JPH0668129B2 - Method for producing hot rolled steel sheet with excellent deep drawability - Google Patents

Method for producing hot rolled steel sheet with excellent deep drawability

Info

Publication number
JPH0668129B2
JPH0668129B2 JP63172529A JP17252988A JPH0668129B2 JP H0668129 B2 JPH0668129 B2 JP H0668129B2 JP 63172529 A JP63172529 A JP 63172529A JP 17252988 A JP17252988 A JP 17252988A JP H0668129 B2 JPH0668129 B2 JP H0668129B2
Authority
JP
Japan
Prior art keywords
less
rolling
hot
temperature
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63172529A
Other languages
Japanese (ja)
Other versions
JPH0225518A (en
Inventor
才二 松岡
佐藤  進
俊之 加藤
浩三 角山
建夫 東野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63172529A priority Critical patent/JPH0668129B2/en
Publication of JPH0225518A publication Critical patent/JPH0225518A/en
Publication of JPH0668129B2 publication Critical patent/JPH0668129B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、自動車用鋼板等に使用される深絞り性に優
れた熱延鋼板の製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a hot-rolled steel sheet having excellent deep drawability, which is used for automobile steel sheets and the like.

(従来の技術) 従来、自動車用鋼板等に使用される深絞り用薄鋼板に
は、その特性として高いランクフォード値(r値)と高
い延性(El)が要求される。このような深絞り用鋼板
は、Ar3変態点以上で熱間圧延を終了した後、冷間圧延
により最終板厚の薄板とし、しかる後再結晶焼鈍を施し
て製造する冷延鋼板が一般に使用されていた。しかしな
がら近年、低コスト化を目的として、従来冷延鋼板を使
用していた部材を熱延鋼板で代替しようとする要求が高
まってきた。
(Prior Art) Conventionally, deep drawing thin steel sheets used for automobile steel sheets and the like are required to have high Rankford value (r value) and high ductility (El) as properties. Such a deep-drawing steel sheet is generally used as a cold-rolled steel sheet produced by finishing hot rolling at an Ar 3 transformation point or higher and then cold rolling into a thin sheet having a final thickness, and then performing recrystallization annealing. It had been. However, in recent years, for the purpose of cost reduction, there has been an increasing demand to replace a member that has conventionally used a cold rolled steel sheet with a hot rolled steel sheet.

しかしながら従来の加工用熱延鋼板は、加工性、特に延
性を確保するため、未再結晶フェライト組織ができるの
をさけ、Ar3変態点以上で圧延を終了していた。そのた
め、一般にはγ→α変態時に集合組織がランダム化する
ため、熱延鋼板の深絞り性は冷延鋼板に比べて著しく劣
っていた。
However, in order to secure workability, particularly ductility, the conventional hot-rolled steel sheet for working avoids the formation of an unrecrystallized ferrite structure and finishes rolling at the Ar 3 transformation point or higher. Therefore, the texture is generally randomized during the γ → α transformation, and the deep drawability of the hot-rolled steel sheet was significantly inferior to that of the cold-rolled steel sheet.

深絞り性に優れた熱延鋼板の製造方法はいくつか開示さ
れている。例えば特開昭59-226149号公報では、C:0.0
02wt%(以下単に%で示す)、Si:0.02%、Mn:023
%、P:0.009%、S:0.008%、A11:0.025%、N:
0.0021%、Ti:0.10%の低炭素A1キルド鋼を500〜900℃
で潤滑油を施しつつ76%の圧延にて1.6mm板厚の鋼帯と
することにより、r=1.21程度の特性を有する薄鋼板の
製造例が示されている。また特開昭62-192539号公報で
は、C:0.008%、Si:0.04%、Mn:1.53%、P:0.015
%、P:0.004%、Ti:0.068%、Nb:0.024%の低炭素A
1キルド鋼をAr3〜Ar3+150℃で92%の圧延を施すことに
より、r=1.41程度の特性を有する薄鋼板の製造例が示
されている。
Several methods for producing hot-rolled steel sheets having excellent deep drawability have been disclosed. For example, in JP-A-59-226149, C: 0.0
02wt% (simply indicated as% below), Si: 0.02%, Mn: 023
%, P: 0.009%, S: 0.008%, A11: 0.025%, N:
0.0021%, Ti: 0.10% low carbon A1 killed steel 500-900 ℃
In the above, an example of manufacturing a thin steel sheet having a characteristic of r = 1.21 is shown by making a steel strip having a thickness of 1.6 mm by rolling 76% while applying lubricating oil. In JP-A-62-192539, C: 0.008%, Si: 0.04%, Mn: 1.53%, P: 0.015
%, P: 0.004%, Ti: 0.068%, Nb: 0.024%, low carbon A
By applying a 92% rolling a killed steel with Ar 3 ~Ar 3 + 150 ℃, Preparation of thin steel sheet having a r = 1.41 about properties is shown.

(発明が解決しようとする課題) ところで前記した特開昭59-226149号公報記載の方法に
おいては、焼鈍処理を施さないものについては、得られ
るr値は高々1.21と低いものである。さらに熱延後再結
晶焼鈍を施しても、得られるr値は高々1.51であり、深
絞り性を十分に満たしているとは言い難い。また特開昭
62-192539号公報記載の方法においては、γ域にて熱延
を終了し、その後のγ→α変態による変態集合組織を利
用しているため、必然的にr値の異方性は大きくなり、
Δr=−1.2と非常に大きく、さらに得られるr値にも
限度があり、高々1.41と深絞り性を十分に満たしている
とは言い難い。
(Problems to be Solved by the Invention) In the method described in Japanese Patent Laid-Open No. 59-226149, the r value obtained is as low as 1.21 at most without annealing treatment. Further, even if recrystallization annealing is performed after hot rolling, the r value obtained is at most 1.51, and it cannot be said that the deep drawability is sufficiently satisfied. In addition,
In the method described in Japanese Patent No. 62-192539, hot rolling is completed in the γ region and the transformation texture due to the γ → α transformation thereafter is used, so the anisotropy of the r value inevitably increases. ,
Δr = -1.2, which is very large, and the r value that can be obtained is also limited. At most 1.41, it is hard to say that the deep drawability is sufficiently satisfied.

この発明は、鋼成分と圧延条件を適切に規制することに
より、冷延工程あるいは冷延−焼鈍工程を省略して、従
来の冷延鋼板と遜色のない深絞り性を有する薄鋼板の製
造法を提供することを目的とする。
The present invention omits a cold rolling step or a cold rolling-annealing step by appropriately controlling steel components and rolling conditions, and is a method for producing a thin steel sheet having deep drawability comparable to that of a conventional cold rolled steel sheet. The purpose is to provide.

