JPH0667564B2 - Surface hardening and dimensionally stable treatment method of wood by resin impregnation - Google Patents

Surface hardening and dimensionally stable treatment method of wood by resin impregnation

Info

Publication number
JPH0667564B2
JPH0667564B2 JP5216890A JP5216890A JPH0667564B2 JP H0667564 B2 JPH0667564 B2 JP H0667564B2 JP 5216890 A JP5216890 A JP 5216890A JP 5216890 A JP5216890 A JP 5216890A JP H0667564 B2 JPH0667564 B2 JP H0667564B2
Authority
JP
Japan
Prior art keywords
catalyst
wood
resin
rate
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5216890A
Other languages
Japanese (ja)
Other versions
JPH03253303A (en
Inventor
貴文 伊藤
Original Assignee
奈良県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奈良県 filed Critical 奈良県
Priority to JP5216890A priority Critical patent/JPH0667564B2/en
Publication of JPH03253303A publication Critical patent/JPH03253303A/en
Publication of JPH0667564B2 publication Critical patent/JPH0667564B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical And Physical Treatments For Wood And The Like (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、樹脂含浸による木材の表面硬化と寸法安定処
理方法に関する。
TECHNICAL FIELD The present invention relates to a method for surface hardening and dimensional stabilizing treatment of wood by resin impregnation.

「従来の技術」 表面の柔らかい木材(例えばスギ、ヒノキをはじめとす
る針葉樹や低比重の広葉樹)の用途を拡大するために
は、それらの材の表面硬度を上げることが最も重要であ
ると考えられる。
"Conventional technology" In order to expand the use of soft-wood (for example, conifers such as cedar and cypress and hardwood of low specific gravity), we believe that increasing the surface hardness of those materials is the most important To be

表面硬化材は、床材、階段板をはじめとする建築内装用
の面材料やテーブルなどの家具材料にも用いることが可
能である。
The surface-hardening material can also be used as a floor material, a surface material for building interiors such as stairs, and a furniture material such as a table.

木材の硬度を上げる方法としては、WPC(Wood Plastic
Combination)化が考えられるが杉などの材では硬化
(重合)不良をおこすことも多い。また、木質材料の寸
法安定処理方法として、例えば特公昭62−60241に係る
発明があり、同発明は、ポリエチレングリコール及び/
または、ポリピロピレングリコール15〜30重量%に、固
形ワックス、エチレン尿素、パルミチン酸アマイド、オ
レイン酸アマイド、ステアリン酸マアイド、アセトアリ
ニド、P−アニシジン、無水マレイン酸、イソフタル酸
ジメチル、テルフタル酸ジメチル、ナルタリンα−ナフ
トール、安息香酸、4−t−ブチルカテコール及びパラ
ジクロルベンゼンの少なくとも一種85〜70重量%を混合
し加熱して液状化し、これを木質材料に含浸させた後、
冷却固化させることにより木質材料を固定化し、ポリエ
ーテル類の浸出、溶出及び吸湿を抑制し寸法安定化を図
っている。
As a method of increasing the hardness of wood, WPC (Wood Plastic
Combinations are considered, but materials such as cedar often cause curing (polymerization) defects. Further, as a dimensional stabilization treatment method for wood materials, there is, for example, an invention according to Japanese Examined Patent Publication No. 62-60241.
Alternatively, 15 to 30% by weight of polypropylene glycol, solid wax, ethylene urea, palmitic acid amide, oleic acid amide, stearic acid maide, acetoalinide, P-anisidine, maleic anhydride, dimethyl isophthalate, dimethyl terphthalate, nartaline. After mixing 85 to 70% by weight of at least one of α-naphthol, benzoic acid, 4-t-butylcatechol and paradichlorobenzene and liquefying by heating and impregnating this with a wood material,
By cooling and solidifying, the wood material is fixed, and the leaching, elution and moisture absorption of the polyethers are suppressed to stabilize the dimensions.

また木材のもっている吸湿性に伴う膨張、収縮を改善し
て寸法安定化を図り、かつ強度を向上させる発明(特公
昭60−42008)として、スチレン、不飽和ポリエステル
などのラジカル重合性化合物を木材に含浸あるいは、塗
布により重合させる合成樹脂処理木材の製法があり、ま
た木質材料の硬度及び強度の向上を図るため、フェノー
ルを含浸させる木材処理法がある。
In addition, as an invention (Japanese Patent Publication No. 60-42008) that improves dimensional stability by improving expansion and contraction due to the hygroscopicity of wood, and improves strength, radically polymerizable compounds such as styrene and unsaturated polyester are used for wood. There is a method for producing synthetic resin-treated wood which is polymerized by impregnation or coating, and there is a wood treatment method in which phenol is impregnated in order to improve the hardness and strength of the wood material.

「発明が解決しようとする課題」 WPC化により、材の硬度を上げる方法は、揮発性の高い
モノマーや有機溶剤を用いるケースが多いので作業上危
険性が高く、しかも装置が複雑で高価あるばかりでな
く、木材が持っている吸湿性を著しく低下させる。
"Problems to be solved by the invention" The method of increasing the hardness of materials by WPC is often dangerous because it uses highly volatile monomers and organic solvents, and the equipment is complicated and expensive. Not only that, it significantly reduces the hygroscopicity of wood.

このため従来のWPCは、建築用の内装材としては、決し
て好ましい材料ではない。
Therefore, the conventional WPC is not a preferable material as an interior material for construction.

特公昭62−60241に係る発明は、その成分であるポリエ
ステル類が大きな親水性を有し吸湿性が大きく、かつ木
材の寸法安定化に使用し得る低分子量のものは、液体ま
たは半固体であり、処理木材の表面に浸出、溶出し、濡
れた状態となるのを防止する目的で吸湿性を抑制してお
り、特公昭60−42008に係る発明は強度が大きく、かつ
クラックを発生しにくい合成樹脂処理木材の製造法であ
って吸湿性を抑制するものであり、またフェノールを木
材に含浸させる木材処理方法は、木質材料の硬度、およ
び硬度の向上を図るもので、吸湿性を考慮するものでは
なかった。
The invention according to Japanese Examined Patent Publication No. 62-60241 discloses that the components, polyesters, have high hydrophilicity and high hygroscopicity, and low molecular weight substances that can be used for dimensional stabilization of wood are liquid or semi-solid. , The hygroscopicity is suppressed for the purpose of preventing it from leaching and leaching on the surface of treated wood and becoming wet, and the invention according to Japanese Examined Patent Publication No. 60-42008 has a high strength and is resistant to cracking. A method for producing resin-treated wood that suppresses hygroscopicity, and a wood treatment method in which phenol is impregnated into wood is to improve the hardness and hardness of wood-based materials, and to consider hygroscopicity. Was not.

従って、これらの木材を建築用壁材などの内装材として
使用すると吸湿性に欠けるため、建築物内外の温度差に
よって結露し、木材が有している吸湿性を利用して、結
露を生じさせないという木造建築物の長所を全く喪失し
てしまうのである。
Therefore, when these woods are used as interior materials such as building wall materials, they lack hygroscopicity, so dew condensation occurs due to the temperature difference inside and outside the building, and the dew condensation does not occur by utilizing the hygroscopicity of the wood. That is, the advantages of the wooden building are completely lost.

