JPH066754B2 - Sintering method of iron ore - Google Patents

Sintering method of iron ore

Info

Publication number
JPH066754B2
JPH066754B2 JP25936186A JP25936186A JPH066754B2 JP H066754 B2 JPH066754 B2 JP H066754B2 JP 25936186 A JP25936186 A JP 25936186A JP 25936186 A JP25936186 A JP 25936186A JP H066754 B2 JPH066754 B2 JP H066754B2
Authority
JP
Japan
Prior art keywords
sintering
raw material
raw materials
iron ore
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25936186A
Other languages
Japanese (ja)
Other versions
JPS63111133A (en
Inventor
富也 福田
教夫 栗原
晋 亀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP25936186A priority Critical patent/JPH066754B2/en
Publication of JPS63111133A publication Critical patent/JPS63111133A/en
Publication of JPH066754B2 publication Critical patent/JPH066754B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,鉄鉱石の焼結法に関する。The present invention relates to a method for sintering iron ore.

〔従来の技術〕[Conventional technology]

高炉操業において,焼結鉱の性質特に被還元性(JIS-M8
713に規定の還元率)が良好であることが要求される。
一般に焼結鉱の低温還元粉化性が著しいと高炉シャフト
部の上部(300〜700℃付近)で還元されて粉化し,この
粉化程度が特に著しくなると炉内の通気性が損なわれて
スリップ,棚吊りなどを惹起させ炉内状況を不安定にす
る。一方高炉に装入された焼結鉱は塊状で存在する間は
CO+N2を主体とする炉内上昇ガスにより還元され,そ
の後溶融し,炉内を滴下する間に未還元部分は赤熱コー
クスと直接的に反応して還元される。したがって溶融直
前の還元率が高いほどコークスの消費が少なくてすみ,
高炉の燃料比を低減させることができる。
In blast furnace operation, the properties of sinter are especially reducible (JIS-M8
The reduction rate specified in 713) is required to be good.
Generally, if the low-temperature reduction powderability of sinter is remarkable, it will be reduced and powdered at the upper part of the blast furnace shaft (around 300 to 700 ℃), and if the degree of this powdering becomes particularly significant, the air permeability in the furnace will be impaired and slippage will occur. , It causes hanging of the shelf and makes the inside of the furnace unstable. On the other hand, while the sintered ore charged into the blast furnace is in the form of lumps,
It is reduced by the gas rising in the furnace mainly composed of CO + N 2 , then melted, and the unreduced portion is directly reacted with the red hot coke and reduced while dropping inside the furnace. Therefore, the higher the reduction rate immediately before melting, the less the consumption of coke,
The fuel ratio of the blast furnace can be reduced.

このようなことから,焼結鉱の被還元性を高めるため
に,焼結鉱の製造にあたって,コークス粉等の燃料配合
率を適切に調節したうえ焼結温度を旧来の1350〜1450℃
から1200〜1300℃程度の比較的低い温度とし,これによ
って焼結鉱中のFeOを低くすることが提案され実施さ
れている。より具体的には,焼結鉱の微小気孔量を増加
させることと,ヘマタイトに比べて著しく比還元性の劣
るマグネタイトおよび非晶質けい酸塩中のFeO分を減
少させることが非還元性を高めるうえで有利となるの
で,燃料配合率を適切に調節したうえでヘマタイトがマ
グネタイトと酸素に解離する温度より低い1200〜1300℃
程度の温度で焼結し,これによって微小気孔部が多く且
つマグネタイト生成量が少ない低FeOの被還元性の良
好な焼結鉱を製造する方法が実施されている。
Therefore, in order to enhance the reducibility of the sinter, the sintering temperature should be adjusted from the conventional 1350 to 1450 ℃ while appropriately adjusting the fuel blending ratio such as coke powder when manufacturing the sinter.
Therefore, it has been proposed and implemented that the temperature is set to a relatively low temperature of about 1200 to 1300 ° C. to lower the FeO content in the sintered ore. More specifically, increasing the amount of micropores in the sintered ore and reducing the FeO content in magnetite and amorphous silicate, which are significantly inferior in specific reduction property to hematite, can improve non-reducing property. Since it is advantageous for increasing the temperature, it is lower than the temperature at which hematite dissociates into magnetite and oxygen after adjusting the fuel blending ratio appropriately.
A method for producing a sinter having a small reducibility of low FeO, which has a large number of micropores and a small amount of magnetite produced, is carried out.