(課題を解決するための手段) この発明の基礎となった研究結果からまず述べる。C:
0.001〜0.008%、 Si:0.01%、Mn:0.1〜0.6%、P:
0.008〜0.015%、S:0.002〜0.02%、N:0.001%〜0.0
08%、Ti:0.01〜0.20%、Nb:0〜0.007%なる組成の
鋼を1150℃で加熱−均熱後、粗圧延を行い、引き続き全
圧下率:90%の仕上圧延を行った。この時、仕上圧延開
始温度を調整することにより、熱延仕上温度を700℃と
一定にした。そして引き続き700℃−1hrの巻取自己焼
鈍処理を施した。なお、仕上圧延は潤滑圧延とした。
(Means for Solving the Problems) First, the results of the research that became the basis of the present invention will be described. C:
0.001-0.008%, Si: 0.01%, Mn: 0.1-0.6%, P:
0.008 to 0.015%, S: 0.002 to 0.02%, N: 0.001% to 0.0
Steel having a composition of 08%, Ti: 0.01 to 0.20%, and Nb: 0 to 0.007% was heated at 1150 ° C.-soaking, rough rolling was performed, and then finish rolling was performed at a total reduction rate of 90%. At this time, the hot rolling finish temperature was kept constant at 700 ° C by adjusting the finish rolling start temperature. Then, continuously, a self-annealing treatment at 700 ° C. for 1 hr was performed. The finish rolling was lubrication rolling.

熱延板のr値におよぼす鋼成分の影響を第1図に示す。
r値は鋼成分に強く依存し、 1.2(C/12+N/14+S/32)<(Ti/48+Nb/93)でかつNb=0.007%
添加することにより著しく向上した。
Fig. 1 shows the effect of steel composition on the r-value of hot-rolled sheet.
The r-value strongly depends on the steel composition, 1.2 (C / 12 + N / 14 + S / 32) <(Ti / 48 + Nb / 93) and Nb = 0.007%
It was remarkably improved by the addition.

また、C:0.002%、Si:0.01%、Mn:0.1%、P:0.01
%、S:0.010%、N:0.002%、Ti:0.055%、Nb:0.0
06%なる組成の鋼を1150℃で加熱−均熱後、粗圧延を行
い、引き続き全圧下率:90%の仕上圧延を行った。この
時、粗圧延開始温度を調整することにより、粗圧延終了
温度(RDT)を1050〜880℃と変化させた。また、仕上圧延
は仕上圧延開始温度を調整することにより、熱延仕上温
度を700℃と一定にした。そして引き続き、700℃−1hr
の巻取自己焼鈍処理を施した。なお、仕上圧延は潤滑圧
延とした。
Also, C: 0.002%, Si: 0.01%, Mn: 0.1%, P: 0.01
%, S: 0.010%, N: 0.002%, Ti: 0.055%, Nb: 0.0
Steel with a composition of 06% was heated at 1150 ° C.-soaked, rough-rolled, and then finish-rolled with a total reduction of 90%. At this time, the rough rolling end temperature (RDT) was changed to 1050 to 880 ° C. by adjusting the rough rolling start temperature. In the finish rolling, the hot rolling finish temperature was kept constant at 700 ° C by adjusting the finish rolling start temperature. And then, 700 ℃ -1hr
Was subjected to a self-annealing treatment. The finish rolling was lubrication rolling.

熱延板のr値におよぼす粗圧延終了温度の影響を図2に
示す。r値はRDTに強く依存し、RDT≦950℃とすること
により著しく向上した。
FIG. 2 shows the effect of the rough rolling finish temperature on the r value of the hot rolled sheet. The r-value strongly depends on RDT, and was significantly improved by setting RDT ≦ 950 ° C.

また、C:0.002%、Si:0.01%、Mn:0.1%、P:0.01
%、S:0.008%、N:0.002%、Ti:0.065%、Nb:0.0
07%なる組成の鋼を1150℃で加熱−均熱後、粗圧延を行
い、引き続き全圧下率:90%の仕上圧延を行った。この
時、仕上圧延開始温度を調整することにより、熱延仕上
温度を680℃〜750℃と変化させた。引き続き、650℃〜7
50℃の温度域で1hrの巻取自己焼鈍処理を施した。な
お、仕上圧延は潤滑圧延とした。
Also, C: 0.002%, Si: 0.01%, Mn: 0.1%, P: 0.01
%, S: 0.008%, N: 0.002%, Ti: 0.065%, Nb: 0.0
Steel having a composition of 07% was heated at 1150 ° C.-soaked, then rough-rolled, and then finish-rolled at a total reduction of 90%. At this time, the hot rolling finish temperature was changed to 680 ° C to 750 ° C by adjusting the finish rolling start temperature. Continue to 650 ℃ ~ 7
A winding self-annealing treatment was performed for 1 hr in a temperature range of 50 ° C. The finish rolling was lubrication rolling.

熱延板のr値におよぼす巻取り温度の影響を第3図に示
す。r値は(FDT)-(CT)に強く依存し、(FDT)-(CT)≦100
℃とすることにより著しく向上した。
The effect of the winding temperature on the r value of the hot rolled sheet is shown in FIG. The r-value strongly depends on (FDT)-(CT), and (FDT)-(CT) ≤ 100
It was significantly improved by setting the temperature to ° C.

本発明者らは以上の実験結果をもとに、その後研究を重
ねた結果、以下のように鋼の成分組成および製造条件を
規制することにより、深絞り性に優れた熱延鋼板が製造
可能となることを見いだした。その要旨は、 1.C:0.008%以下、 Si:0.5%以下、 Mn:1.0%以下、 P:0.15%以下、 S:0.02%以下、 A1:0.010〜0.10%、 N:0.008%以下、 Ti:0.035〜0.20%、 Nb:0.001〜0.015%を含有しかつC,N,Sの量とTiお
よびNbの添加量とが、 1.2(C/12+N/14+S/32)<(Ti/48+Nb/93) の関係を満足する鋼に、950℃以下Ar3変態点以上の温度
域で圧延終了後、Ar3変態点以下600℃以上の温度域で潤
滑を施しつつ、圧下率が80%以上の圧延を施し、その後
熱延仕上温度(FDT)と巻取り温度(CT)とが、 (FDT)-(CT)≦100℃かつ(CT)≧600℃ の関係を満たす条件下で巻取ることを特徴とする、深絞
り性に優れた熱延鋼板の製造方法。
As a result of repeated studies based on the above experimental results, the inventors of the present invention can produce a hot-rolled steel sheet having excellent deep drawability by regulating the composition and production conditions of steel as follows. I found that The gist is 1. C: 0.008% or less, Si: 0.5% or less, Mn: 1.0% or less, P: 0.15% or less, S: 0.02% or less, A1: 0.010 to 0.10%, N: 0.008% or less, Ti: 0.035 to 0.20%, Nb: 0.001 to 0.015% and the amount of C, N, S and the amount of Ti and Nb added are 1.2 (C / 12 + N / 14 + S / 32) <(Ti / 48 + Nb / 93 ) After the rolling is completed in the temperature range of 950 ° C or lower and the Ar 3 transformation point or higher, rolling with a reduction rate of 80% or higher is applied while lubricating is performed in the Ar 3 transformation point or lower temperature range of 600 ° C or higher. After that, the hot rolling finish temperature (FDT) and the coiling temperature (CT) are wound under the condition that the relations of (FDT)-(CT) ≤ 100 ° C and (CT) ≥ 600 ° C are satisfied. And a method for producing a hot rolled steel sheet having excellent deep drawability.