本発明は、木材の表面硬度をブナなどの広葉樹程度にま
で向上させ、寸法安定性を付与し、かつ木材が元来持っ
ているのと同等の吸湿性を付与することを目的とする。
It is an object of the present invention to improve the surface hardness of wood to the level of a broad-leaved tree such as beech, impart dimensional stability, and impart hygroscopicity equivalent to that inherent in wood.

「課題を解決するための手段」 (1)ホルムアルデヒド、尿素、及びグリオキザールか
らなる初期縮合物は、 [1]のように水酸基が多く存在し、セルロースとの反
応性に富み、かつ自己縮合性が少ない、そのために加熱
硬化後も親水基である水酸基が残り、かつ、高いバルキ
ングを与える。その結果として木材が持っている水分の
吸脱着性能(水を吸ったり吐いたりする機能)を維持す
ることができ、かつ、高い寸法安定性能を木材に付与す
ることができる。ホルムアルデヒドの含有率が高くなる
と自己縮合の可能性が高くなる恐れがあること、一方グ
リオキザールの含有率が高くなると樹脂に着色が認めら
れ注入木材自体も変色が顕著となる。そこで、尿素1に
対する比率をホルムアルデヒド1.5〜3、グリオキザー
ル0.5〜1に設定する必要がある。
"Means for solving the problem" (1) Formaldehyde, urea, and glyoxal initial condensate, As in [1], there are many hydroxyl groups, they are highly reactive with cellulose, and they have little self-condensation. Therefore, after heating and curing, the hydroxyl groups that are hydrophilic groups remain, and high bulking is provided. As a result, it is possible to maintain the water adsorption / desorption performance (the function of sucking and discharging water) of wood and to impart high dimensional stability to wood. When the content of formaldehyde is high, the possibility of self-condensation is likely to increase. On the other hand, when the content of glyoxal is high, the resin is colored and the discoloration of the injected wood itself becomes remarkable. Therefore, it is necessary to set the ratio of urea to 1 to formaldehyde 1.5 to 3 and glyoxal 0.5 to 1.

(ホルムアルデヒド:尿素:グリオキザール=1.5〜3:
1:0.5〜1) この樹脂自体にも前述のとおり、水分の吸脱着性能が認
められるが、その機能を調節することを目的として、塩
化マグネシウムを主成分とする触媒も樹脂の不揮発成分
100重量%に対して0〜30重量%添加する。この混合物
を木材中に含浸後、加熱硬化させる樹脂含浸による木材
の表面硬化と寸法安定化処理方法である。
(Formaldehyde: urea: glyoxal = 1.5 to 3:
As described above, this resin itself has water adsorption / desorption performance, but for the purpose of adjusting its function, the catalyst containing magnesium chloride as the main component is also a non-volatile component of the resin.
Add 0 to 30% by weight to 100% by weight. This is a method for surface-hardening and dimensionally stabilizing treatment of wood by impregnating wood with this mixture and then heat-curing it.

「作用」 本発明に係る処理木材は、未処理木材とほぼ同等の吸湿
性を有するため、大気中の湿度が低くなると木材中の水
分を放出し、また、大気中の湿度が高くなると木材中
に、その水分をとり込み、その結果として室内の湿度を
調節し、快適な住環境を作りだす。
"Action" The treated wood according to the present invention has almost the same hygroscopicity as the untreated wood, and therefore releases moisture in the wood when the humidity in the atmosphere is low, and increases the humidity in the wood when the humidity in the atmosphere is high. The water is taken in and the indoor humidity is adjusted as a result, creating a comfortable living environment.

「実施例」 (1)供試材は奈良県産のスギ、ヒノキ材で、寸法安定
性能及び吸湿性試験にはそれぞれ辺材部材をT(征目方
向の長さ)、R(年輪方向の長さ)、L(材の長さ)に
ついて27mm(T)×27mm(R)×5mm(L)の切削加工
し、105℃で24時間乾燥したチップ状試片を用い、樹脂
の注入試験には、それぞれの辺材と心材を2mm(T)×2
7mm(R)×7.5mm(L)に切削加工し、エポキシ系接着
剤で木口をシールしたブロック状試片を用いた。注入に
用いた水溶性樹脂は、繊維加工用として大日本インキ化
学工業(株)が製造しているものである。木材と繊維の
組成が類似している所から、これら一連の樹脂を用い
た。表1 尿素−ホルムアルデヒド初期縮合物としては、ベッカミ
ンN(ベッカミンは商標名)尿素−ホルムアルデヒド−
グリオキザールの初期縮合物としは、その混合比が(1:
2〜3:1)のものの代表として、ベッカミンLH、(1:1.5
〜2:1)のものの代表として、ベッカミンLFS、 メラミン−ホルムアルデヒドの初期縮合物としては、ベ
ッカミンJ−101を用いた。
"Examples" (1) The test materials are cedar and cypress wood from Nara prefecture. For dimensional stability and hygroscopicity test, sapwood members are T (length in the direction of conquest) and R (in the direction of annual rings). Length) and L (length of material), 27 mm (T) x 27 mm (R) x 5 mm (L) were cut, and chip-shaped test pieces dried for 24 hours at 105 ° C were used for resin injection testing. 2mm (T) x 2 for each sapwood and heartwood
A block-shaped test piece was used, which was cut into a size of 7 mm (R) x 7.5 mm (L) and whose mouth was sealed with an epoxy adhesive. The water-soluble resin used for the injection is manufactured by Dainippon Ink and Chemicals, Inc. for fiber processing. These series of resins were used because of their similar wood and fiber composition. Table 1 As urea-formaldehyde initial condensate, Beckamine N (Beckamine is a trade name) Urea-formaldehyde-
As the initial condensation product of Glyoxal, the mixing ratio is (1:
2 to 3: 1) as a representative of Beckamine LH, (1: 1.5
2 to 1: 1), Beckamine LFS was used, and Beckamine J-101 was used as the initial condensate of melamine-formaldehyde.

また塩化マグネシウム系の触媒としては、同じく大日本
インキ化学工業(株)のキャタリストG、有機アミン塩
系の触媒としては同じくキャタリスト376、硝酸亜鉛系
の触媒としては同じくキャタリストFTを用いた。
Also, as the magnesium chloride-based catalyst, Catalyst G of Dainippon Ink and Chemicals, Inc. was used, as the organic amine salt-based catalyst, Catalyst 376 was used, and as the zinc nitrate-based catalyst, Catalyst FT was also used. .

またそれらの触媒は表2にその主要成分と、それぞれの
樹脂溶液に対する標準使用量を示した。
Table 2 shows the major components of these catalysts and the standard amount used for each resin solution.

(2)樹脂液の分析 表1に掲げた一連の樹脂液の不揮発成分量、分子量の測
定並びに重縮合条件の検討は以下の方法によった。
(2) Analysis of resin liquid The following methods were used to measure the amounts of non-volatile components and molecular weights of the resin liquids listed in Table 1 and to examine the polycondensation conditions.

一.不揮発成分量 それぞれの樹脂液を5倍に希釈後、重量既知のアルミカ
ップにその10ccを正確に取り、105℃で12時間乾燥後秤
量し、不揮発成分量を求めた。
one. Amount of non-volatile components After diluting each of the resin solutions by 5 times, 10 cc of each was accurately placed in an aluminum cup of known weight, dried at 105 ° C for 12 hours, and weighed to determine the amount of non-volatile components.