他方,特開昭60-145333号公報は,焼結過程でのコーク
ス粉の燃焼熱による鉄鉱石と副原料との溶融反応を制御
することによって焼結鉱品質の向上を図るべく,焼結原
料の一部を粗粒と微粉に篩分け,微粒部分だけを造粒
し,この造粒物を残りの焼結原料の混合物に配合し混合
造粒して焼結原料とする方法を開示している。
On the other hand, Japanese Patent Laid-Open No. 60-145333 discloses a sintering raw material in order to improve the quality of the sintered ore by controlling the melting reaction between the iron ore and the auxiliary raw material due to the combustion heat of the coke powder during the sintering process. Disclosed is a method of sieving a part of the powder into coarse particles and fine powder, granulating only the fine particle portion, blending this granulated material with the mixture of the remaining sintering raw materials, and mixing and granulating it as the sintering raw material There is.

また,特公昭60-17810号公報は,焼結過程で生成する鉱
物の組織を制御することによって焼結鉱の品質を向上さ
せるべく,還元性の良好なカルシウムフエライト生成に
寄与しないSiO2含有量の多い焼結原料だけを選り分けて
造粒し,これを石灰石の造粒物を含むカルシウムフエラ
イト生成に寄与する焼結原料に混合して焼結原料とする
方法を開示している。
In addition, Japanese Patent Publication No. 60-17810 discloses that the content of SiO 2 that does not contribute to the formation of calcium ferrite having a good reducing property in order to improve the quality of the sintered ore by controlling the structure of the mineral formed during the sintering process. Disclosed is a method in which only the sintering raw material containing a large amount of powder is selected and granulated, and this is mixed with a sintering raw material that contributes to the formation of calcium ferrite including a granulated product of limestone and used as the sintering raw material.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

焼結鉱中のFeOを低くする方法には,焼結原料中にほ
ぼ均一に分散したコークス粉に着火してその燃焼熱によ
って焼結を行わせるさいに,コークス粉配合率を可能な
限り少なくすることによって焼結温度を低くする方策が
採られるが,コークス粉の配合率には超えてはならない
下限があるので,コークス配合率の減少による焼結温度
を低くする処方では焼結鉱品質の改善には自と限界があ
った。
The method of lowering FeO in the sinter is to ignite the coke powder that is almost uniformly dispersed in the sintering raw material, and to sinter the coke powder with the heat of combustion to reduce the coke powder content as much as possible. However, since there is a lower limit that must not be exceeded in the mixing ratio of coke powder, the formulation that lowers the sintering temperature by decreasing the mixing ratio of coke will improve the quality of sinter. There was a limit to my improvement.

この問題を解決すべく,同一出願人に係る特願昭60-128
799号において,緻密質の難溶融性鉄鉱石の銘柄を選り
分けてこれに石灰石または石灰石と生石灰,固体燃料を
配合して造粒し,これを残りの焼結原料に配合すること
を要旨とする焼結鉱の製造法を提案したが,この方法に
よっても焼結鉱品質にはまだ改善される余地があった。
In order to solve this problem, Japanese Patent Application No. 60-128 relating to the same applicant
In No. 799, it is the gist to select the brand of dense and difficult to melt iron ore, mix it with limestone or limestone, quicklime, and solid fuel to granulate, and mix this with the rest of the sintering raw material. We proposed a method for producing sinter, but there was still room for improvement in sinter quality with this method.