2.C:0.008%以下、 Si:0.5%以下、 Mn:1.0%以下、 P:0.15%以下、 S:0.02%以下、 A1:0.010〜0.10%、 N:0.008%以下、 Ti:0.035〜0.20%、 Nb:0.001〜0.015%およびB:0.0001〜0.0010%を含有
しかつC,N,Sの量とTiおよびNbの添加量とが、 1.2(C/12+N/14+S/32)<(Ti/48+Nb/93) の関係を満足する鋼に、950℃以下Ar3変態点以上の温度
域で圧延終了後、Ar3変態点以下600℃以上の温度域で潤
滑を施しつつ、圧下率が80%以上の圧延を施し、その後
熱延仕上温度(FDT)と巻取り温度(CT)とが、 (FDT)-(CT)≦100℃ かつ (CT)≧600℃ の関係を満たす条件下で巻取ることを特徴とする、深絞
り性に優れた熱延鋼板の製造方法。
2. C: 0.008% or less, Si: 0.5% or less, Mn: 1.0% or less, P: 0.15% or less, S: 0.02% or less, A1: 0.010 to 0.10%, N: 0.008% or less, Ti: 0.035 to 0.20%, Nb: 0.001 to 0.015% and B: 0.0001 to 0.0010% are contained, and the amounts of C, N and S and the amounts of Ti and Nb added are 1.2 (C / 12 + N / 14 + S / 32) <( Ti / 48 + Nb / 93) steel satisfying the relationship of (Ti / 48 + Nb / 93) is finished rolling at a temperature range of 950 ° C or lower and Ar 3 transformation point or higher, and then rolled while being lubricated in a temperature range of Ar 3 transformation point or higher and 600 ° C or higher. The rolling rate is 80% or more, and then the hot rolling finish temperature (FDT) and coiling temperature (CT) satisfy the conditions of (FDT)-(CT) ≤ 100 ° C and (CT) ≥ 600 ° C. A method for producing a hot-rolled steel sheet having excellent deep drawability, which comprises winding under.

3.C:0.008%以下、 Si:0.5%以下、 Mn:1.0%以下、 P:0.15%以下、 S:0.02%以下、 A1:0.010〜0.10%、 N:0.008%以下、 Ti:0.035〜0.20%、 およびNb:0.001〜0.015%を含有しかつC,N,Sの量
とTiおよびNbの添加量とが、 1.2(C/12+N/14+S/32)<(Ti/48+Nb/93) の関係を満足する鋼に、950℃以下Ar3変態点以上の温度
域で圧延終了後、Ar3変態点以下500℃以上の温度域で潤
滑を施しつつ、圧下率が80%以上の圧延を施し、その後
再結晶焼鈍を行うことを特徴とする、深絞り性に優れた
熱延鋼板の製造方法。
3. C: 0.008% or less, Si: 0.5% or less, Mn: 1.0% or less, P: 0.15% or less, S: 0.02% or less, A1: 0.010 to 0.10%, N: 0.008% or less, Ti: 0.035 to 0.20%, And Nb: 0.001 to 0.015% and the amount of C, N, S and the amount of Ti and Nb added are 1.2 (C / 12 + N / 14 + S / 32) <(Ti / 48 + Nb / After the completion of rolling in the temperature range of 950 ° C or lower and the Ar 3 transformation point or higher, the steel satisfying the relation of 93) is lubricated in the Ar 3 transformation point or lower temperature range of 500 ° C or higher, and the rolling reduction is 80% or more. A method for producing a hot-rolled steel sheet having excellent deep drawability, which comprises rolling and then performing recrystallization annealing.

4.C:0.008%以下、 Si:0.5%以下、 Mn:1.0%以下、 P:0.15%以下、 S:0.02%以下、 A1:0.010〜0.10%、 N:0.008%以下、 Ti:0.035〜0.20%、 Nb:0.001〜0.015%およびB:0.0001〜0.0010%を含有
しかつC,N,Sの量とTiおよびNbの添加量とが、 1.2(C/12+N/14+S/32)<(Ti/48+Nb/93) の関係を満足する鋼に、950℃以下Ar3変態点以上の温度
域で圧延終了後、Ar3変態点以下500℃以上の温度域で潤
滑を施しつつ、圧下率が80%以上の圧延を施し、その後
再結晶焼鈍を行うことを特徴とする、深絞り性に優れた
熱延鋼板の製造方法。
4. C: 0.008% or less, Si: 0.5% or less, Mn: 1.0% or less, P: 0.15% or less, S: 0.02% or less, A1: 0.010 to 0.10%, N: 0.008% or less, Ti: 0.035 to 0.20%, Nb: 0.001 to 0.015% and B: 0.0001 to 0.0010% are contained, and the amounts of C, N and S and the amounts of Ti and Nb added are 1.2 (C / 12 + N / 14 + S / 32) <( Ti / 48 + Nb / 93) steel satisfying the relationship of (Ti / 48 + Nb / 93) is rolled at a temperature range of 950 ° C or lower and Ar 3 transformation point or higher, and then rolled while being lubricated in a temperature range of Ar 3 transformation point or higher and 500 ° C or higher. A method for producing a hot-rolled steel sheet having excellent deep drawability, which comprises rolling at a rate of 80% or more and then performing recrystallization annealing.

である。Is.

(作用) 以下、この発明について詳細に説明する。(Operation) Hereinafter, the present invention will be described in detail.