二.分子量の測定 島津高速液体クロマトグラフLC−6A,GPCシステムを用い
て、ポリグリコールエチレン(PEG200〜50000)及びエ
チレングリコール(分子量62)を標準物質として分子量
の測定を行なった。測定条件は、 ・カラム Asahipack GS−310(内径7.6mmm×長さ500m
m) ・移動相 水 ・注入量 20ml(約2%に希釈した樹脂液) ・検出器 RI(示差屈折率検出器) 三.硬化条件の検討 濃度約40%に調整した樹脂液にブレードを浸漬し、僅か
に張力を与えたまま、約25℃で24時間送風乾燥し、更に
五酸化リン上で脱水を完了させた後、レスカTPA−10
(稔じれ自由減衰型動的粘弾性測定装置)を用い、TBA
法(Torsional Braid Analysis ブレードφ1mm)による
測定を行ない、αT(対数減衰率)及びGγ(相対剛性
立)を求め、重縮合条件の検討資料とした。
two. Measurement of molecular weight Using a Shimadzu LC-6A, GPC system, the molecular weight was measured using polyglycol ethylene (PEG200-50000) and ethylene glycol (molecular weight 62) as standard substances. The measurement conditions are ・ Column Asahipack GS-310 (inner diameter 7.6 mm x length 500 m
m) ・ Mobile phase water ・ Injected amount 20 ml (resin solution diluted to about 2%) ・ Detector RI (differential refractive index detector) 3. Examination of curing conditions Immerse the blade in a resin solution adjusted to a concentration of about 40%, blow dry at about 25 ° C for 24 hours with slight tension applied, and further after dehydration on phosphorus pentoxide, complete Rescue TPA-10
TBA using a free-damping dynamic viscoelasticity measuring device
Method (Torsional Braid Analysis blade φ1 mm) was used to determine αT (logarithmic damping ratio) and Gγ (relative rigidity), which were used as materials for studying polycondensation conditions.

四.樹脂液の不揮発成分料と重量平均分子量測定結果を
表3に示す。これらの樹脂液は、比較的低分子で(重量
平均分子量143〜318)木材への注入用樹脂として用いる
ことが可能な分子量であると判断される。また、メイン
のピークも100前後にあるものが多く、一例として樹脂L
H、J−101の微分、 積分分子量分布曲線を第1図a、bに示す。
Four. Table 3 shows the nonvolatile components of the resin liquid and the weight average molecular weight measurement results. It is judged that these resin liquids have a relatively low molecular weight (weight average molecular weight of 143 to 318) and a molecular weight that can be used as a resin for injection into wood. Also, the main peak is often around 100, and as an example, resin L
H, the differentiation of J-101, The integrated molecular weight distribution curve is shown in FIGS.

五.触媒添加後の供試樹脂の分子量並びに分子量分布の
経時変化 樹脂LH、J−101について触媒添加後の分子量及びその
分布の常温での経時変化を追跡した。これらの樹脂には
当初、分子量数十から百数十のメインピークと、それと
は独立した1000以上のピークとがある。そこで樹脂の重
縮合の進行状況を判定するひとつの材料として、経時に
伴い分子量1000以上の分子が占める割合がどのように変
化するかについて検討した。結果を第2図a、bに示
す。また重量平均分子量の経時変化も合わせて第3図に
示す。これらの樹脂は触媒添加と同時に瞬間的に重縮合
をおこし、触媒添加前後では分子量及びその分布が著し
く異なった。しかし、それ以降の反応は予想以上に遅
く、可使時間は比較的長い。またキャタリストGはキャ
タリスト376よりも常温での反応性が高く、また、J−1
01はLHよりも重縮合しやすく、可視時間が短い。J−10
1−キャタリストGでは室温(約20℃)で7日目に白濁
に生じた。
Five. Changes over time in molecular weight and molecular weight distribution of the test resin after addition of catalyst The changes over time in the molecular weight and the distribution of resin LH and J-101 after addition of catalyst at room temperature were traced. Initially, these resins have a main peak with a molecular weight of tens to hundreds and tens, and 1000 or more independent peaks. Therefore, as one material for judging the progress of polycondensation of the resin, we examined how the proportion of molecules having a molecular weight of 1000 or more changes with time. The results are shown in Figures 2a and 2b. The change with time of the weight average molecular weight is also shown in FIG. These resins caused polycondensation instantaneously at the same time as the addition of the catalyst, and the molecular weight and the distribution thereof were remarkably different before and after the addition of the catalyst. However, the reaction after that was slower than expected and the pot life was relatively long. Also, Catalyst G has higher reactivity at room temperature than Catalyst 376, and J-1
01 is more polycondensed than LH and has a shorter visible time. J-10
1-Catalyst G became cloudy on day 7 at room temperature (about 20 ° C).

六・重縮合反応の温度依存性 LH、J−101の相対剛性率Gγと対数減衰率αTを第4
図a、b、c、d、e、fに示す。重縮合反応は温度依
存性が大きく、αTのピークが出現する時間を対数にと
ると、温度との間で直線関係が得られた。(第5図)し
かし、どの樹脂でも80℃以下にすると、そのピークは不
鮮明になった。Gγが一定になるのに要する時間はLH>
J−101であり、J−101ではその時間が120℃で40〜80
分であったのに対し、LHでは7時間の測定ではGγは一
定にならず、時間経過とともに増加した。しかし、LHに
おいても材表面の硬さは120℃(3時間)硬化、150℃
(3時間)硬化の試料の間には差が認められなかった。
反応速度は触媒による差が認められた。即ちαTのピー
クが出現する時間、Gγが一定になるのに要する時間
は、ともにキャタリスト376がキャタリストGに比べて
早かった。
6. Temperature dependence of polycondensation reaction LH, J-101 relative rigidity Gγ and logarithmic decay rate αT
Shown in Figures a, b, c, d, e, f. The polycondensation reaction has a large temperature dependence, and when the time at which the peak of αT appears was taken as a logarithm, a linear relationship was obtained with the temperature. (Fig. 5) However, the peak became unclear when the temperature of all the resins was set to 80 ° C or lower. The time required for Gγ to become constant is LH>
J-101, the time for J-101 is 40-80 at 120 ° C.
On the other hand, in the case of LH, Gγ was not constant in the measurement for 7 hours, but increased with the passage of time. However, even with LH, the hardness of the material surface is 120 ° C (3 hours), 150 ° C
No difference was observed between the cured (3 hours) samples.
The reaction rate was different depending on the catalyst. That is, the time at which the peak of αT appears and the time required for Gγ to become constant were both faster for Catalyst 376 than for Catalyst G.