特開昭60-145333号公報および特公昭60-17810号公報に
開示された方法によると焼結鉱の品質を改善することが
できると考えられるが,特開昭60-145333号公報記載の
方法では鉄鉱石と副原料を粗粒と微粉とに篩分けまたは
分級する工程が必要となる。この工程は簡単なようでも
実際には多量の鉄鉱石と副原料を取り扱う関係上,設備
と作業の面でなかなか厄介な工程とならざるを得ない。
また特公昭60-17810号公報に記載の方法ではSiO2含有量
の多い焼結原料の造粒工程と,石灰石の造粒工程の二つ
の工程が通常の造粒工程以外に別々に必要であり,やは
り作業が煩雑になることは否めない。
Although it is considered that the quality of the sintered ore can be improved by the methods disclosed in JP-A-60-145333 and JP-B-60-17810, the method described in JP-A-60-145333 is disclosed. Then, a step of sieving or classifying the iron ore and the auxiliary raw material into coarse particles and fine particles is required. Even though this process seems to be simple, in reality it is a complicated process in terms of equipment and work because of the large amount of iron ore and auxiliary materials to be handled.
Further, in the method described in Japanese Patent Publication No. 60-17810, two steps, a granulation step of a sintering raw material having a high SiO 2 content and a granulation step of limestone, are separately required in addition to the normal granulation step. However, it cannot be denied that the work becomes complicated.

本発明は,かような問題点を解決し,良還元性の焼結鉱
を普通の焼結原料処理条件および焼結条件のもとで製造
することを目的としてなされたものである。
The present invention has been made for the purpose of solving such problems and producing a highly reducing sinter under ordinary sintering raw material processing conditions and sintering conditions.

〔問題点を解決する手段〕[Means for solving problems]

本発明は,前記の目的を達成する焼結鉱の製造法とし
て,鉄鉱石,雑原料,副原料および返鉱からなる焼結原
料に固体燃料を配合し,通常の焼結処方に従って焼結鉱
を製造するさいに,焼結原料として使用する銘柄群の中
から焼結過程で難還元性鉱物を生成し易い銘柄(具体的
には,砂鉄,高FeO含有の集塵ダスト,蛇紋岩または
珪砂)だけを選り分け,この選り分けた銘柄に生石灰お
よび水を添加して造粒し,この造粒物を,残りの銘柄の
鉄鉱石,雑原料,副原料,返鉱および固体燃料からなる
混合物に配合して造粒するかまたは該混合物の造粒物に
配合することによって造粒された焼結原料を製造し,こ
の造粒された焼結原料を通常の処方に従って焼結するこ
とからなる鉄鉱石の焼結法を提供するものである。
The present invention provides a method for producing a sintered ore that achieves the above-mentioned object, by mixing a solid fuel with a sintering raw material composed of iron ore, miscellaneous raw materials, auxiliary raw materials, and reclaimed ores, and according to a normal sintering prescription. When manufacturing, the brands that are easy to produce non-reducible minerals during the sintering process from the brands used as sintering raw materials (specifically, iron sand, dust particles containing high FeO, serpentine or silica sand). ) Is selected, and quick lime and water are added to the selected brand to granulate, and the granulated product is blended with a mixture of the remaining brands of iron ore, miscellaneous raw materials, auxiliary raw materials, returned ore and solid fuel. Iron ore produced by producing a granulated sintering raw material by granulating or granulating the mixture with a granulated product of the mixture, and sintering the granulated sintering raw material according to a normal prescription. The present invention provides a sintering method of.

すなわち,焼結原料に使用する各種の銘柄について,焼
結過程で難還元性鉱物を生成し易い銘柄(つまり通常の
焼結条件で還元性の劣る鉱物を生成する性質を有する焼
結原料銘柄)とそうではない銘柄とを調査研究した結
果,砂鉄,高FeO含有の集塵ダスト(ミックスダスト
と呼ぶ),蛇紋岩,珪砂などが難還元性鉱物を生成し易
い銘柄に相当することが判明し,これらに生石灰を添加
して造粒物を作ってから残りの銘柄の焼結原料に配合し
た場合には,前記の目的が有利に達成されることがわか
った。
That is, with respect to various brands used as sintering raw materials, brands that easily produce non-reducible minerals during the sintering process (that is, brands of sintering raw materials that have the property of producing minerals with poor reducibility under normal sintering conditions) As a result of investigating and researching other brands, sand iron, dust collection dust with high FeO content (called mixed dust), serpentine, silica sand, etc. were found to correspond to brands that easily produce non-reducing minerals. It has been found that the above object can be advantageously achieved when quick lime is added to these to make a granulated product and then blended into the remaining sintering raw materials.