(1)鋼成分 この発明においては鋼成分は重要であり、 C:0.008%以下、 Si:0.5%以下、 Mn:1.0%以下、 P:0.15%以下、 S:0.02%以下、 A1:0.010〜0.10%、 N:0.008%以下、 Ti:0.035〜0.20%、 Nb:0.001〜0.015%、 で、かつC,N,Sの量とTiおよびNbの添加量は 1.2(C/12+N/14+S/32)<(Ti/48+Nb/93) でなければならない。さらに、耐2次加工脆性およびr
値の異方性の改善のために B:0.0001〜0.0010%添加する必要がある。
(1) Steel composition In this invention, steel composition is important: C: 0.008% or less, Si: 0.5% or less, Mn: 1.0% or less, P: 0.15% or less, S: 0.02% or less, A1: 0.010- 0.10%, N: 0.008% or less, Ti: 0.035 to 0.20%, Nb: 0.001 to 0.015%, and the amounts of C, N, S and the addition amounts of Ti and Nb are 1.2 (C / 12 + N / 14 + S / 32) <(Ti / 48 + Nb / 93). Furthermore, the secondary processing brittleness and r
In order to improve the anisotropy of the value, it is necessary to add B: 0.0001 to 0.0010%.

鋼成分が上記の条件を満たさなければ、優れた深絞り性
を得ることができない。以下、各々の成分についての限
定理由を説明する。
If the steel composition does not satisfy the above conditions, excellent deep drawability cannot be obtained. The reasons for limitation of each component will be described below.

(a)C:0.008%以下 Cは少なければ少ないほど深絞り性が向上するので好ま
しいが、その含有量が0.008%以下ではさほど悪影響を
およぼさないので0.008%以下に限定した。
(a) C: 0.008% or less It is preferable that the smaller the content of C, the more the deep drawability is improved. However, if the content of C is 0.008% or less, there is no significant adverse effect, so the content is limited to 0.008% or less.

(b)Si:0.5%以下 Siは鋼を強化する作用があり、所望の強度に応じて必要
量添加されるが、その添加量が0.5%を越えると深絞り
性に悪影響をおよぼすので0.5%以下に限定した。
(b) Si: 0.5% or less Si has the effect of strengthening the steel, and is added in the required amount according to the desired strength. However, if the amount of addition exceeds 0.5%, the deep drawability is adversely affected, so 0.5% Limited to:

(c)Mn:1.0%以下 Mnは鋼を強化する作用があり、所望の強度に応じて必要
量添加されるが、その添加量が1.0wt%を越えると深絞
り性に悪影響をおよぼすので1.0wt%以下に限定した。
(c) Mn: 1.0% or less Mn has the effect of strengthening the steel and is added in the required amount according to the desired strength, but if the added amount exceeds 1.0 wt% it will adversely affect the deep drawability, so 1.0 Limited to wt% or less.

(d)P:0.15%以下 Pは鋼を強化する作用があり、所望の強度に応じて必要
量添加されるが、その添加量が0.15%を越えると深絞り
性に悪影響をおよぼすので0.15%以下に限定した。
(d) P: 0.15% or less P has the action of strengthening the steel and is added in the required amount according to the desired strength. However, if the added amount exceeds 0.15%, it adversely affects the deep drawability, so 0.15% Limited to:

(e)S:0.02%以下 Sは少なければ少ないほど深絞り性が向上するので好ま
しいが、その含有量が0.02%以下ではさほど悪影響をお
よぼさないので0.02%以下に限定した。
(e) S: 0.02% or less The smaller the content of S is, the better the deep drawability is, but it is preferable. However, if the content of S is 0.02% or less, it does not exert a bad influence so much, so it is limited to 0.02% or less.

(f)A1:0.010〜0.10% A1は脱酸を行い、炭窒化物形成元素の歩留向上のために
必要に応じて添加されるが、0.010%以下だと添加効果
がなく、一方0.10%を越えて添加してもより一層の脱酸
効果は得られないため、 0.010〜0.10%に限定した。
(f) A1: 0.010 to 0.10% A1 is deoxidized and added as necessary to improve the yield of carbonitride forming elements, but if it is 0.010% or less, there is no addition effect, while 0.10% If it is added in excess, the further deoxidizing effect cannot be obtained, so the content was limited to 0.010 to 0.10%.

(g)N:0.008%以下 Nは少なければ少ないほど深絞り性が向上するので好ま
しいが、その含有量が0.008%以下ではさほど悪影響を
およぼさないので0.008%以下に限定した。
(g) N: 0.008% or less It is preferable that the smaller the content of N is, the more the deep drawability is improved. However, if the content of N is 0.008% or less, it does not exert a bad influence so much, so it is limited to 0.008% or less.

(h)Ti:0.035〜0.20% Tiは炭窒化物形成元素であり、鋼中の固溶(C,N)を
低減させ、深絞り性に有利な{111}方位を優先的に形
成させるために添加されるが、その添加量が0.035%以
下では効果がなく、一方、0.20%を越えて添加してもそ
れ以上の効果が望めず、逆に表面品質の低下につながる
ので0.035〜0.20%に限定した。
(h) Ti: 0.035 to 0.20% Ti is a carbonitride-forming element, which reduces the solid solution (C, N) in steel and preferentially forms the {111} orientation, which is advantageous for deep drawability. However, if the addition amount is less than 0.035%, there is no effect, on the other hand, if it is added over 0.20%, no further effect can be expected, and conversely it leads to deterioration of the surface quality, so 0.035 to 0.20%. Limited to.

(i)Nb:0.001〜0.015% Nbは炭化物形成元素であり、鋼中の固溶Cを低減させる
効果があるとともに、仕上圧延前組織の微細化に有効で
ある。すなわち、たとえ鋼中の固溶(C,N)がなくて
も、仕上圧延前組織が粗大であると、圧延時に導入され
るひずみが蓄積されないため、{111}方位が形成され
にくくなる。一方、仕上圧延前組織が微細であると、ひ
ずみが蓄積されやすくなり、その結果{111}方位が優
先的に形成され、深絞り性が向上する。さらに、固溶Nb
は圧延時のひずみを蓄積する効果があることも明らかに
なった。その含有量が0.001%未満では効果がなく、一
方0.015%を越えると再結晶温度が上昇するので0.001〜
0.015%に限定した。
(i) Nb: 0.001 to 0.015% Nb is a carbide-forming element, which has the effect of reducing the solid solution C in steel and is also effective in refining the microstructure before finish rolling. That is, even if there is no solid solution (C, N) in the steel, if the structure before finish rolling is coarse, the strain introduced during rolling will not be accumulated, and the {111} orientation will be difficult to form. On the other hand, if the microstructure before finish rolling is fine, strain is likely to be accumulated, and as a result, the {111} orientation is preferentially formed and the deep drawability is improved. Furthermore, solid solution Nb
It was also revealed that has the effect of accumulating strain during rolling. If the content is less than 0.001%, there is no effect, while if it exceeds 0.015%, the recrystallization temperature increases, so 0.001〜
Limited to 0.015%.