(3)転化率 一.転化率の測定 樹脂の重縮合性は転化率によって評価した。水不溶性樹
脂への転化率は中野らの方法(中野隆人他著:樹脂低含
浸処理による木材の改質−官能性オリゴマ−・水系エマ
ルジョンの注入・重合性−北海道林産試験場月報No.336
P.2,1980)に準拠して重縮合後の全乾重量(W1)と熱水
抽出処理を行ない、未反応の樹脂及び触媒を除去した後
の全乾重量(W2)及び注入前の全重量(W0)などから下
式により求めた。
(3) Conversion rate 1. Measurement of conversion rate The polycondensation property of the resin was evaluated by the conversion rate. The conversion rate to water-insoluble resin is the method of Nakano et al. (Takato Nakano et al .: Modification of wood by low resin impregnation-injection and polymerization of functional oligomers / water-based emulsions-Hokkaido Forestry Products Laboratory Monthly Report No.336
According to P.2, 1980), total dry weight after polycondensation (W 1 ) and hot water extraction treatment are performed to remove unreacted resin and catalyst, total dry weight (W 2 ) and before injection. Was calculated from the total weight (W 0 ) of

ただし、m:未処理材の熱水抽出率(スギ0.013、ヒノキ
0.016) 二・転化率 重縮合後の水不溶性樹脂への転化率を表4に示す。メラ
ミン樹脂(J−101)や尿素樹脂(N)では(70%を越
える転化率を得た。一方グリオキザールを含む樹脂でLH
がキャタリストG触媒で約70%の転化率を得たのに対し
て、LFSではFT触媒を用いた時 にのみ高い転化率を得た。
However, m: hot water extraction rate of untreated wood (cedar 0.013, cypress
0.016) 2. Conversion rate Table 4 shows the conversion rate to the water-insoluble resin after polycondensation. With melamine resin (J-101) and urea resin (N), a conversion rate of over 70% was obtained. On the other hand, with resin containing glyoxal, LH
Obtained about 70% conversion with Catalyst G catalyst, while LFS used FT catalyst. Only a high conversion was obtained.

(4)材色の測定 一.自動測色色差計(日本電色工業Z1001−DP)を用い
て、木口面の材色を測定し、L、a、b値(後出)を求
め、更にそれらの値から算出したΔE(後出)によって
樹脂液の注入、重縮合に伴う材色変化の程度を評価し
た。
(4) Measurement of material color 1. Using an automatic colorimetric color difference meter (Nippon Denshoku Industries Z1001-DP), the wood color of the wood surface was measured, L, a, b values (described later) were calculated, and ΔE calculated from those values (after) The degree of material color change due to the injection of the resin liquid and the polycondensation was evaluated.

二.評価 重縮合前後の材色を測定した結果を表5に示す。ΔEが
7までは材色変化は視覚ではあまり認められないが、15
を越えると変色が顕著となった。キャタリストFT(硝酸
亜鉛)はL*を著しく減少させ、かつb*を増加させ
て、その結果大きなΔE*を与えた。またキャタリスト
376(有機アミン塩)はキャタリストG(塩化マグネシ
ウム)に比べてb*を増加させて、ΔE*でみるとキャ
タリスト376>キャタリストGの関係が成立した。LFSは
他の樹脂に比べてL*を大きく減少させ、その結果、Δ
E*は15を越えた (5)寸法安定性能試験奈良日に吸湿性試験 一.樹脂液の注入、重縮合 前記チップ状試片のT.R方向の寸法1/100mmのオーダー
で測定した後、スギ、ヒノキそれぞれ5枚ずつを深型シ
ャーレに入れ、ステンレス製の金網で試片を固定した
後、真空デシケータ中に設置した。常温で2時間脱気
(5〜10mmHg)した後、濃度を調整した樹脂液を導入
し、更に1時間減圧下おいた。一昼夜冷暗所に密封、保
存した後、45℃から順次昇温し、最終的には150℃で3
時間保持し、重縮合を完了させた。
two. Evaluation The results of measuring the material color before and after polycondensation are shown in Table 5. Up to ΔE of 7, changes in material color are not very visible, but 15
Discoloration became remarkable when the value exceeded. Catalyst FT (zinc nitrate) significantly reduced L * and increased b *, resulting in a large ΔE *. See also Catalyst
376 (organic amine salt) increased b * as compared to Catalyst G (magnesium chloride), and the relationship of Catalyst 376> Catalyst G was established when viewed by ΔE *. LFS significantly reduces L * compared to other resins, resulting in Δ
E * exceeded 15. (5) Dimensional stability test Nara days hygroscopic test 1. Injection of resin liquid, polycondensation After measuring on the order of 1/100 mm in the TR direction of the chip-shaped sample, place 5 cedars and 5 cypresses in a deep petri dish, fix the sample with a stainless wire net, and place in a vacuum desiccator. installed. After deaeration (5 to 10 mmHg) at room temperature for 2 hours, a resin solution having a adjusted concentration was introduced, and the pressure was further reduced for 1 hour. After sealing and storing in a cool and dark place for 24 hours, the temperature is gradually raised from 45 ℃ and finally 3 ℃ at 150 ℃.
Hold for time to complete polycondensation.

二.バルキング率 樹脂液の注入・重縮合前後の材料の寸法変化をバルキン
グ率で表わした。即ち ただしL方向の寸法変化は微小であり、測定誤差が大き
くなる危険性が高いので、T.R.方向の寸法の積(木口の
面積)をもって計算処理した。後出の寸法安定性能試験
の膨潤率においても同様である。各樹脂の重量増加率と
バルキング率との関係を第6図a〜eに示す。LHは他の
樹脂に比べて大きなバルキング率を示し、ヒノキで6
%、スギで4.5%を越える値を得た。また、この樹脂で
は比較的小さい重量増加率でも高いバルキング率を示し
た。一方他の樹脂(J−101、N)のバルキング率は最
大でも2.5%余りでNでは重量増加率が大きくなると負
のバルキング率を示した。樹種間の差異は明確でヒノキ
はスギに比べて大きなバルキング率を示した。触媒によ
る差は樹脂や樹種による差ほどは明確ではないが、やや
キャタリスト370の方がキャタリスト6よりも高いバル
キング率を与えた。どの樹脂においても重量増加率の増
加に伴い当初バルキング率は増加するが、あるところで
ピークを示し、その後減少する傾向を見せた。そのピー
クは多くの樹脂で重量増加率50%付近に現われた。これ
は高い濃度で樹脂を注入・重縮合した時に樹脂の重縮合
に伴う収縮の影響を木材試片が受けた結果であろうと推
察される。
two. Bulking rate The bulking rate represents the dimensional change of the material before and after the resin liquid injection and polycondensation. I.e. However, since the dimensional change in the L direction is small and there is a high risk of measurement error increasing, calculation was performed using the product of the dimension in the TR direction (area of the wood mouth). The same applies to the swelling ratio in the dimensional stability performance test described later. The relationship between the weight increase rate of each resin and the bulking rate is shown in FIGS. LH has a higher bulking rate than other resins, and is 6 for cypress.
%, And cedar was over 4.5%. In addition, this resin exhibited a high bulking rate even with a relatively small weight increase rate. On the other hand, the bulking rate of the other resins (J-101, N) was 2.5% at the maximum, and N showed a negative bulking rate as the weight increase rate increased. Differences among tree species were clear, and cypress showed a larger bulking rate than cedar. The difference due to the catalyst is not as clear as the difference due to the resin and the tree species, but the Catalyst 370 gave a slightly higher bulking rate than the Catalyst 6. Initially, the bulking rate of any resin increased with an increase in the rate of weight increase, but it showed a peak at a certain point and then decreased. The peak appeared for most resins at a weight gain of around 50%. It is speculated that this may be a result of the wood specimen being affected by shrinkage due to polycondensation of the resin when the resin was injected and polycondensed at a high concentration.