第1図は本発明に従う工程例を示したものである。第1
図の右側に示すA系統は,その工程自身は従来のものと
同じ通常の基本フローを示しているが,本発明法の実施
にあたっては,先ず使用する焼結原料の中から,その使
用原料中に砂鉄,ミックスダスト,蛇紋岩,珪砂が存在
する場合には,これらを選り分けてB系統とする。つま
り,通常の工程で使用する焼結原料のうち,難還元性鉱
物を生成し易い銘柄だけを選り分けてB系統に使用す
る。
FIG. 1 shows an example of steps according to the present invention. First
The system A shown on the right side of the figure shows the same basic basic flow as the conventional process, but in carrying out the method of the present invention, first of all the sintering raw materials used, If sand iron, mixed dust, serpentinite, and silica sand are present in B, they are selected as B system. That is, among the sintering raw materials used in the normal process, only the brands that easily produce the non-reducible minerals are selected and used for the B system.

B系統ではこの選り分けた銘柄に生石灰を配合する。こ
のB系統で使用する生石灰はA系統で副原料として使用
する生石灰の一部をまわす。そしてこの難還元性鉱物を
生成し易い銘柄と生石灰を回転ドラムなどの設備を用い
て混合し,さらに水分を加えて造粒する。そしてこの造
粒物をA系統の焼結原料に配合して混合,造粒するか,
A系統の焼結原料の混合物または造粒物に添加する。
In system B, quick lime is added to this selected brand. The quicklime used in the B system is a part of quicklime used as an auxiliary material in the A system. Then, the brand that easily produces this hard-to-reduce mineral is mixed with quick lime using equipment such as a rotating drum, and water is added to granulate. Then, the granulated product is mixed with the sintering raw material of the system A and mixed or granulated.
It is added to the mixture of A-type sintering raw materials or the granulated product.

より具体的には,A系統では粉状鉄鉱石,副原料(石灰
石や生石灰等),雑原料(鉄鋼製造過程で発生するスケ
ールの粉体等),返鉱(焼結鉱の整粒過程等で発生する
屑等)に固定燃料(通常はコークス粉)を配合してミキ
サー等で混合造粒を行うが,この混合時,または造粒後
に,B系統で得られた造粒物を添加する。すなわち,第
1図ではA系統において第1ミキサーと第2ミキサーに
よる二段階の混合造粒を行う例を示しているが,この場
合に第1ミキサーでB系統の造粒物を添加して混合造粒
してもよいし,第2ミキサーでB系統の造粒物を添加し
て混合造粒してもよく,また第2ミキサーで混合造粒さ
れた造粒物にB系統の造粒物を配合してもよい。
More specifically, in system A, powdered iron ore, auxiliary raw materials (limestone, quicklime, etc.), miscellaneous raw materials (scale powder generated in the steel manufacturing process, etc.), return ore (sizing process of sintered ore, etc.) The fixed fuel (usually coke powder) is mixed with the waste generated in step (1) and mixed and granulated with a mixer or the like. At the time of this mixing or after the granulation, the granules obtained in the system B are added. . That is, FIG. 1 shows an example in which the two-stage mixed granulation is performed by the first mixer and the second mixer in the system A. In this case, the granulated product of the system B is added and mixed in the first mixer. Granules may be granulated, or B-system granules may be added and mixed and granulated by a second mixer, or B-system granules may be mixed and granulated by the second mixer. You may mix | blend.

いずれにしても,本発明法によると,焼結過程で難還元
性鉱物を生成し易い物質と生石灰との造粒物が,焼結原
料中に点在することになる。すなわち従来のように難還
元性鉱物を生成し易い物質もそうでない物質も焼結原料
中に均一分散していたのとはこの点で相違が現れる。
In any case, according to the method of the present invention, granules of quick lime and a substance that easily forms a non-reducible mineral during the sintering process are scattered in the sintering raw material. That is, there is a difference in this point from the fact that a substance that easily forms a non-reducible mineral and a substance that does not easily form a non-reducible mineral were dispersed uniformly in the sintering raw material.