(j)B:0.0001〜0.0010% Bは耐2次加工脆性の改善に有効であるとともに、r値
の異方性の改善にも有効である。すなわち、NbとBが共
存した場合には、Nb添加材に比べて結晶粒が微細にな
り、その結果、r値の異方性(Δr)が小さくなる。そ
の添加量が0.0001%未満では効果がなく、一方、0.0010
%を越えると深絞り性が劣化するので0.0001〜0.0010%
に限定した。
(j) B: 0.0001 to 0.0010% B is effective not only for improving the secondary work embrittlement resistance but also for improving the anisotropy of the r value. That is, when Nb and B coexist, the crystal grains become finer than the Nb-added material, and as a result, the anisotropy (Δr) of the r value becomes small. If the addition amount is less than 0.0001%, there is no effect, while 0.0010
%, The deep drawability deteriorates, so 0.0001 to 0.0010%
Limited to.

(k)1.2(C/12+N/14+S/32)<(Ti/48+Nb/93) 仕上圧延前に固溶(C,N)が共存しない場合、圧延−
焼鈍後に{111}方位が優先的に形成され、深絞り性が
向上する。この発明では、 1.2(C/12+N/14+S/32)<(Ti/48+Nb/93)とCおよびNに対
して当量以上のTiおよびNbを添加することにより、仕上
圧延前に固溶(C,N)が存在しなくなることを見いだ
した。さらにその時、r値が向上することを明らかにし
た。そのため、 1.2(C/12+N/14+S/32)<(Ti/48+Nb/93)と限定した。
(k) 1.2 (C / 12 + N / 14 + S / 32) <(Ti / 48 + Nb / 93) If solid solution (C, N) does not coexist before finish rolling, rolling-
The {111} orientation is preferentially formed after annealing, and the deep drawability is improved. In the present invention, 1.2 (C / 12 + N / 14 + S / 32) <(Ti / 48 + Nb / 93) and by adding Ti and Nb in the equivalent amount or more to C and N, before finish rolling. It was found that the solid solution (C, N) disappeared. Further, it was clarified that the r value was improved at that time. Therefore, it was limited to 1.2 (C / 12 + N / 14 + S / 32) <(Ti / 48 + Nb / 93).

(2)圧延工程 圧延工程はこの発明において重要であり、粗圧延を950
℃以下Ar3変態点以上の温度域で終了した後、Ar3変態点
以下600℃以上の温度域で潤滑を施しつつ、合計圧下率
が80%以上で、かつ熱延仕上温度(FDT)と巻取り温度(C
T)とが、 (FDT)-(CT)≦100℃かつ(CT)≧600℃ なる関係を満たす条件下で圧延を行うか、あるいは粗圧
延を950℃以下Ar3変態点以上の温度域で終了した後、Ar
3変態点以下500℃以上の温度域で潤滑を施しつつ、合計
圧下率が80%以上の圧延を施した後、再結晶焼鈍を行う
必要である。
(2) Rolling process The rolling process is important in this invention.
After finishing in the temperature range below ℃ ≤ Ar 3 transformation point, lubrication is performed in the temperature range ≤ below Ar 3 transformation point and above 600 ℃, and the total rolling reduction is 80% or more and the hot rolling finish temperature (FDT). Winding temperature (C
T) and (FDT)-(CT) ≤ 100 ° C and (CT) ≥ 600 ° C, or the rough rolling is performed in a temperature range of 950 ° C or lower and Ar 3 transformation point or higher. After finishing, Ar
It is necessary to perform recrystallization annealing after rolling at a total reduction of 80% or more, while performing lubrication in a temperature range of 500 ° C or higher at 3 transformation points or higher.

粗圧延を950℃以上の温度域にて終了した場合には、粗
圧延後すなわち仕上圧延前の組織が粗大となるため、仕
上圧延時に導入されるひずみが蓄積されにくくなり、そ
の結果{111}方位が形成されにくくなる。また、Ar3
態点未満の温度域にて終了した場合には、粗圧延時に
{100}方位が形成されるため、深絞り性が劣化する。
一方、950℃以下Ar3変態点以上の温度域にて粗圧延を終
了した場合には、仕上圧延前組織が微細になるため、仕
上圧延時に導入されるひずみが蓄積されやすくなり、そ
の結果{111}方位が優先的に形成され、深絞り性が向
上する。なお、950℃〜Ar3変態点の範囲の圧下率は、組
織微細化のため50%以上が望ましい。
When the rough rolling is completed in the temperature range of 950 ° C or higher, the structure after rough rolling, that is, before finish rolling becomes coarse, so that the strain introduced during finish rolling is less likely to be accumulated, resulting in {111}. Azimuth is less likely to be formed. In addition, when finished in a temperature range below the Ar 3 transformation point, the {100} orientation is formed during rough rolling, and the deep drawability deteriorates.
On the other hand, when rough rolling is completed in a temperature range of 950 ° C. or lower and Ar 3 transformation point or higher, the structure before finish rolling becomes finer, so that strain introduced during finish rolling tends to be accumulated, resulting in { The 111} orientation is preferentially formed, and the deep drawability is improved. The rolling reduction in the range of 950 ° C. to Ar 3 transformation point is preferably 50% or more in order to refine the structure.

また、仕上圧延をAr3変態点以上の温度域にて終了する
と、γ→α変態により集合組織がランダム化し、優れた
深絞り性が得られない。一方、仕上温度を500℃以下に
下げても、より一層の深絞り性の向上は望めず、圧延荷
重が増大するのみであるので、圧延温度をAr3変態点以
下500℃以上とした。
Further, when the finish rolling is finished in the temperature range of the Ar 3 transformation point or higher, the texture becomes random due to the γ → α transformation, and excellent deep drawability cannot be obtained. On the other hand, even if the finishing temperature is lowered to 500 ° C. or lower, further improvement of the deep drawability cannot be expected and only the rolling load increases, so the rolling temperature was set to 500 ° C. or higher below the Ar 3 transformation point.

また、仕上圧延時の合計圧下率を80%以上にしないと、
圧延時に{111}方位が形成されないため、深絞り性が
劣る。
Also, unless the total rolling reduction during finish rolling is 80% or more,
Since the {111} orientation is not formed during rolling, the deep drawability is poor.

さらに、仕上圧延時に潤滑圧延を行わないと、ロールと
鋼板との間の摩擦力により、鋼板表層部に付加的剪断力
が働き、その結果、鋼板表層部に深絞り性に好ましくな
い{110}方位が優先的に形成されるために、深絞り性
が劣化する。そのため、潤滑圧延は必要である。
Furthermore, if lubrication rolling is not performed during finish rolling, additional shearing force acts on the steel sheet surface layer due to the frictional force between the roll and the steel sheet, resulting in unfavorable deep drawability on the steel sheet surface layer portion. Since the orientation is preferentially formed, the deep drawability deteriorates. Therefore, lubrication rolling is necessary.