三.寸法安定性能試験並びに吸湿性能試験 (ア)飽和酒石酸ナトリウム水溶液を入れたデシケータ
中(20℃,93%RH)で樹脂を注入した試片並びにコント
ロールとして未注入試片を90日間調湿し、平衡含水率及
び膨潤率を求めた。
three. Dimensional stability performance test and moisture absorption performance test (a) Test pieces injected with resin in a desiccator containing saturated aqueous sodium tartrate solution (20 ° C, 93% RH) and control-uninjected test pieces for 90 days to equilibrate The water content and the swelling rate were determined.

(イ)寸法安定性の評価 20℃,93%(RH)の雰囲気中で平衡含水率に達した時の
膨潤率と重量増加率の関係を第7図a〜eに示す。重量
増加率0%はコントロール材で未注入材の膨潤率であ
る。樹脂別にみると、LH−キャタリストGは寸法安定効
果が最も大きく、重量増加率が低い領域においても膨潤
率は5%前後(ASE55〜58%)にまで低下した。
(A) Evaluation of dimensional stability The relationship between the swelling rate and the weight gain rate when the equilibrium water content is reached in an atmosphere of 20 ° C. and 93% (RH) is shown in FIGS. The weight increase rate of 0% is the swelling rate of the control material and uninjected material. By resin, LH-Catalyst G had the greatest dimensional stability effect, and the swelling rate decreased to around 5% (ASE 55-58%) even in the region where the weight increase rate was low.

「註」ASE: Antiswelling Efficieny,抗膨潤能、次式に
よって表わされる木質系材料の寸法安定性能を評価する
数値 寸法安定性能が良好であったLHはバルキング率の大きな
樹脂であり、従ってこの樹脂による寸法安定効果はバル
キングによるものと考えられる。
[Note] ASE: Antiswelling Efficieny, anti-swelling ability, numerical value for evaluating the dimensional stability performance of wood-based materials represented by the following formula LH, which had good dimensional stability, is a resin with a large bulking rate, so the dimensional stability effect of this resin is considered to be due to bulking.

それとは反対にN−キャタリストGは膨潤率が8%前後
と高く(ASE 20%以下)寸法安定効果に欠ける。これは
N−キャタリストGのバルキング率が低く、重量増加率
が大きいところでは負の値を示したのと関係が深い。メ
ラミン樹脂(J−101)は上述した樹脂の中間のバルキ
ング率を示し、その結果、膨潤率はキャタリスト376で
約6%、キャタリストGで約7%へと減少したが、これ
らの値はLHとNの中間値であった。また寸法安定効果に
関しては触媒による差が顕著に現われた。即ち、どの樹
脂についてもキャタリスト376はキャタリストGに比べ
て寸法安定効果に優れていた。キャタリストGは吸湿性
のある触媒であり、キャタリスト376を用いた時よりも
同じ雰囲気中での平衡含水率が高く、重量増加率をベー
スにして寸法安定性能を評価すると、キャタリストGは
キャタリスト376よりも寸法安定性能に劣るという結果
が得られた。
On the contrary, N-catalyst G has a high swelling ratio of around 8% (ASE 20% or less) and lacks the dimensional stability effect. This is closely related to the fact that the bulking rate of the N-catalyst G is low and the weight increasing rate is large, and the value is negative. Melamine resin (J-101) showed a bulking ratio intermediate to those of the above resins, and as a result, the swelling ratio decreased to about 6% for Catalyst 376 and about 7% for Catalyst G. It was an intermediate value between LH and N. Regarding the dimensional stability effect, the difference due to the catalyst was remarkable. That is, for all the resins, Catalyst 376 was superior to Catalyst G in dimensional stability. Catalyst G is a hygroscopic catalyst, has a higher equilibrium water content in the same atmosphere than when using Catalyst 376, and when the dimensional stability performance is evaluated based on the weight increase rate, Catalyst G shows The result was that the dimensional stability was inferior to that of Catalyst 376.

(ウ)吸湿性能の評価 20℃、93%(RH)中での平衡含水率と重量増加率との関
係を第8図a〜cに示す。ここでも重量増加率0%はコ
ントロール材で未注入材の平衡含水率を示す。一般に重
量増加率が、増加すると平衡含水率は減少するという反
比例の関係が成り立つが、LH−キャタリストGは例外で
それらの平衡含水率は重量増加率の増加とともに高くな
り、重量増加率の大きいところでは木材本来の平衡含水
率よりも高い値を示した。これは前述のようにキャタリ
ストGは吸湿性のある触媒であり、LHに対しての触媒溶
液の標準使用量が対樹脂液比30%と高いのが原因であろ
うと考えられる。他の樹脂においてもキャタリストGを
用いた方がキャタリスト376の使用時よりもやや高い平
衡含水率を示し、その差向は重量増加率が大きい場合に
顕著であった。木材が本来持っているのと同等な吸湿性
能を達成できるのはLH−キャタリストGであった。しか
し前述のように本来の木材以上の吸湿性性能を押える必
要上、樹脂の混合、及び触媒添加率を減少させて重縮合
試験を行なった。
(C) Evaluation of moisture absorption performance The relationship between the equilibrium water content and the weight increase rate at 20 ° C and 93% (RH) is shown in Figs. Here again, the weight increase rate of 0% indicates the equilibrium water content of the uninjected material as the control material. In general, the inverse proportion relationship is established in that the equilibrium water content decreases as the weight increase rate increases. However, the exception is LH-Catalyst G, in which the equilibrium water content increases as the weight increase rate increases, and the weight increase rate increases. By the way, it showed a value higher than the equilibrium water content of wood. This is probably because Catalyst G is a hygroscopic catalyst as described above, and the standard amount of the catalyst solution used for LH is as high as 30% of the resin solution. Also in other resins, the use of Catalyst G showed a slightly higher equilibrium water content than the case of using Catalyst 376, and the difference was remarkable when the weight increase rate was large. It was LH-Catalyst G that was able to achieve the same moisture absorption performance that wood originally had. However, as described above, the polycondensation test was carried out by reducing the mixing ratio of the resin and the catalyst addition rate in order to suppress the hygroscopic performance higher than the original wood.

(エ)樹脂の混合によう重縮合試験 樹脂を混合した場合、pHの相違やその他の原因から注入
前にゲル化あるいは重 合が阻害されることも考えられ
るので、LHとJ−101を混合し重縮合試験を行なった。
その結果、混合によるゲル化や第9図に示すように、転
化率の低下は認められず、本来転化率が高いJ−101の
混合比率が高まるにつれて転化率も上昇する傾向が認め
られた。樹脂を混合したときのバルキング率を第10図に
示す。J−101の混合比率が高まるにつれてバルキング
率は漸次減少した。20℃、93%(RH)中での平衡含水率
並びにそのときの膨潤率を第11図a、bに示す。J−10
1の混入によって寸法安定性能がやや低下する。平衡含
水率J−101の混合比率が増加するに伴い、直線的に減
少する。木材自体の平衡含水率がヒノキで約20%、スギ
で約18%であり、これと同様の平衡含水率を支える樹脂
の混合比(LH/J−101)はヒノキで43/57、スギで22
/78程度であった。
(D) Polycondensation test similar to resin mixing When resin is mixed, gelation or polymerization may be inhibited before injection due to pH difference and other causes. Therefore, mix LH and J-101. A polycondensation test was conducted.
As a result, gelation due to mixing and, as shown in FIG. 9, no decrease in conversion was observed, and there was a tendency that the conversion increased as the mixing ratio of J-101, which originally had a high conversion, increased. Figure 10 shows the bulking rate when the resins were mixed. The bulking rate gradually decreased as the mixing ratio of J-101 increased. The equilibrium water content at 20 ° C. and 93% (RH) and the swelling rate at that time are shown in FIGS. J-10
When 1 is mixed, the dimensional stability performance is slightly reduced. The equilibrium water content J-101 decreases linearly as the mixing ratio increases. The equilibrium water content of wood itself is about 20% for cypress and about 18% for cedar, and the resin mixing ratio (LH / J-101) that supports equilibrium water content similar to this is 43/57 for cypress and for cedar. twenty two
It was about / 78.