このようにして難還元性鉱物を生成し易い銘柄と生石灰
との造粒品を焼結原料中に偏在して点在させた原料を通
常の焼結法に従って焼結機で焼結し,冷却機で冷却し,
整粒装置で整粒して高炉装入用の焼結鉱製品を得る。
In this way, a granulated product of quick lime and a brand that easily produces a hard-to-reduce mineral is unevenly distributed in the sintering raw material, and the raw material is scattered in a sintering machine according to a normal sintering method and cooled. Machine,
The sinter ore product for blast furnace charging is obtained by sizing with a sizing device.

本発明法によると,後記の実施例に示すように特に焼結
温度を低くしなくても(1200〜1300℃の焼結温度で焼結
しても),被還元性の優れた焼結鉱を高い生産率のもと
で製造することができる。その理由としては,前記のよ
うに難還元性鉱物を生成し易い物質と生石灰とが隣接し
た造粒物が焼結原料中に偏在することにより,従来のよ
うに該物質が均一分散している場合に比べて,カルシウ
ムフエライトの生成が促進されるからであろうと考えら
れる。
According to the method of the present invention, as shown in the examples described later, even if the sintering temperature is not particularly lowered (even if the sintering temperature is 1200 to 1300 ° C.), the sinter having excellent reducibility is obtained. Can be manufactured under high production rate. The reason for this is that the above-mentioned substance is easily dispersed as in the conventional case because the granulated substance in which the substance that easily forms the non-reducible mineral and the quick lime are adjacent to each other is unevenly distributed in the sintering raw material. This is probably because the production of calcium ferrite is promoted as compared with the case.

実施例1 第1表に配合原料の配合割合(重量%)を示した。コー
クス粉は外割り重量%である。
Example 1 Table 1 shows the blending ratio (wt%) of the blended raw materials. The coke flour is the outer weight%.

第1表中における比較例(1)のA。は第1図におけるA
系統だけに相当するものである。この場合は蛇紋岩,ミ
ックスダスト,砂鉄および珪砂をそのまま配合したもの
である。
A of Comparative Example (1) in Table 1. Is A in FIG.
It corresponds only to the lineage. In this case, serpentine, mixed dust, iron sand, and silica sand were mixed as they were.

比較例(2)は同一出願人に係る特願昭60-128799号で提案
した方法に対応している。この場合のフローは第1図の
B系統に選り分けられる物質の種類が本発明法の場合と
は異なり,難溶融性の鉄鉱石である。そしてこの難溶融
性の鉄鉱石にA系統中に石灰石,生石灰,ミックスダス
トおよびコークス粉の一部を配合して回転ドラムで水を
加えて造粒したあと,この造粒物を第1図のフローと同
じく第2ミキサーで他の原料を混合した混合物に添加し
た。
Comparative Example (2) corresponds to the method proposed in Japanese Patent Application No. 60-128799 of the same applicant. The flow in this case is a refractory iron ore, unlike the case of the method of the present invention, in which the type of substance selected in the B system of FIG. Then, this refractory iron ore was mixed with part of limestone, quick lime, mixed dust and coke powder in system A, and water was added with a rotary drum to granulate the granulated product. Similar to the flow, the other raw materials were added to the mixture by the second mixer.

本発明法(1)は,第1図のフローにおけるB系統とし
て,蛇紋岩,ミックスダスト,砂鉄および珪砂を焼結原
料から選り分け,これにA系統の生石灰の一部をとって
配合物Bとした。これを回転ドラムで水を加えて造粒
し,この造粒物を,第1図のフローにおける第2ミキサ
ーで他の原料すなわち配合物Aを混合したものと混合
した。
In the method (1) of the present invention, serpentine, mixed dust, iron sand and silica sand are selected from the sintering raw materials as the B system in the flow of FIG. 1, and a portion of the quick lime of the A system is taken into this mixture B 2 And This was granulated by adding water with a rotary drum, and this granulated product was mixed with another raw material, that is, a mixture of the compound A 2 in the second mixer in the flow of FIG.