なお、圧延後再結晶焼鈍を施さない巻取り自己焼鈍材で
は、巻取り温度が600℃以上でないと再結晶が完了しな
いため、CT≧600℃とした。また、深絞り性の向上には
圧延温度は低い方が、また巻取り温度は高い方が有利で
ある。そのため、熱延仕上温度(FDT)と巻取り温度(CT)
とが(FDT)-(CT)≦100℃を満たす条件下で圧延を施す必
要がある。なお、熱間圧延後、再結晶焼鈍を施すものに
ついては、巻取り自己焼鈍は必要ないため、熱延終了温
度を500℃以上とし、さらに、巻取り温度も低温でよ
い。
In the case of the self-annealing material for winding that is not subjected to recrystallization annealing after rolling, CT ≧ 600 ° C. because recrystallization is not completed unless the winding temperature is 600 ° C. or higher. Further, in order to improve the deep drawability, it is advantageous that the rolling temperature is low and the winding temperature is high. Therefore, hot rolling finish temperature (FDT) and coiling temperature (CT)
It is necessary to perform rolling under the condition that (a) and (FDT)-(CT) ≤ 100 ° C. Note that, for those which are subjected to recrystallization annealing after hot rolling, winding self-annealing is not necessary, so the hot rolling end temperature may be 500 ° C. or higher, and the winding temperature may be low.

熱延後の再結晶焼鈍は、連続焼鈍あるいは箱型焼鈍のど
ちらでもよい。焼鈍温度は、550〜950℃の範囲は適す
る。また加熱速度も10℃/hr〜50℃/sの範囲でよい。
Recrystallization annealing after hot rolling may be either continuous annealing or box annealing. An annealing temperature in the range of 550 to 950 ° C is suitable. The heating rate may be in the range of 10 ° C / hr to 50 ° C / s.

(実施例) 表1に示す組成になる鋼スラブを1150℃で加熱−均熱
後、950℃〜Ar3変態点の温度域で圧下率85%の粗圧延を
行った後、仕上圧延を行った。この時の粗圧延終了温度
(RDT)、仕上圧延終了温度(FDT)、Ar3変態点以下60
0℃以上の温度域での圧下率、巻取温度(CT)および潤滑
の有無および酸洗後の熱延板の材料特性を表2に併せて
示す。なお引張特性はJIS5号引張試験片を使用して測
定し、またr値は15%引張予ひずみを与えた後、3点法
にて測定し、L方向(圧延方向)、D方向(圧延方向に
45゜方向)およびC方向(圧延方向に90゜方向)の平均
値および異方性。
(Example) A steel slab having the composition shown in Table 1 was heated and soaked at 1150 ° C., then rough rolling was performed at a reduction rate of 85% in a temperature range of 950 ° C. to Ar 3 transformation point, and then finish rolling was performed. Rough rolling finish temperature (RDT), finish rolling finish temperature (FDT), Ar 3 transformation point or less at this time 60
Table 2 also shows the reduction ratio in the temperature range of 0 ° C or higher, the coiling temperature (CT), the presence or absence of lubrication, and the material properties of the hot rolled sheet after pickling. Note that the tensile properties were measured using JIS No. 5 tensile test pieces, and the r value was measured by the 3-point method after applying 15% tensile prestrain. The L direction (rolling direction), D direction (rolling direction) To
Average value and anisotropy in 45 ° direction and C direction (90 ° direction to rolling direction).

=(r+2r+r)/4、 Δr=(r−2r+r)/2 として求めた。耐2次加工脆性の評価としては、限界絞
り比3.8にて加工した円筒型サンプルを−50℃に冷却し
た後、圧潰試験を行い、脆性割れの発生の有無にて評価
した。
= (R L + 2r D + r C) / 4, was determined as Δr = (r L -2r D + r C) / 2. As the evaluation of the secondary processing brittleness resistance, a cylindrical sample processed at a limiting drawing ratio of 3.8 was cooled to −50 ° C., and then a crushing test was performed to evaluate the occurrence of brittle cracking.

この発明に従って製造した熱延鋼板は、比較例に比べて
優れた深絞り性と耐2次加工脆性を有することが分か
る。
It can be seen that the hot-rolled steel sheet produced according to the present invention has excellent deep drawability and secondary work embrittlement resistance as compared with the comparative example.

また、表1に示す組成になる鋼スラブを1150℃にて加熱
−均熱後、上記と同様の粗圧延を行った後、仕上圧延を
行った。この時の粗圧延終了温度(RDT)、仕上圧延終了
温度(FDT)、Ar3変態点以下500℃以上の温度域での圧下
率、巻取温度(CT)および潤滑の有無を表3に示す。圧延
板は酸洗後、No.11〜15については830℃,60sの急速加
熱焼鈍を、又No.16〜20については750℃,5hrの箱型焼
鈍を施した。
Further, a steel slab having the composition shown in Table 1 was heated and soaked at 1150 ° C., and then rough rolling similar to the above was performed and then finish rolling was performed. Table 3 shows the rough rolling finish temperature (RDT), finish rolling finish temperature (FDT), reduction ratio in the temperature range of 500 ° C or lower below the Ar 3 transformation point, winding temperature (CT), and the presence / absence of lubrication. . After pickling, the rolled sheets were subjected to rapid heating annealing at 830 ° C. for 60 s for Nos. 11 to 15 and box type annealing at 750 ° C. for 5 hours at No. 16 to 20.

焼鈍後の熱延板の材料特性を表3に併せて示す。Table 3 also shows the material properties of the hot-rolled sheet after annealing.

この発明によって製造した熱延鋼板は、比較例に比べて
優れた深絞り性と耐2次加工脆性を有することが分か
る。
It can be seen that the hot-rolled steel sheet produced according to the present invention has excellent deep drawability and secondary work embrittlement resistance as compared with the comparative example.

(発明の効果) この発明によれば、冷却工程あるいは冷延−焼鈍工程を
省略しても、冷延鋼板と同等の深絞り性に優れた熱延鋼
板の製造が可能となり、従来の冷延鋼板の製造に比べて
大幅なコストダウンが実現可能となる。
(Effects of the Invention) According to the present invention, it is possible to manufacture a hot-rolled steel sheet having excellent deep drawability equivalent to that of a cold-rolled steel sheet, even if the cooling step or the cold-rolling-annealing step is omitted. A significant cost reduction can be realized compared to the production of steel sheets.

【図面の簡単な説明】[Brief description of drawings]

第1図は、熱延鋼板のr値におよぼす鋼成分の影響を示
したグラフ、 第2図は、熱延鋼板のr値におよぼす粗圧延終了温度の
影響を示したグラフ、 第3図は、熱延鋼板のr値におよぼす巻取り温度の影響
を示したグラフである。
FIG. 1 is a graph showing the effect of steel components on the r value of hot rolled steel sheet, FIG. 2 is a graph showing the effect of rough rolling end temperature on the r value of hot rolled steel sheet, and FIG. 3 is 3 is a graph showing the influence of the winding temperature on the r value of a hot rolled steel sheet.