(オ)触媒添加率を減少させての重縮合試験 LHに対してキャタリストGの添加率の標準使用量の対樹
脂液比30%から20、10%へと減少させて重縮合試験を行
なった。第12図に示すように、触媒添加率が少ないほ
ど、転化率高いことが判明した。第13図に示すように触
媒添加率の減少に伴って、バルキング率はやや増加し
た。20℃,93%(RH)中での平衡含水率とその時の膨潤
率を第14図a〜cに示す。触媒添加率を20%に減少させ
ることによって寸法安定性能がやや向上した。本来の木
材と同様な平衡含水率を付与するためには、ヒノキで約
19%、スギで約15%の触媒添加率が最適であった。樹脂
含浸木材に本来の木材と同様な吸湿性能を付与すること
は困難であると考えられたが、触媒添加率を調節するこ
とによって、転化率や寸法安定性能を低下させることな
く上記の様な吸湿性能を付与できた。
(E) Polycondensation test with a reduced catalyst addition rate A polycondensation test was conducted with the standard addition rate of catalyst G reduced from 30% to 20 or 10% of resin liquid relative to LH. It was As shown in FIG. 12, it was found that the lower the catalyst addition rate, the higher the conversion rate. As shown in Fig. 13, the bulking rate increased slightly as the catalyst addition rate decreased. The equilibrium water content at 20 ° C. and 93% (RH) and the swelling ratio at that time are shown in FIGS. By reducing the catalyst addition rate to 20%, the dimensional stability performance was slightly improved. To give equilibrium water content similar to that of original wood, use cypress
The optimum catalyst addition rate was 19% and about 15% for cedar. It was thought that it was difficult to give the resin-impregnated wood the same moisture absorption performance as the original wood, but by adjusting the catalyst addition rate, the conversion rate and dimensional stability performance were not reduced as described above. It was possible to impart moisture absorption performance.

(6)注入試験 一.木口面をシールした前記ブロック上試片を用いて板
目面及び征目面からの樹脂の注入性について検討した。
重量既知の試片を樹脂含浸装置の加減圧注入缶の中に入
れ、2時間約50mmHgに以下に減圧後樹脂溶液を缶内に導
入、続いて10kg/cm2で0、30、60、120分加圧注入を行
ない、注入量を測定した。
(6) Injection test 1. The injectability of the resin from the grain surface and the conspicuous surface was examined by using the above-mentioned test piece on the block with the wood surface sealed.
A test piece of known weight was placed in a pressurizing and depressurizing injection can of a resin impregnating device, and after depressurizing to about 50 mmHg for 2 hours, the resin solution was introduced into the can, followed by 0, 30, 60, 120 at 10 kg / cm 2 . Minute injection was performed and the injection amount was measured.

二.不揮発分率を約40%に調整した樹脂液を用いて、そ
の注入特性について検討した。実際の注入量及び飽和状
態まで水を注入した時の計算上の注入量等から浸透深さ
を算出した。結果を第16図a〜dに示す。用いた木材試
片を注入性が一般に云われているよりも良い(特に心材
部において)絶対値として判断できないいのでコントロ
ールとして水を注入し、比較検討した。J−101はLHよ
りも浸透性が悪く、水を100とした場合スギの心材を除
いて40〜50程度の浸透深さしか得られなかった。それに
対しLHはヒノキの辺材では樹脂液の浸透量がやや少なか
ったが、それ以外での試料では60以上の浸透深さを示し
た。材の表面硬化には樹脂液の浸透深さは材表面から3
〜5mmあればよい。また上述の結果から2時間減圧→缶
内への樹脂液の導入→1〜2時間10kg/cm2加圧という
注入スケジュールで充分であると考えられる。
two. The injection characteristics of the resin liquid whose non-volatile content was adjusted to about 40% were examined. The penetration depth was calculated from the actual injection amount and the calculated injection amount when water was injected to the saturated state. The results are shown in Figures 16a-d. Since the porosity of the used wood specimen is better than what is generally said (especially in the heartwood part), it cannot be judged as an absolute value, so water was injected as a control and a comparative study was conducted. J-101 had poorer permeability than LH, and when water was taken as 100, only a penetration depth of about 40 to 50 was obtained except for the core material of cedar. On the other hand, LH showed a little less penetration of resin solution in the sapwood of Japanese cypress, but showed a penetration depth of more than 60 in other samples. For the surface hardening of the material, the penetration depth of the resin liquid is 3 from the material surface.
~ 5mm is enough. From the above results, it is considered that the injection schedule of depressurization for 2 hours, introduction of the resin liquid into the can, and pressurization for 10 kg / cm 2 for 1 to 2 hours is sufficient.

(2)硬さ試験 一.木口面を開放したL方向の長さが4cmのブロック上
試片に樹脂に注入、重縮合した後、インストロン万能強
度試験機を用いて、JIS Z2117に準拠してブリネル硬さ
を求めた。
(2) Hardness test 1. Brinell hardness was determined in accordance with JIS Z2117 using an Instron universal strength tester after injecting resin into a resin on a block specimen having a length of 4 cm in the L direction with the mouth end opened and polycondensing.

二.ブリネル硬さ試験の結果を第17図a〜dに示す。注
入材の硬さは板目面でヒノキ0.78kg/mm2、スギ045kg/
mm2、征目面でヒノキ0.77kg/mm2、スギ0.66kg/mm2
あった。樹脂を注入することにより、材の硬度は飛躍的
に向上し未注入材の2.4〜3.3倍の値が得られた。硬化温
度を105、120、150℃の3通りに設定し、硬度の測定を
した結果、LHでは硬化温度を120℃に設定する必要があ
った。それに対しJ−101では105℃で良好の結果が得ら
れた。
two. The results of the Brinell hardness test are shown in Figures 17a-d. The hardness of the injected material is cypress 0.78kg / mm 2 , cedar 045kg /
mm 2, cypress 0.77kg / mm 2 in the Conqueror first surface, was a cedar 0.66kg / mm 2. By injecting the resin, the hardness of the material was dramatically improved and the value was 2.4 to 3.3 times that of the uninjected material. The curing temperature was set to 105, 120 and 150 ° C, and the hardness was measured. As a result, it was necessary to set the curing temperature to 120 ° C in LH. On the other hand, with J-101, good results were obtained at 105 ° C.

