thickness can be measured every / 4 wavelength. By using this device, a high-reflectance reflecting mirror made of a dielectric multilayer film can be obtained as a semiconductor laser. Further, according to the device of the present invention, when the thin film of the reflecting mirror of the semiconductor laser was formed so as to minimize the output of the semiconductor laser, the reflecting mirror having a low reflectance could be formed with high accuracy. Further, since the device of the present invention has an extremely simple structure, it is possible to combine the components such as the semiconductor laser and the photodiode into one module.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す説明図である。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体レーザ 2,3 無反射コーティング 4 光ファイバー 5 基板半導体レーザ 6 多層膜 7 光ファイバー先端面の多層膜 8 薄膜成長室 9 低屈折率誘電体蒸着源 10 高屈折率誘電体蒸着源 11 フォトダイオード 12 モジュール筐体 13 半導体レーザ端面 14 レーザ駆動用定電流源 1 semiconductor laser 2, 3 non-reflective coating 4 optical fiber 5 substrate semiconductor laser 6 multi-layer film 7 multi-layer film of optical fiber tip surface 8 thin film growth chamber 9 low refractive index dielectric vapor deposition source 10 high refractive index dielectric vapor deposition source 11 photodiode 12 module Case 13 Semiconductor laser end face 14 Laser drive constant current source

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体レーザの共振器を該レーザの一端
面と、他の端面に無反射の境界面を介して連結した光フ
ァイバーの先端面とで形成し、上記一端面を光出力面と
してその出力面側に光の出力強度をモニターする測定器
を設置してなり、上記光ファイバー先端面に堆積して成
長する薄膜の膜厚を上記半導体レーザの発振波長の 1/4
波長毎に測定することを特徴とする薄膜の膜厚測定装
置。
1. A resonator of a semiconductor laser is formed by one end face of the laser and an end face of an optical fiber connected to another end face through a non-reflecting boundary face, and the one end face serves as a light output face. A measuring device for monitoring the output intensity of light is installed on the output surface side, and the thickness of the thin film deposited and grown on the end surface of the optical fiber is set to 1/4 of the oscillation wavelength of the semiconductor laser.
A thin film thickness measuring device characterized by measuring for each wavelength.
【請求項2】 半導体レーザの共振器である反射鏡を高
屈折率誘電体薄膜と低屈折率誘電体薄膜とを交互に積層
して作製するに当たり、該半導体レーザの発振する光の
波長と同じ波長の光を発振する他の半導体レーザを備え
た請求項1記載の膜厚測定装置を用い、その光ファイバ
ー先端面を上記反射鏡形成面の近傍に設置して該反射鏡
形成面と光ファイバー先端面とに同時に誘電体薄膜を成
長させることにより、積層する各膜厚をそれぞれ上記他
の半導体レーザの発振波長の1/4 波長とすることを特徴
とする半導体レーザの反射鏡形成方法。
2. When a reflector, which is a resonator of a semiconductor laser, is manufactured by alternately laminating a high-refractive-index dielectric thin film and a low-refractive-index dielectric thin film, it is the same as the wavelength of light emitted by the semiconductor laser. 2. The film thickness measuring device according to claim 1, further comprising another semiconductor laser that oscillates light of a wavelength, the optical fiber tip end surface of which is installed in the vicinity of the reflecting mirror formation surface and the reflection mirror formation surface and the optical fiber tip surface. A method of forming a reflecting mirror of a semiconductor laser, wherein each of the film thicknesses to be laminated is set to 1/4 wavelength of the oscillation wavelength of the other semiconductor laser by simultaneously growing a dielectric thin film on and.
JP24275092A 1992-08-19 1992-08-19 Measuring device for thickness of thin film and formation of reflecting mirror of semiconductor laser by use of the device Pending JPH0669607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24275092A JPH0669607A (en) 1992-08-19 1992-08-19 Measuring device for thickness of thin film and formation of reflecting mirror of semiconductor laser by use of the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24275092A JPH0669607A (en) 1992-08-19 1992-08-19 Measuring device for thickness of thin film and formation of reflecting mirror of semiconductor laser by use of the device

Publications (1)

Publication Number Publication Date
JPH0669607A true JPH0669607A (en) 1994-03-11

Family

ID=17093714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24275092A Pending JPH0669607A (en) 1992-08-19 1992-08-19 Measuring device for thickness of thin film and formation of reflecting mirror of semiconductor laser by use of the device

Country Status (1)

Country Link
JP (1) JPH0669607A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6756322B2 (en) 2000-11-28 2004-06-29 Sharp Kabushiki Kaisha Method for evenly coating semiconductor laser end faces and frame used in the method
WO2015163074A1 (en) * 2014-04-22 2015-10-29 シャープ株式会社 Optical sensor system, optical-type gas sensor system, microparticle sensor system, light-emitting device, and image printing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6756322B2 (en) 2000-11-28 2004-06-29 Sharp Kabushiki Kaisha Method for evenly coating semiconductor laser end faces and frame used in the method
WO2015163074A1 (en) * 2014-04-22 2015-10-29 シャープ株式会社 Optical sensor system, optical-type gas sensor system, microparticle sensor system, light-emitting device, and image printing device
CN106233123A (en) * 2014-04-22 2016-12-14 夏普株式会社 Optical sensor system, optical gas sensor system, particle sensor system, light-emitting device and image printer
JPWO2015163074A1 (en) * 2014-04-22 2017-04-13 シャープ株式会社 Optical sensor system, optical gas sensor system, particulate sensor system, light emitting device, and image printing apparatus
US9874518B2 (en) 2014-04-22 2018-01-23 Sharp Kabushiki Kaisha Optical sensor system, optical gas sensor system, particulate sensor system, light emitting apparatus, and image printing apparatus

Similar Documents

Publication Publication Date Title
US5513039A (en) Ultraviolet resistive coated mirror and method of fabrication
US7901870B1 (en) Adjusting optical properties of optical thin films
US5777792A (en) Optical film, an antireflection film, a reflection film, a method for forming the optical film, the antireflection film or the reflection film and an optical device
JPH08220317A (en) Diffraction grating and manufacture of photoconductor
JP2000353856A (en) Semiconductor laser module
CN111142178B (en) Microstructure low-oscillation back coated chirped mirror and preparation method thereof
JP2003279914A (en) Wavelength variable optical element
US5608577A (en) Optical mirror and optical device using the same
JP2004138996A (en) Fabry-perot system for compensating half width energy error and method for manufacturing the same
JPH0669607A (en) Measuring device for thickness of thin film and formation of reflecting mirror of semiconductor laser by use of the device
JPH06125149A (en) Semiconductor element and manufacture thereof
JPH06118211A (en) Integrated optical mirror and manufacture thereof
WO2016167071A1 (en) Grating element and external resonator-type light emitting device
JPH01184893A (en) Semiconductor laser
JP3142173B2 (en) Optical thin film, substrate with optical thin film, and laser device
JP3231299B2 (en) Optical interference filter fabrication method
JP3174794B2 (en) Optical thin film and laser device
JPH0414024A (en) Secondary higher harmonic generation device
JP2004087782A (en) Variable wavelength semiconductor laser light source
JPH04101480A (en) Mode regulator for laser oscillator
JPS607790A (en) Semiconductor laser device
JPH06188500A (en) Ld excited second-harmonic generating solid-state laser device and manufacture thereof
JPH0779038A (en) Ld excited solid-state laser device
JP2931116B2 (en) Tunable laser device
JPH07221383A (en) Solid-state laser device for generating ld exciting second harmonic