フロントページの続き (72)発明者 角山 浩三 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 東野 建夫 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内Front Page Continuation (72) Kozo Kadoyama, 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Technical Research Headquarters (72) Takeo Higashino 1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama Kawasaki Steel Mizushima Steel Works Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】C:0.008wt%以下、 Si:0.5wt%以下、 Mn:1.0wt%以下、 P:0.15wt%以下、 S:0.02wt%以下、 A1:0.010〜0.10wt%、 N:0.008wt%以下、 Ti:0.035〜0.20wt% およびNb:0.001〜0.015wt%、を含有しかつC,N,S
の量とTiおよびNbの添加量とが、 1.2(C/12+N/14+S/32)<(Ti/48+Nb/93) を満足する鋼に、950℃以下Ar3変態点以上の温度域で圧
延終了後、Ar3変態点以下600℃以上の温度域で潤滑を施
しつつ、圧下率が80%以上の圧延を施し、その後熱延仕
上温度(FDT)と巻取り温度(CT)とが、 (FDT)-(CT)≦100℃ かつ (CT)≧600℃になる関係を満
たす条件下で巻取ることを特徴とする、深絞り性に優れ
た熱延鋼板の製造方法。
1. C: 0.008 wt% or less, Si: 0.5 wt% or less, Mn: 1.0 wt% or less, P: 0.15 wt% or less, S: 0.02 wt% or less, A1: 0.010 to 0.10 wt%, N: 0.008 wt% or less, Ti: 0.035 to 0.20 wt% and Nb: 0.001 to 0.015 wt%, and C, N, S
Of steel and the amount of addition of Ti and Nb satisfy 1.2 (C / 12 + N / 14 + S / 32) <(Ti / 48 + Nb / 93), 950 ℃ or less Ar 3 transformation point or more After rolling in the temperature range of, the rolling rate of 80% or more is applied while lubrication is performed in the temperature range of 600 ° C or lower below the Ar 3 transformation point, and then the hot rolling finish temperature (FDT) and the coiling temperature (CT ) And (FDT) − (CT) ≦ 100 ° C. and (CT) ≧ 600 ° C. are wound under the condition that the relationship is satisfied, and a method for producing a hot-rolled steel sheet having excellent deep drawability.
【請求項2】C:0.008wt%以下、 Si:0.5wt%以下、 Mn:1.0wt%以下、 P:0.15wt%以下、 S:0.02wt%以下、 A1:0.010〜0.10wt%、 N:0.008wt%以下、 Ti:0.035〜0.20wt%、 Nb:0.001〜0.015wt%およびB:0.0001〜0.0010wt%を
含有しかつC,N,Sの量とTiおよびNbの添加量とが、 1.2(C/12+N/14+S/32)<(Ti/48+Nb/93)を満足する鋼に、9
50℃以下Ar3変態点以上の温度域で圧延終了後、Ar3変態
点以下600℃以上の温度域で潤滑を施しつつ、圧下率が8
0%以上の圧延を施し、その後熱延仕上温度(FDT)と巻取
り温度(CT)とが (FDT)-(CT)≦100℃かつ(CT)≧600℃になる関係を満たす
条件下で巻取ることを特徴とする、深絞り性に優れた熱
延鋼板の製造方法。
2. C: 0.008 wt% or less, Si: 0.5 wt% or less, Mn: 1.0 wt% or less, P: 0.15 wt% or less, S: 0.02 wt% or less, A1: 0.010 to 0.10 wt%, N: 0.008 wt% or less, Ti: 0.035 to 0.20 wt%, Nb: 0.001 to 0.015 wt% and B: 0.0001 to 0.0010 wt%, and the amount of C, N, S and the amount of Ti and Nb added are 1.2. For steel satisfying (C / 12 + N / 14 + S / 32) <(Ti / 48 + Nb / 93), 9
After completion of rolling at 50 ° C. or less Ar 3 transformation point or higher temperature region, while performing lubrication in Ar 3 transformation point 600 ° C. or higher temperature region, rolling reduction 8
Under the condition that 0% or more rolling is performed and then the hot rolling finish temperature (FDT) and coiling temperature (CT) satisfy (FDT)-(CT) ≤ 100 ° C and (CT) ≥ 600 ° C. A method for producing a hot-rolled steel sheet having excellent deep drawability, which comprises winding.
【請求項3】C:0.008wt%以下、 Si:0.5wt%以下、 Mn:1.0wt%以下、 P:0.15wt%以下、 S:0.02wt%以下、 A1:0.010〜0.10wt%、 N:0.008wt%以下、 Ti:0.035〜0.20wt% およびNb:0.001〜0.015wt%を含有し、かつC,N,S
の量とTiおよびNbの添加量とが、 1.2(C/12+N/14+S/32)<(Ti/48+Nb/93) を満足する鋼に、950℃以下Ar3変態点以上の温度域で圧
延終了後、Ar3変態点以下500℃以上の温度域で潤滑を施
しつつ、圧下率が80%以上の圧延を施し、その後再結晶
焼鈍を行うことを特徴とする、深絞り性に優れた熱延鋼
板の製造方法。
3. C: 0.008 wt% or less, Si: 0.5 wt% or less, Mn: 1.0 wt% or less, P: 0.15 wt% or less, S: 0.02 wt% or less, A1: 0.010 to 0.10 wt%, N: 0.008 wt% or less, Ti: 0.035 to 0.20 wt% and Nb: 0.001 to 0.015 wt%, and C, N, S
Of steel and the amount of addition of Ti and Nb satisfy 1.2 (C / 12 + N / 14 + S / 32) <(Ti / 48 + Nb / 93), 950 ℃ or less Ar 3 transformation point or more After completion of rolling in the temperature range of 1, the rolling is performed at a rolling reduction of 80% or more while lubrication is performed in the temperature range of 500 ° C or less below the Ar 3 transformation point, and then recrystallization annealing is performed. A method for producing a hot rolled steel sheet having excellent properties.
【請求項4】C:0.008wt%以下、 Si:0.5wt%以下、 Mn:1.0wt%以下、 P:0.15wt%以下、 S:0.02wt%以下、 A1:0.010〜0.10wt%、 N:0.008wt%以下、 Ti:0.035〜0.20wt%、 Nb:0.001〜0.015wt%およびB:0.0001〜0.0010wt%を
含有し、かつC,N,Sの量とTiおよびNbの添加量と
が、 1.2(C/12+N/14+S/32)<(Ti/48+Nb/93) を満足する鋼に、950℃以下Ar3変態点以上の温度域で圧
延終了後、Ar3変態点以下500℃以上の温度域で潤滑を施
しつつ、圧下率が80%以上の圧延を施し、その後再結晶
焼鈍を行うことを特徴とする、深絞り性に優れた熱延鋼
板の製造方法。
4. C: 0.008 wt% or less, Si: 0.5 wt% or less, Mn: 1.0 wt% or less, P: 0.15 wt% or less, S: 0.02 wt% or less, A1: 0.010 to 0.10 wt%, N: 0.008 wt% or less, Ti: 0.035 to 0.20 wt%, Nb: 0.001 to 0.015 wt% and B: 0.0001 to 0.0010 wt%, and the amount of C, N, S and the amount of Ti and Nb added are The steel that satisfies 1.2 (C / 12 + N / 14 + S / 32) <(Ti / 48 + Nb / 93) has an Ar 3 transformation point after rolling is completed in the temperature range of 950 ° C or less and Ar 3 transformation point or more. A method for producing a hot-rolled steel sheet having excellent deep drawability, which comprises rolling at a rolling reduction of 80% or more and then performing recrystallization annealing while performing lubrication in a temperature range of 500 ° C or more.
JP63172529A 1988-07-13 1988-07-13 Method for producing hot rolled steel sheet with excellent deep drawability Expired - Fee Related JPH0668129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63172529A JPH0668129B2 (en) 1988-07-13 1988-07-13 Method for producing hot rolled steel sheet with excellent deep drawability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63172529A JPH0668129B2 (en) 1988-07-13 1988-07-13 Method for producing hot rolled steel sheet with excellent deep drawability