本発明法(2)は,B系統として砂鉄だけを選り分けてA
系統の生石灰の一部をとって配合物Bとした例であ
る。この配合物Bは本発明法(1)のBと同じように
して配合物Aに混合した。
In the method (2) of the present invention, only sand iron is selected as the B system and
It is an example of a formulation B 3 taking part of the system of quicklime. This formulation B 6 was mixed with formulation A 3 in the same manner as B 2 of the method (1) of the present invention.

本発明法(3)は,B系統としてミックスダストだけを選
り分けてA系統の生石灰の一部をとって配合物Bとし
た例である。この配合物Bは本発明法(1)のBと同
じようにして配合物Aに混合した。
The method (3) of the present invention is an example in which only mixed dust is selected as the B strain and a part of the quicklime of the A strain is taken to obtain a blend B 4 . This formulation B 4 was mixed with formulation A 4 in the same manner as B 2 of the method (1) of the present invention.

本発明法(4)は,B系統として珪砂および蛇紋岩を選り
分けてA系統の生石灰の一部をとって配合物Bとした
例である。この配合物Bは本発明法(1)のBと同じ
ようにして配合物Aに混合した。
The method (4) of the present invention is an example in which silica sand and serpentine are selected as the B system, and a portion of the quicklime of the A system is taken to form the mixture B 5 . This formulation B 5 was mixed with formulation A 5 in the same manner as B 2 of the method (1) of the present invention.

いずれの例の場合も,同じ焼結機に装填しすべて同じ焼
結条件のもとで焼結した。
In each case, they were loaded into the same sintering machine and sintered under the same sintering conditions.

得られた焼結鉱をJISM8713に準拠した試験に供してその
還元率を調べた。その結果を第2表に示した。また,歩
留り,焼結鉱の落下強度,還元粉化指数および生産率も
求め,その結果を第2表に併せて示した。
The obtained sinter was subjected to a test in accordance with JIS M8713 and its reduction rate was investigated. The results are shown in Table 2. In addition, yield, drop strength of sinter, reduction pulverization index and production rate were also obtained, and the results are also shown in Table 2.

第2表の結果から,本発明によるといずれも比較例(1)
および(2)に比べて焼結鉱の還元率が高くなり,歩留り
と生産性も向上していることがわかる。
From the results shown in Table 2, according to the present invention, all comparative examples (1)
It can be seen that the reduction rate of the sinter is higher than that of (2) and the yield and productivity are also improved.

実施例2 使用原料の銘柄として一部を追加し配合割合を変えた以
外は全て実施例1の方法を繰り返した。その配合表を第
3表に示した。第3表の配合表の見かたは第1表で説明
したのと同じてあり,造粒条件や焼結条件は全て実施例
1と同じである。
Example 2 The method of Example 1 was repeated except that a part of the raw material used was added and the compounding ratio was changed. The formulation table is shown in Table 3. How to read the composition table in Table 3 is the same as that described in Table 1, and the granulation conditions and sintering conditions are all the same as in Example 1.

第4表に実施例1と同様にして,得られた各例の焼結鉱
の還元率,落下強度,還元粉化指数並びに歩留りと生産
性を示した。
In the same manner as in Example 1, Table 4 shows the reduction rate, drop strength, reduction pulverization index, yield and productivity of each of the obtained sintered ores.

第4表の結果から,本発明法によるといずれも比較例に
比べて焼結鉱の還元率が高くなり,歩留りと生産性も向
上していることがわかる。
From the results in Table 4, it can be seen that, according to the method of the present invention, the reduction rate of the sintered ore is higher than that of the comparative example, and the yield and the productivity are also improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明法の製造工程を説明するための工程図で
ある。
FIG. 1 is a process drawing for explaining the manufacturing process of the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鉄鉱石,雑原料,副原料および返鉱からな
る焼結原料に固体燃料を配合し,通常の焼結処方に従っ
て焼結鉱を製造するさいに, 前記の焼結原料として使用する銘柄群中に,砂鉄,高F
eO含有の集塵ダスト,蛇紋岩または珪砂が存在する場
合には,これらの銘柄だけを選り分け, この選り分けた銘柄に生石灰および水を添加して造粒
し, この造粒物を,残りの銘柄の鉄鉱石,雑原料,副原料,
返鉱および固体燃料からなる混合物に配合して造粒する
かまたは該混合物の造粒物に配合することによって造粒
された焼結原料を製造し, この造粒された焼結原料を通常の処方に従って焼結する
ことからなる鉄鉱石の焼結法。
1. Use as a sintering raw material when a solid fuel is blended with a sintering raw material composed of iron ore, miscellaneous raw materials, auxiliary raw materials, and return ores, and a sintered ore is produced according to a normal sintering recipe. Among the brands that do, iron sand, high F
If eO-containing dust, serpentine, or silica sand is present, select only these brands, add quicklime and water to the selected brands and granulate. Iron ore, miscellaneous raw materials, auxiliary raw materials,
Granulated sintering raw material is produced by blending with a mixture of return ore and solid fuel, or by blending with the granulated material of the mixture. A method of sintering iron ore comprising sintering according to a recipe.
JP25936186A 1986-10-30 1986-10-30 Sintering method of iron ore Expired - Lifetime JPH066754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25936186A JPH066754B2 (en) 1986-10-30 1986-10-30 Sintering method of iron ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25936186A JPH066754B2 (en) 1986-10-30 1986-10-30 Sintering method of iron ore

Publications (2)

Publication Number Publication Date
JPS63111133A JPS63111133A (en) 1988-05-16
JPH066754B2 true JPH066754B2 (en) 1994-01-26

Family

ID=17333046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25936186A Expired - Lifetime JPH066754B2 (en) 1986-10-30 1986-10-30 Sintering method of iron ore

Country Status (1)

Country Link
JP (1) JPH066754B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100309782B1 (en) * 1997-11-29 2002-04-17 이구택 Fabrication method of sintered ore using iron-laden dust generated during ironmaking process
KR100321622B1 (en) * 1997-12-24 2002-05-13 이구택 Method for suppressing generation of sulfur oxides from sintering of iron ore
KR100321621B1 (en) * 1997-12-27 2002-05-13 이구택 REDUCTION METHOD OF NOx AND SOx DURING SINTERING PROCESS

Also Published As

Publication number Publication date
JPS63111133A (en) 1988-05-16

Similar Documents

Publication Publication Date Title
JP2007077484A (en) Method for manufacturing carbonaceous material-containing agglomerate
JPS60255937A (en) Manufacture of cold-bound briquette
JP2704673B2 (en) Method for producing semi-reduced sintered ore
JP4997712B2 (en) Blast furnace operation method
JPH066754B2 (en) Sintering method of iron ore
JP2009019224A (en) Method for manufacturing sintered ore
JPH0816249B2 (en) Pretreatment method in agglomerated ore production
JP3395554B2 (en) Sinter production method
CN102337444A (en) Technology for producing vanadium chromium manganese alloyed pig iron by melting vanadium extraction tailings
JP3797184B2 (en) Method for producing sintered ore
JP2003313614A (en) Method for manufacturing sintered ore with little slag
JP2711735B2 (en) Sinter production method
JP3709001B2 (en) Non-fired agglomerated ore for iron making and method of using the same
JPH0742519B2 (en) Pretreatment method for raw material for blast furnace
JPS627253B2 (en)
JPS58213837A (en) Method for sintering chrome ore
JPH09272925A (en) Production of sintered ore excellent in property at high temperature and cold strength
JP4661077B2 (en) Method for producing sintered ore
JPH0621300B2 (en) Sintering method of iron ore
JPS5983727A (en) Preparation of iron ore stock material to be sintered
JPH0621301B2 (en) Sintering method of iron ore
JP2515639B2 (en) Method for producing agglomerated ore using converter slag
JPS6320288B2 (en)
JPS6017810B2 (en) Manufacturing method of iron ore sintered raw material
JPH08176686A (en) Production for sintered ore compounded at high ratio with high alumina iron ore