目標とするブナのブリネル硬さは板目面約1.9kg/mm2
征目面1.3kg/mm2であり、この値と比較すると、板目面
ではヒノキは樹脂の注入・硬化によりブナの1.1〜1.2倍
にまで硬度が上昇した。スギでは最高、ブナの0.8倍余
りに留まった。一方征目面では目標値をはるかに越え、
スギ、ヒノキともブナの1.2〜1.7倍にまで向上した。
The target Brinell hardness of beech is about 1.9 kg / mm 2 of grain surface,
The conspicuous surface is 1.3 kg / mm 2 , and in comparison with this value, the hardness of cypress increased 1.1 to 1.2 times that of beech by injection and hardening of resin. It was the highest in Sugi, which was 0.8 times that of beech. On the other hand, in terms of conquest, it far exceeds the target value,
Both cedar and cypress improved 1.2 to 1.7 times that of beech.

転化率の点から検討すると、J−101では硬化温度を150
℃から120℃へと下げると約4%、LHでは約10%転化率
が低下し、とちらの樹脂においても150℃という硬化温
度が必要であると思われたが、材の硬さという点におい
ては上記のようにLHでは120℃、J−101では105℃とい
う硬化温度で良好な結果が得られた。
Considering the conversion rate, J-101 has a curing temperature of 150.
When the temperature was lowered from ℃ to 120 ℃, the conversion rate decreased by about 4% and LH by about 10%, and it was thought that this resin also required a curing temperature of 150 ℃, but the hardness of the material As described above, good results were obtained at a curing temperature of 120 ° C. for LH and 105 ° C. for J-101 as described above.

「発明の効果」 (1)樹脂含浸木材の吸湿性能は触媒に塩化マグネシウ
ム系の触媒キャタリストGを用い、その添加率を変える
ことによって、また樹脂を混合することによってかなり
広い範囲で自由に調整することができた。その一例を挙
げるとLHに対して触媒キャタリストGを15〜20%添加す
ることにより、元来の木材と同様な吸湿性を持った材料
が得られた。
"Effects of the invention" (1) The moisture absorption performance of resin-impregnated wood is freely adjusted in a fairly wide range by using a magnesium chloride-based catalyst catalyst G as a catalyst and changing the addition rate and mixing the resin. We were able to. For example, by adding 15 to 20% of catalyst catalyst G to LH, a material having a hygroscopic property similar to that of original wood was obtained.

(2)LH−キャタリストGを用いることにより、元来の
木材のおよそ2倍の寸法安定性能を有する材料を得るこ
とができた。
(2) By using LH-Catalyst G, it was possible to obtain a material having a dimensional stability performance about twice that of the original wood.

(3)材表面の硬度は板目面においてはスギでは目標の
ブナにやや及ばなかったが、ヒノキではブナよりも大き
な値を得た。征目面は両樹種ともに目標値を大きく越え
た。元の材料に比べると2.4〜3.3倍にまで硬度が上昇し
た。
(3) The hardness of the surface of the material was slightly lower than the target beech in Japanese cedar on the grain surface, but was higher than that of beech in cypress. In terms of conquest, both tree species greatly exceeded the target values. Hardness increased to 2.4 to 3.3 times that of the original material.

本発明はこのように、元来の木材と同等の吸湿性能を持
ち、寸法安定性能に富み、かつ、ブナに匹敵あるいはそ
れ以上の硬度を有する材料を得ることができた。また用
いた水溶性樹脂は比較的注入性が良好であり、本発明に
係る処理をしたスギ、ヒノキ材は結露を防止できるため
建築用内装材として好適である。
As described above, according to the present invention, it is possible to obtain a material having moisture absorption performance equivalent to that of the original wood, rich dimensional stability performance, and hardness equal to or higher than that of beech. In addition, the water-soluble resin used has a relatively good injection property, and the cedar and cypress materials treated according to the present invention can prevent dew condensation and are therefore suitable as interior materials for construction.

【図面の簡単な説明】[Brief description of drawings]

第1図a、bはそれぞれLH、J−101の微分、積分分子
量分布曲線を示す図表、第2図a、bはそれぞれ触媒添
加後のLH、J−101において分子量1000以上の分子が占
める割合を示す図表、第3図は触媒添加後のLH、J−10
1について重量平均分子量の経時変化を図表、第4図ab
はそれぞれLHにキャタリストG添加後の相対剛性率、対
数減衰率を示す図表、同図c、dはそれぞれJ−101に
キャタリストG添加後の相対剛性率、対数減衰率を示す
図表、同図e、fはそれぞれJ−101にキャタリスト376
添加後の相対剛性率、対数減衰率を示す図表、第5図は
LH、J−101の重縮合速度の温度依存性を示す図表、第
6図aはLHを注入、硬化後のバルキング率と重量増加率
の関係を示す図表、同図b、cはJ−101を注入、硬化
後のバルキング率と重量増加率の関係を示す図表、同図
d、eはNを注入、硬化後のバルキング率と重量増加率
の関係を示す図表、第7図aはLHを注入、硬化後の20℃
93%(RH)における膨潤率と重量増加率の関係を示す図
表、同図b、cはJ−101を注入、硬化後の膨潤率と重
量増加率の関係を示す図表、 同図d、eはNを注入、硬化後の膨潤率と重量増加率の
関係を示す図表、第8図a、b、cはそれぞれLH、J−
101を注入、硬化後の材の20℃93%(RH)における平衡
含水率と重量増加率の関係を示す図表、第9図はLHにJ
−101を混合したときの転化率の変化を示す図表、第10
図はLHにJ−101を混合したときのバルキング率の変化
を示す図表、第11図aはLHにJ−101を混合したときの
平衡含水率の変化を示す図表、同図bはLHにJ−101を
混合したときの膨潤率の変化を示す図表、第12図はLHに
対する触媒添加率と転化率の関係を示す図表、第13図は
LHに対する触媒添加率とバルキング率の関係を示す図
表、第14図aはLHに対する触媒添加率と平衡含水率の関
係を示す図表、同図b、cはそれぞれLHに対する触媒添
加率と膨潤率の関係を示す図表、第15図a、bはそれぞ
れヒノキの辺材、心材にLH、J−101を注入するときの
加圧注入時間と浸透深さの関係を示す図表、同図c、d
はスギの辺材、心材にLH、J−101を注入するときの加
圧注入時間と浸透深さの関係を示す図表、第16図abはそ
れぞれスギ、ヒノキにLH、J−101を注入し、硬化した
ときの板目面における材表面のブリネル硬さを示す図
表、同図c、dはそれぞれスギ、ヒノキにLH、J−101
を注入、硬化したときの征目面における材表面のブリネ
ル硬さを示す図表である。
1a and 1b are graphs showing the derivative and integral molecular weight distribution curves of LH and J-101, respectively, and FIGS. 2a and 2b are the proportions of molecules having a molecular weight of 1000 or more in LH and J-101 after addition of catalyst, respectively. Fig. 3 shows LH and J-10 after addition of catalyst.
Fig. 4 is a chart showing the change in weight average molecular weight with time for Fig. 1, ab.
Is a chart showing relative rigidity and logarithmic decay rate after addition of Catalyst G to LH, and FIGS. C and d are charts showing relative rigidity and logarithmic decay rate after addition of Catalyst G to J-101, respectively. Figures e and f show Catalyst 376 on J-101 respectively.
Fig. 5 shows the relative rigidity after addition and the logarithmic decay rate.
LH, a chart showing the temperature dependence of the polycondensation rate of J-101, FIG. 6 a is a chart showing the relationship between the bulking rate and the weight increase rate after injection and curing of LH, and FIGS. 6 b and 6 c are J-101. Fig. 7 is a chart showing the relationship between the bulking rate and the weight increase rate after injecting and curing, Fig. 7 d and e are charts showing the relationship between the bulking rate and the weight increasing rate after injecting N, and Fig. 7a is LH. 20 ℃ after injection and curing
The chart showing the relationship between the swelling rate and the weight increasing rate at 93% (RH), the figures b and c showing the relationship between the swelling rate and the weight increasing rate after injection and curing of J-101, the same figures d and e. Is a chart showing the relationship between the swelling rate and the weight increase rate after N is injected and cured, and FIGS. 8 a, b and c are LH and J-, respectively.
A chart showing the relationship between the equilibrium water content and the weight increase rate at 20 ° C 93% (RH) of the material after 101 is injected and cured.
Chart showing change in conversion rate when -101 is mixed, No. 10
The figure shows the change in bulking ratio when J-101 is mixed with LH, Fig. 11a shows the change in equilibrium water content when J-101 is mixed with LH, and Fig. 11b shows the change in LH. Fig. 12 is a chart showing the change in swelling rate when J-101 is mixed, Fig. 12 is a chart showing the relationship between catalyst addition rate and conversion rate with respect to LH, and Fig. 13 is
A chart showing the relationship between the catalyst addition rate and the bulking rate with respect to LH, FIG. 14a is a chart showing the relationship between the catalyst addition rate with respect to LH and the equilibrium water content, and FIGS. Fig. 15 is a diagram showing the relationship, and Figs. 15a and 15b are diagrams showing the relationship between the pressure injection time and the penetration depth when LH and J-101 are injected into the sapwood and heartwood of cypress respectively.
Is a chart showing the relationship between pressure injection time and penetration depth when injecting LH and J-101 into sapwood and heartwood of cedar. Fig. 16ab shows LH and J-101 injected into cedar and cypress respectively. , A chart showing the Brinell hardness of the material surface on the grain surface when cured, the figures c and d are LH and J-101 for cedar and cypress respectively.
It is a chart showing the Brinell hardness of the material surface on the conspicuous surface when is injected and cured.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ホルムアルデヒド、尿素、及びグリオキザ
ールの初期縮合物に触媒を添加した後、木材中に含浸
し、加熱硬化させる樹脂含浸による木材の表面硬化と寸
法安定処理方法。
1. A method for surface hardening and dimensional stabilizing treatment of wood by resin impregnation in which a catalyst is added to an initial condensate of formaldehyde, urea and glyoxal and then impregnated in wood and heat-cured.
JP5216890A 1990-03-02 1990-03-02 Surface hardening and dimensionally stable treatment method of wood by resin impregnation Expired - Lifetime JPH0667564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5216890A JPH0667564B2 (en) 1990-03-02 1990-03-02 Surface hardening and dimensionally stable treatment method of wood by resin impregnation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5216890A JPH0667564B2 (en) 1990-03-02 1990-03-02 Surface hardening and dimensionally stable treatment method of wood by resin impregnation

Publications (2)

Publication Number Publication Date
JPH03253303A JPH03253303A (en) 1991-11-12
JPH0667564B2 true JPH0667564B2 (en) 1994-08-31

Family

ID=12907298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5216890A Expired - Lifetime JPH0667564B2 (en) 1990-03-02 1990-03-02 Surface hardening and dimensionally stable treatment method of wood by resin impregnation

Country Status (1)

Country Link
JP (1) JPH0667564B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09169011A (en) * 1995-12-19 1997-06-30 Tomiyasu Honda Decorative panel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5593290B2 (en) * 2011-09-20 2014-09-17 朝雄 島崎 Wooden decorative board and method for producing the same
JP6478179B1 (en) * 2018-07-30 2019-03-06 パナソニックIpマネジメント株式会社 Manufacturing method of wooden building materials
KR20210059720A (en) * 2018-09-19 2021-05-25 프란체스카 노리 A PROCESS FOR THE TREATMENT OF BARKS OF PLANT ORIGIN

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09169011A (en) * 1995-12-19 1997-06-30 Tomiyasu Honda Decorative panel

Also Published As

Publication number Publication date
JPH03253303A (en) 1991-11-12

Similar Documents

Publication Publication Date Title
US10442110B2 (en) Wood treatment for dimensional stabilization
Xiao et al. Effect of glutaraldehyde on water related properties of solid wood
Wang et al. THERMAL, MECHANICAL, AND MOISTURE ABSORPTION PROPERTIES OF WOOD-TiO 2 COMPOSITES PREPARED BY A SOL-GEL PROCESS.
JP4496408B2 (en) Method for improving the surface hardness of a wood molded body using an aqueous solution of an impregnating agent
Donato et al. Porosity determination with helium pycnometry as a method to characterize waterlogged woods and the efficacy of the conservation treatments
Priadi et al. Water absorption and dimensional stability of heat-treated fast-growing hardwoods
Stefanowski et al. Review of the use of PF and related resins for modification of solid wood
Mubarok et al. Comparison of different treatments based on glycerol or polyglycerol additives to improve properties of thermally modified wood
Zhang et al. Effect of low molecular weight melamine-urea-formaldehyde resin impregnation on poplar wood pore size distribution and water sorption
Shi et al. Modification of Chinese Fir with Alkyl Ketene Dimer (AKD): Processing and Characterization.
Deka et al. Chemical modification of Norway spruce (Picea abies (L) Karst) wood with melamine formaldehyde resin
JPH0667564B2 (en) Surface hardening and dimensionally stable treatment method of wood by resin impregnation
Mai et al. Wood modification
Walker et al. Dimensional instability in timber
US20090004395A1 (en) Waterborne furfural-urea modification of wood
Mubarok et al. Feasibility study of utilization of commercially available polyurethane resins to develop non-biocidal wood preservation treatments
CA1047185A (en) Curable compositions and method of bulking timber
Xiao et al. Coating performance on glutaraldehyde-modified wood
Mai et al. Water uptake, moisture absorption and wettability of Beech veneer treated with N-methylol melamine compounds and alkyl ketene dimer
Ping et al. In Polymerization of Environment Friendly Melamine‐Urea‐Glyoxal Resin in Rubber Wood for Improved Physical and Mechanical Properties
Marfo et al. EVALUATING THE DEPENDENCE OF DIMENSIONAL STABILISATION OF CHEMICALLY MODIFIED CELTIS MILDBRAEDII (ESA FUFUO)
Oduor et al. Dimensional Stability of Particle Board and Radiata Pine Wood (Pinus radiata D. Don) Treated with Different Resins
Hosseinpourpia et al. Analysis of the Vapour Sorption Behaviour of Wood Modified with Thermosetting Resins with Hailwood-Horrobin and Excess Surface Work models
Altun et al. The Effect of Water Repellent Chemical (Ruco-DryEco®) Used in The Textile Sector on Some Physical Properties of Wood
Rahman et al. Preparation and characterizations of various clay-and monomers-dispersed wood nanocomposites

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20080831

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 16