Publications (2)

Publication Number Publication Date
JPH0225518A JPH0225518A (en) 1990-01-29
JPH0668129B2 true JPH0668129B2 (en) 1994-08-31

Family

ID=15943609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63172529A Expired - Fee Related JPH0668129B2 (en) 1988-07-13 1988-07-13 Method for producing hot rolled steel sheet with excellent deep drawability

Country Status (1)

Country Link
JP (1) JPH0668129B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2097900C (en) * 1992-06-08 1997-09-16 Saiji Matsuoka High-strength cold-rolled steel sheet excelling in deep drawability and method of producing the same
KR100347571B1 (en) * 1997-07-18 2002-10-25 주식회사 포스코 A production method of hot-rolled steel strips with excellent deep drawabilty
JP5728836B2 (en) * 2009-06-24 2015-06-03 Jfeスチール株式会社 Manufacturing method of high strength seamless steel pipe for oil wells with excellent resistance to sulfide stress cracking

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193221A (en) * 1983-04-15 1984-11-01 Nippon Steel Corp Rreparation of cold rolled steel plate used in ultra-deep drawing having extremely excellent secondary processability
JPS613844A (en) * 1984-06-18 1986-01-09 Nippon Steel Corp Manufacture of hot rolled steel sheet superior in formability
JPS61119621A (en) * 1984-11-16 1986-06-06 Nippon Steel Corp Manufacture of cold rolled steel sheet for deep drawing
JPS61133322A (en) * 1984-11-30 1986-06-20 Nippon Steel Corp Production of thin steel sheet having excellent formability
JPS61246344A (en) * 1985-04-22 1986-11-01 Kawasaki Steel Corp Cold rolled steel sheet for super drawing excelling in resistance to secondary operation brittleness

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193221A (en) * 1983-04-15 1984-11-01 Nippon Steel Corp Rreparation of cold rolled steel plate used in ultra-deep drawing having extremely excellent secondary processability
JPS613844A (en) * 1984-06-18 1986-01-09 Nippon Steel Corp Manufacture of hot rolled steel sheet superior in formability
JPS61119621A (en) * 1984-11-16 1986-06-06 Nippon Steel Corp Manufacture of cold rolled steel sheet for deep drawing
JPS61133322A (en) * 1984-11-30 1986-06-20 Nippon Steel Corp Production of thin steel sheet having excellent formability
JPS61246344A (en) * 1985-04-22 1986-11-01 Kawasaki Steel Corp Cold rolled steel sheet for super drawing excelling in resistance to secondary operation brittleness

Also Published As

Publication number Publication date
JPH0225518A (en) 1990-01-29

Similar Documents

Publication Publication Date Title
JPH07268461A (en) Production of ferritic stainless steel strip reduced in inplane anisotropy
JP2003073742A (en) Method for manufacturing high-carbon hot rolled steel sheet with high hardenability
JP3484805B2 (en) Method for producing ferritic stainless steel strip with low in-plane anisotropy and excellent strength-elongation balance
JP3493722B2 (en) Method for producing ferritic stainless steel strip with excellent stretch formability
JP2781297B2 (en) Method for producing cold rolled thin steel sheet with excellent secondary work brittleness and low in-plane anisotropy
JPH0668129B2 (en) Method for producing hot rolled steel sheet with excellent deep drawability
JP2000239786A (en) Base plate for cold rolling, cold rolled steel sheet for deep drawing with minimal plane anisotropy, and manufacture thereof
JPH1081919A (en) Production of steel sheet for two-piece can, excellent in non-earing characteristic and surface roughing resistance
JP3137754B2 (en) Efficient production method of cold rolled steel sheet with excellent deep drawability
JP3852138B2 (en) Method for producing a steel plate material for cans having excellent ridging resistance and deep drawability after cold rolling and annealing
JP3370443B2 (en) Manufacturing method of high strength cold rolled steel sheet with excellent deep drawability
JP3096165B2 (en) Manufacturing method of cold rolled steel sheet with excellent deep drawability
JPH0670255B2 (en) Method for producing hot-rolled steel sheet for deep drawing with excellent surface properties
JP2002167645A (en) Baking hardening type cold rolled steel sheet and its production method
JPH0583609B2 (en)
JP3043901B2 (en) Method for producing high-strength cold-rolled steel sheet and galvanized steel sheet with excellent deep drawability
JP3401290B2 (en) Manufacturing method of high strength cold rolled steel sheet with excellent deep drawability
JP3369619B2 (en) Method for producing high-strength cold-rolled steel sheet excellent in deep drawability and ductility and method for producing hot-dip galvanized steel sheet
JPH0892656A (en) Production of cold rolled steel sheet excellent in deep drawability
JP3806983B2 (en) Cold-rolled steel sheet material for deep drawing with excellent ridging resistance after cold rolling and annealing
JPH07103424B2 (en) Method for producing hot rolled steel sheet with excellent deep drawability
JP3366661B2 (en) Manufacturing method of high tensile cold rolled steel sheet with excellent deep drawability
JP4151443B2 (en) Thin steel plate with excellent flatness after punching and method for producing the same
JP3108264B2 (en) Manufacturing method of thin steel sheet with excellent deep drawability
JP3843478B2 (en) Manufacturing method of thin steel sheet with excellent deep drawability

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees